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Abstract. We present in this article a theoretical study and perfor-
mance results about the impact of the Grid architecture on token-based
mutual exclusion algorithms. To this end, both the original token-based
Naimi-Tréhel’s algorithm and a hierarchical approach, suitable to cope
with the intrinsic heterogeneity of communication latencies of Grid en-
vironments, are studied and evaluated.

1 Introduction

A Grid is usually composed of a large number of machines gathered into small
groups called clusters. Nodes within a cluster are linked using local networks
(LAN) whereas clusters are connected by wide area network (WAN) links. There-
fore, Grids present a hierarchy of communication delays where the latency of
sending a message between nodes of different clusters is much higher than send-
ing a message between nodes within the same cluster.

As Grid resources can be shared, applications that run on top of a Grid usually
require their processes to get exclusive access to one or more of these shared re-
sources (critical section). Thus, a distributed mutual exclusion algorithm, which
ensures that exactly one process can execute the critical section (CS) at any
given time (safety property) and that all CS requests will eventually be satisfied
(liveness property), is an important building block for Grid applications. More-
over, the performance of a mutual exclusion algorithm can have a major impact
on the overall performance of these applications.

Mutual exclusion algorithms can be divided into two groups: permission-
based (e.g. Lamport [5], Ricart-Agrawala [11], Maekawa [6], etc.) and token-based
(Suzuki-Kazami [15], Naimi-Tréhel [8], Raymond [10], etc.). The algorithms of
the first group are based on the principle that a node enters a CS only af-
ter having received a permission from all the other nodes (or the majority of
them [6]). In the second group, a unique system-wide token is shared among all
nodes, and its possession gives a node the exclusive right to enter the critical
section. Token-based algorithms usually have an average lower message cost than
permission-based ones and many of them have a logarithmic message complexity
O(log(N)) with regard to the number of nodes N . Hence, they are more suitable
for controlling concurrent access to shared resources of Grids since N is often
very large.
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However, existing token-based algorithms do not take into account the above-
mentioned hierarchy of communication latencies. To overcome this problem, we
have presented in a previous article [14] a generic composition approach which
enables the combination of any two token-based mutual exclusion algorithms:
one at intra-cluster level and a second one at inter-cluster level. By using our
composition mechanism, efficient mutual exclusion algorithms for Grids can be
built where communication latency heterogeneity is not neglected. Furthermore,
they can be easily deployed by just “plugging in” token-based algorithms on
each levels of the hierarchy. Performance evaluation tests conducted on a Grid
platform have shown that the good choice for an inter-cluster mutual exclusion
algorithm depends on the frequency with which the distributed processes of the
application request for the shared resource, i.e., the degree of parallelism of the
application.

We now propose in this article to study the impact of the Grid architecture
on token-based mutual exclusion algorithms with and without our composition
approach, i.e., hierarchical and flat mutual exclusion algorithms respectively.
Basically, we would like to know if our hierarchical approach is more suitable for
a Grid platform than the flat one when the number of clusters increases, and
which is the number of clusters that a Grid platform should have such that the
hierarchical algorithm presents the highest performance gain when compared to
the flat one.

In order to answer to the above questions, we did both a theoretical study
about the probability of an algorithm’s message to be sent over an inter cluster
link and we conducted evaluation performance experiments on a Grid emulation
cluster platform. For the experiments, we have chosen the Naimi-Trehel’s [8]
token-based mutual exclusion algorithm, which maintains a dynamic logical tree
to transmit processes requests for the execution of the critical section. Thus,
the flat algorithm consists of the original Naimi-Trehel’s algorithm while the
hierarchical one uses our composition approach with Naimi-Trehel’s algorithm
at both intra and inter levels. Our choice can be explained based on the results
published in our previously mentioned article [14]: when using Naimi-Trehel’s
algorithm at inter-cluster level, we obtained the smallest delay to get access
to the shared resource when compared to other token-based algorithms that
use other approaches for transmitting critical section requests such as a logical
ring structure or broadcasting. We should also emphasize that we considered
applications with different behaviors in our experiments since we also would like
to know if the degree of the parallelism of an application has an influence on our
study.

The remainder of this paper is organized as follows. Section 2 briefly describes
Naimi-Tréhel algorithm. In section 3, we present our compositional approach for
mutual exclusion algorithms. Performance evaluation results and a theoretical
study about the effect of clustering on token-based algorithms with and without
our composition approach are presented in section 4. Some related work is given
in section 5. Finally, the last section concludes our work.
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2 Naimi-Tréhel’s Algorithm

Naimi-Tréhel’s algorithm [8] is a token-based algorithm which keeps two data-
structures: (1) A logical dynamic tree structure in which the root of the tree is
always the last node that will get the token among the current requesting ones.
Initially, the root is the token holder, elected among all nodes. This tree is called
the last tree, since each node i keeps the local variable last which points to the
last probable owner of the token; (2) A distributed queue which keeps critical
section requests that have not been satisfied yet. This queue is called the next
queue, since each node i keeps the variable next which points to the next node
to whom the token will be granted after i leaves the critical section.

When a node i wants to enter the critical section, it sends a request to its last.
Node i then sets its last to itself and waits for the token. It becomes the new
root of the tree. Upon receiving i’s token request message, node j can take one
of the following action depending on its state: (1) j is not the root of the tree. It
forwards the request to its last and then updates its last to i. (2) j is the root of
the tree. It updates its last to i and if it holds an idle token, it sends the token
to i. However, if j holds the token but is in the critical section or is waiting for
the token, it just sets its next to i. After executing the critical section itself, j
will send the token to its next.

3 Composition Approach to Mutual Exclusion
Algorithms

In this section we present our mutual exclusion composition approach. We con-
sider that there is one process per node, called application process.

Our approach consists in a hierarchy of mutual exclusion algorithms: a per
cluster token-based mutual exclusion algorithm that controls critical section re-
quests for processes within the same cluster and another algorithm that controls
inter-cluster requests. The former is called the intra algorithm while the lat-
ter is called the inter algorithm. Each intra algorithm controls an intra token
while the inter algorithm controls an inter token. An intra algorithm of a cluster
runs independently from the other intra algorithms. An important advantage of
our approach is that the original algorithms chosen for both layers do not need
to be modified. Furthermore, it is completely transparent for application pro-
cesses which just call the classical mutual exclusion functions CS Request() and
CS Release(). Thus, whenever an application process wants to access the shared
resource, it calls the CS Request() (Figure 1, line 14 of the intra algorithm. Upon
receiving the intra token, the process executes the CS. After executing it, the
process calls the CS Release() (line 17 of the same intra algorithm to release it.

In order to avoid that application processes of different clusters simultaneously
access the critical section, we have introduced a special process within each clus-
ter, called the coordinator. The inter algorithm runs on top of the coordinators
and allows a coordinator to request access to the shared resource on behalf of an
application process of its own cluster. Coordinators are in fact hybrid processes
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which participate in both the inter algorithm with the other coordinators and
the intra algorithm with their cluster’s application processes. Holding the intra
token of its cluster is sufficient and necessary for an application process to enter
the CS since the intra token is granted to it only if the coordinator of its cluster
holds the inter token, which is unique for the whole system.

The guiding principle of our approach is described in the pseudo code of
Figure 1. The pendingRequest( ) function (line 21) informs the coordinator if
there are token requests of the respective level waiting to be satisfied.

Coordinator Algorithm ()1

/* Initially, it holds the intra-token */2

while TRUE do3

if ¬ intra.pendingRequest() then4

Wait for intra.pendingRequest()5

inter.CS Request()6

/* Holds inter-token. CS */7

intra.CS Release()8

if ¬ inter.pendingRequest() then9

Wait for inter.pendingRequest()10

intra.CS Request()11

/* Holds intra-token CS */12

inter.CS Release()13

CS Request ()14

...15

Wait for Token16

CS Release ()17

...18

if pendingRequest() then19

Send Token20

pendingRequest ()21

return

(
TRUE if ∃ pending request
FALSE otherwise22

Fig. 1. Coordinator algorithm

Initially, every coordinator holds the intra token of its cluster and only one
of them holds the inter token. Thus, when an application process wants to en-
ter the critical section, it sends a request to its local intra algorithm by call-
ing the Intra.CSRequest() function. The coordinator of the cluster, which is the
current holder of the intra token in this case, will also receive such a request.
However, before granting the intra token to the requesting application process,
the coordinator must hold the inter token too. The coordinator then calls the
Inter.CSRequest() function (line 6) in order to request the inter token. Upon
receiving it, the coordinator gives the intra token to the requesting application
process by calling the Intra.CSRelease() function (line 8). After executing the
CS, the application process calls the Intra.CSRelease() function in order to re-
lease the intra token.

A coordinator which holds the inter token must also treat inter token requests
received from the inter algorithm. However, it can only grant the inter token
to another coordinator if it holds its local intra token too. Holding the token
ensures that there is no application process within its cluster in the critical
section. Thus, before releasing the inter token, the coordinator sends a request
to its intra algorithm asking for the intra token by calling the Intra.CSRequest()
function (line 11). Upon obtaining the intra token, the coordinator can grant
the inter token to the requesting coordinator by calling the Inter.CSRelease()
function (line 13).
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4 Performance Evaluation

Our performance evaluation aims at studying and comparing the influence of the
Grid architecture in both the original Naimi-Tréhel mutual exclusion algorithm
(flat algorithm) and with our composition approach using Naimi-Tréhel at both
levels (hierarchical algorithm). To this end, the number of nodes of the Grid was
set to 120 but the number of clusters varied: 2, 3, 4, 6, 8, 12, 20, 30, 40, 60,
and 120. The experiments were conducted on a dedicated cluster of twenty-four
Bi-Xeon 2.8 Ghz with 2GB of RAM machines where a Grid environment with
120 virtual nodes was emulated. There is one process per virtual node. For those
configurations where the number of virtual clusters is greater than the number of
available machines, nodes of the same virtual cluster run on the same machine.
This approach prevents side effects of intra cluster communication.

Network latencies between clusters were emulated by using the flexible tool
DUMMYNET [12] which allows injection of network delay, bandwidth limita-
tion, and packet loss. Hence, for emulating several virtual clusters, every message
exchanged between two virtual clusters goes through a dedicated machine, a P4
3Ghz machine, which runs a FreeBSD DUMMYNET. Intra cluster communica-
tion latency is 0.5ms while inter cluster latency is 20ms. Machines are connected
by a 140 Gbits/s Ethernet switch.

The mutual exclusion algorithms and the coordinator were written in C us-
ing UDP sockets. Each application process that runs on a single virtual node
executes 100 critical sections. Each of them lasts 10ms. Every experiment was
executed 10 times and the presented results are the average value.

The behavior of an application can be characterized by ρ which expresses the
frequency with which the CS is requested. ρ is equal to the ratio β/α, where α
is the time taken by a node to execute the CS while β is the mean time interval
between the release of the CS by a process and its next request.

We have developed several applications having low, intermediate, and high
degrees of parallelism. Considering N as the total number of application pro-
cesses, the three degrees of parallelism can be expressed respectively by:

- Low Parallelism (ρ ≤ N): An application where the majority of application
processes request the critical section. Thus, almost all coordinators wait for
the inter token in the inter algorithm.

- Intermediate parallelism (N < ρ ≤ 3N): A parallel application where
some nodes compete to get the CS. Hence, only some coordinators wait for
the inter token.

- High Parallelism (3N ≤ ρ): A highly parallel application where concurrent
requests to the CS are rare. The whole number of requesting application
processes is small and usually distributed over the Grid.

In order to evaluate the flat algorithm as well as the hierarchical one, two
metrics have been considered: (1) the number of inter-cluster messages and (2)
the obtaining time, i.e., the time between the moment a node requests the critical
section and the moment it gets it.
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Fig. 2. Impact of the number of clusters

Considering N = 120, for each experiment, we have measured the obtaining
time (Figures 2(a), 2(b), and 2(c)) and the number of inter cluster messages
(Figures 2(d), 2(e), and 2(f)) for both algorithms when the number of cluster
ranges from 2 to 120. Figures 2(a) and 2(d) correspond to a low parallel degree
application (ρ = N/2); Figures 2(b) and 2(e) correspond to an intermediate
parallel degree application (ρ = 2N); Figures 2(c) and 2(f) correspond to a high
parallel degree application (ρ = 5N).

4.1 Flat Algorithm

We start by studying the impact of the number of clusters of the Grid on both
the obtaining time and the number of inter cluster messages in the original flat
Naimi-Tréhel algorithm. We can observe in Figure 2, that the curves related to
this algorithm have a quite similar form. Independently of ρ, all curves present
a hyperbolic form: a significant growth when the number of clusters varies from
2 to 12. This growth is then strongly reduced, becoming almost null, when the
number of clusters is greater than 40.

In order to explain the form of such curves, we propose to theoretically study
the frequency with which a flat mutual exclusion algorithm sends an inter cluster
message, i.e., the probability P that the destination node of a message does not
belong to the same cluster of the message’s sender. To this end, we consider a
Grid architecture composed of N nodes uniformly distributed over c clusters.
Without loss of generality, we also suppose that a node can send a message to



The Impact of Clustering on Token-Based Mutual Exclusion Algorithms 571

itself. This assumption models two successive accesses to the critical section by
the same node. Then, we get the following probability P :

P =
N − N

c

N
= 1 − 1

c

This equation is totally in accordance with the form of the curves of Figures 2
for the flat algorithm. It also shows that such a probability does not depend
on the number of nodes N whenever they are uniformly distributed over the
Grid, i.e., it depends only on c. A last important conclusion from this equation
is that the clustering effect due to the communication latency heterogeneity of
a Grid has a negligible impact on the order of CS accesses. In other words, such
a heterogeneity does not change the order of priority of the requests in such a
way that request from closer nodes would be satisfied before distant ones. In
the above equation, any node can be chosen among N with the same probabil-
ity, independently of the Grid topology. Furthermore, if theoretical curves were
drawn from the equation, they would be similar to the ones of Figure 2. Thus,
we can deduce that the assumption of equiprobability is reasonable and that the
algorithm does not naturally adapt itself to the Grid topology.

Let’s come back to the curves in order to study the impact of the number of
clusters with respect to the application behavior. The results of Figures 2(a),
2(b), and 2(c) show that the degree of parallelism of an application has an
impact on the obtaining time. Furthermore, the curves of Figures 2(d), 2(e), and
2(f) show that the parallelism degree of an application has no influence on the
number of inter cluster messages even if we observe a small reduction of this
number for low parallel applications.

4.2 Hierarchical Algorithm

We are now going to study the impact of the Grid architecture on our hierarchical
approach. The number of clusters has an influence on the obtaining time as well
as in the number of inter cluster which increase with the number of clusters.
However, if we exclude the configuration with one node per cluster where there
is in fact no hierarchy of communication at all, our approach always presents a
smaller obtaining time and number of inter cluster messages when compared to
the flat algorithm. Notice that the benefit of using our composition approach is
considerable even for a Grid composed of 60 two-node clusters.

Since the topology of the Grid has not the same impact on our composition
approach as on the flat algorithm, it would be interesting to study the mean
deviation between the hierarchical curves and the flat ones for both the obtaining
time and the number of inter cluster messages. Thus, based on the curves of
Figure 2, Figure 3 shows such mean deviations.

In Figure 3, we can observe that the gain of our composition approach in-
creases when the number of clusters ranges from 2 to 12. This is in accordance
with the curves of Figures 2 where the obtaining time as well the number of
inter cluster messages increase sharply for the original algorithm but smoothly
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Fig. 3. Mean deviation between the hierachical and flat algorithms

for our composition approach. Such a different behavior explains why the maxi-
mum mean deviation between the two curves is reached with 12 clusters. Beyond
this threshold value, the clustering effect neither has an influence on the obtain-
ing time nor on the number of inter cluster messages since in our hierarchical
approach the curves progressively increase while in the curves of the flat al-
gorithm remain linear. Thus, the respective mean deviations inversely decrease
until they become null for the configuration where each node represents a cluster
(120 clusters).

We would like to theoretically evaluate the above threshold in a Grid com-
posed of N nodes uniformly divided into c clusters. Hence, similarly to section
4.1, we need to find the probability P that a node sends an inter cluster message
in our own hierarchical approach on top of such a Grid. Without loss of general-
ity, we consider the case where the cluster locality is maximum, i.e., every time
a coordinator of a cluster gets the inter token, all the N/c nodes of this cluster
execute a critical section which corresponds to a low parallel application. Thus,
the probability P is equal to the probability of executing the last of the N/c
critical section executions:

P =
1
N
c

=
c

N

Therefore, the mean deviation E(c) between our composition approach and
the flat algorithm in function of the number of clusters c is equal to:

E(c) = 1 − 1
c

− c

N



The Impact of Clustering on Token-Based Mutual Exclusion Algorithms 573

and according to the derivative of E, the mentioned threshold, cthreshold, is equal
to:

E′(c) =
1
c2 − 1

N
= 0 ⇒ cthreshold =

√
N

Such an equation shows that the maximum benefit when using our composi-
tion approach is reached for a Grid architecture composed of

√
N nodes. This

result can be verified by the curves of Figure 3 since
√

120 = 10.95. Consequently,
for ρ = N/2 and ρ = 2N , the maximum mean deviation is reached between 8 and
12 clusters. It is also worth noting that for low parallel applications (ρ = 5N),
the Grid architecture corresponding to the highest benefit is equal to 6 clusters.

Finally, contrarily to the flat algorithm, the parallelism degree of an applica-
tion has an influence on our hierarchical approach. Indeed, we can observe in the
curves of Figure 2 that it becomes less effective with higher parallel applications
when the number of clusters increases, i.e., it does not present a linear behavior
anymore as it does with low parallel applications.

5 Related Work

Some works have proposed to adapt existing mutual exclusion algorithms to a hi-
erarchical architecture. In [7], the author presents an extension to Naimi-Tréhel’s
algorithm, introducing the concept of priority. A token request is associated with
a priority and the algorithm first satisfies the requests with the higher priority.
Bertier and al. [1] adopt a similar strategy based on the Naimi-Tréhel’s algorithm
which treats intra-cluster requests before inter-cluster ones.

Several authors have propose hierarchical approaches for combining different
mutual exclusion algorithms. Housni and al. [4] and Chang and al. [2] mutual
exclusion algorithms gather nodes into groups. Both consider a hybrid approach
where the algorithm for intra-group requests is different from the inter-group one.
In Housni and al. [4], sites with the same priority are gathered at the same group.
Raymond’s tree-based token algorithm [10] is used inside a group, while Ricart-
Agrawala [11] diffusion-based algorithm is used between groups. Chang and al. [2]
algorithm applies diffusion-based algorithms at both levels: Singhal’s algorithm
[13] locally, and Maekawa’s algorithm [6] between groups. The former uses a
dynamic information structure while the latter is based on a voting approach.
Similarly, Omara et al. [9]’s solution is a hybrid of Maekawa’s algorithm and
Singhal’s modified algorithm which provides fairness. Erciyes [3] proposes an
approach based on a ring of clusters where each node in the ring represents a
cluster of nodes. The author then adapts Ricart-Agrawala’s algorithm to this
architecture.

Our work is close to these hybrid algorithms about gathering machines into
groups (clusters in our case) which has in influence on the conception of the
algorithm. However, none of the articles present an evaluation study of the im-
pact of the number of groups (or clusters) on the performance of the proposed
algorithms.
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6 Conclusion

Our evaluation results show that clustering induces an important overhead in
the flat algorithm but does not cause any side effects, i.e., it does not change
the order of critical section accesses. Moreover, the impact of the number of
clusters on the flat algorithm does not depend on the parallelism degree of the
application.

In the case of our hierarchical algorithm, the number of clusters has an impact
on its performance. However, our approach always presents a shorter obtaining
time and a smaller number of inter cluster messages compared to the flat al-
gorithm when the number of nodes per cluster is greater than one even for a
Grid composed of a large number of clusters. Contrarily to the flat algorithm,
the parallelism degree of an application has an influence on our hierarchical
approach.

Finally, based both on our evaluation experiments and a theoretical study, we
can conclude that the optimal number of clusters that a platform should present
in order to provide the highest performance gain for the hierarchical algorithm
is around

√
N , where N is the total number of nodes on the Grid.
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