
Performance Evaluation of Data Management Layer by
Data Sharing Patterns for Grid RPC Applications�

Yoshihiro Nakajima2, Yoshiaki Aida1, Mitsuhisa Sato1, and Osamu Tatebe1

1 Graduate School of Systems and Information Engineering,
University of Tsukuba, Tsukuba, Japan

{aida,msato,tatebe}@hpcs.cs.tsukuba.ac.jp
2 NTT Network Innovation Laboratories,

Nippon Telegraph and Telephone Corporation, Tokyo, Japan
nakajima.yoshihiro@lab.ntt.co.jp

Abstract. Grid RPC applications, typically master-slave type of applications, of-
ten need to share large size of data among workers. For efficient and flexible data
sharing among a master and workers, we have designed and developed a data
management layer called OmniStorage. This paper enhances the OmniStorage
functionality to accommodate several data transfer methods and to specify a hint
for data sharing patterns, and develops a set of synthetic benchmarks based on
data sharing patterns required by grid RPC applications to evaluate the perfor-
mance and characteristics of each data transfer method. The performance evalua-
tion and the hint help to select a suitable data transfer method, which improves the
efficiency and also scalability of grid RPC applications that need to share large
size of data among a master and workers.

1 Introduction

Grid technology enables integration of the computing resources in the wide-area net-
work and sharing of huge amounts of data geographically distributed in several places.
In order to make use of computing resources in a grid environment, an RPC-style sys-
tem is particularly useful in that it provides an easy-to-use, intuitive programming in-
terface that allows users of the grid system to easily develop grid-enabled applications.
Several systems adopt Grid RPC as a basic model of computation, including Ninf [1],
NetSolve [2] and DIET [3]. We have developed a grid RPC system called OmniRPC
[4] for parallel programming solution in clusters and grid environments.

Grid RPC applications such as parametric search programs and task parallel pro-
grams, sometimes require a large amount of shared data among a master and workers.
For instance, in some parametric search applications, the workers require a large com-
mon initial data and different parameters to execute different computations at remote
nodes in parallel. In the RPC model, a master issues a remote procedure call and re-
ceives results from the invoked remote procedure. When the master needs to send the
same and large initial data to every worker by arguments of the remote procedure call,

� This study was supported in part by MEXT KAKENHI (No. 17200002, 17·7324, 19024009),
and by the Japan-France collaboration research program (SAKURA) through the JSPS. The
study was performed in University of Tsukuba.

E. Luque, T. Margalef, and D. Benı́tez (Eds.): Euro-Par 2008, LNCS 5168, pp. 554–564, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Performance Evaluation of Data Management Layer 555

W-To-W BROADCAST

ALL-EXCHANGE

Data communication

Process control communication

Master

Worker

Worker

Master

Worker

Worker

Worker

Master

Worker

Worker

Worker

Worker

Fig. 1. Synthetic data sharing patterns

Master

Worker

Worker

PutF ile(“fileC
” , ...,BCAST)

(“ fileC ”, filedata)

(“matA” , [0.21,..])

(“matB” , [3.14,..])

OmniStorage

GetData(“matA”,…)

Ge tD
a ta(

“
matB

”
,.. .

) Worker

GetData(“matA” ,…)

Omst
Server

Omst
Server

Omst
Server

OmniStorage underlying data transfer layer

PutDa ta(“matA
”,...)

Selecting a suitable data transfer method

Fig. 2. Overview of OmniStorage

the data transfer from the master is wasteful and also causes a bottleneck for scalability.
Thus, we proposed a programming model to decouple the data transmission from the
RPC model to allow the data to be transferred efficiently by a data management layer
[5]. The data management layer provides a temporal storage space that can be shared
by both a master and workers, and APIs for data registration and data retrieval to the
shared data.

For the data management layer of grid RPC applications, we have designed and de-
veloped OmniStorage [5]. OmniStorage provides APIs to access data using an identifier
and hides both an internal behavior of data transfer method and a data placement from
the application level. In [5], a preliminary design of OmniStorage using tree-topology-
aware file broadcasting and the performance results are described. This paper enhances
the OmniStorage functionality to exploit several data transfer methods in data transfer
layer and to accept a hint for data sharing patterns in order to help to choose a suitable
data transfer method.

Several studies on the data management layer gave some performance evaluation us-
ing simple benchmarks [6,7], but the lack of synthetic workload benchmarks that model
data sharing patterns of grid RPC applications defies the performance comparison be-
tween several data management layers. To address this issue, we develop synthetic grid
RPC workload models that abstract data sharing patterns typically needed by grid RPC
applications, and investigate the performance characteristics of three data transfer meth-
ods in OmniStorage. It shows that selecting an appropriate data transfer mechanism
promises to solve an inherent inefficiency in Grid RPC regarding data sharing among a
master and workers.

Our contributions are as follows:
– Synthetic workload programs for grid RPC applications are developed to investi-

gate the performance characteristics of several data management layers regarding
the data sharing pattern among a master and workers.

– We investigate the performance characteristics of different kinds of data transfer
methods in a data management layer using the synthetic workload programs so that
an optimal data transfer method for each data sharing pattern is examined.

– Through performance evaluation of OmniStorage, we demonstrate the merits of a
program model to decouple the data transmission from the RPC.

– We propose an interface which can utilize a hint information for data sharing pat-
terns in order to allow a program to exploit an optimal data transfer method accord-
ing to the data sharing pattern needed by the application.

556 Y. Nakajima et al.

/* master program */
int main(){
double initdata[LEN];
...
for(i = 0; i < n; i++)
req[i] = OmniRpcCallAsync("foo", LEN, initdata, i);

...
OmniRpcWaitAll(n, req);

}
/* worker program */
Define foo(IN int s, IN double data[s], IN int iter){
/* main calculation */ }

Fig. 3. An example of OmniRPC program

/* master program */
int main(){
double initdata[LEN];
req = OmstPutData("mydat",initdata,

sizeof(double)*LEN,OMST_BROADCAST);
OmstWait(req);
for(i = 0; i < n; i++)
req[i] = OmniRpcCallAsync("foo", i);

OmniRpcWaitAll(n, req);
}
/* worker program */
Define foo(int IN iter){
double initdata[LEN];
req = OmstGetData("mydat",initdata, sizeof(double)*LEN);
OmstWait(req);
/* main calculation */ }

Fig. 4. An example of OmniRPC program with
OmniStorage

The remaining of this paper is organized as follows. Section 2 describes data sharing
pattern models typically needed by grid RPC applications and benchmark programs.
Section 3 describes a design and implementation of the OmniStorage. The performance
and the characteristics of OmniStorage are presented in Section 4. A selection policy of
data transfer methods depending on data sharing patterns among a master and workers
is discussed in Section 5. Section 6 describes previous work related to the present study.
Finally, Section 7 concludes the paper.

2 Data Sharing Pattern for Data Management Layer

2.1 Data Sharing Pattern in Grid RPC Applications

Basically RPC mechanism sends arguments and receives results between a master and
a worker. However some grid RPC applications need other data sharing patterns such as
broadcasting common initial data, and data transmission between workers. Performance
issues for each data sharing pattern can be summarized as follows:

Broadcasting initial data: In case of parametric search type parallel applications,
workers will receive common initial data and their own parameters from a master to
execute their part of computations at remote nodes. In this case, the master has to
send both common initial data and different parameters by every RPC. To address this
kind of issue, the OmniRPC provides a data persistence mechanism called “automatic-
initializing remote module” to hold data specified by an initialization function of a re-
mote executable module [8]. This avoids multiple transmissions of the same initial data.
However, the data must be sent directly from a master to each worker when a remote
module is invoked. If the initial data is large, or the number of workers increase, the
data transfer from a master would be a bottleneck.

Data transfers between workers due to data dependency in RPC’s parameters:
If an application has data dependency in parameters of RPCs, in other words, several
RPCs have data dependency between input and output parameters, which means output
of previous RPC becomes the input of the next RPC. A worker communicates to an-
other worker through a master in order to realize the data transfer between the workers.
Therefore the communication to the master will disturb application’s scalability espe-
cially in case of a grid environment due to a long latency and a poor network bandwidth.

Performance Evaluation of Data Management Layer 557

Or if an application performs request sequencing of RPC, the efficiency of data sharing
will be improved by optimizing the data sharing between workers.

2.2 Data Sharing Pattern

Data sharing patterns required by grid RPC applications are summarized as follows.
Figure 1 shows the overview of these patterns.

W-To-W: W-To-W model is seen at a program which an output of a previous RPC
becomes the input of the next PC. W-To-W model is used in the concept of RPC
request sequencing so that no unnecessary data is transmitted and all necessary data
is transferred. In W-To-W, a worker registers its own data to OmniStorage after that
another worker retrieves the data from OmniStorage.

BROADCAST: BROADCAST model is observed at a program to broadcast common
initial data from a master to workers. The model is used at many parametric search
programs. In BROADCAST model, a master sends one common initial file to all
workers.

ALL-EXCHANGE: ALL-EXCHANGE models a program that every worker
exchanges their own data files each other for subsequent processing. All workers
exchange their own data files each other. In other words, each worker registers one
file to OmniStorage after that the worker retrieves files which are registered by the
other workers. This model is the worst data sharing pattern in case of a black box
program which a worker communicates with other workers randomly.

3 OmniStorage: A Data Management Layer for Grid RPC
Applications

3.1 Design of OmniStorage

To handle data sharing patterns described in the previous section, we design a data man-
agement layer called OmniStorage on wide area networks to realize the efficient data
transfers among workers by decoupling the data transmission from conventional RPC
model. Decoupling the data transmission form RPC, OmniStorage framework works
as a data repository system for grid RPC applications. Figure 2 shows the overview of
OmniStorage. A process can register data with a unique identifier and a hint, which in-
dicates a data sharing pattern, to data repository of OmniStorage. In the data repository
of OmniStorage, data is managed by a combination of an identifier and a data entity like
“(id, value)”. A process can retrieve data by specifying an identifier. The data location
is transparent to users. In addition, OmniStorage utilizes a hint information of the data
in order to choose a suitable data transfer method according to the data sharing pattern.

OmniStorage APIs consist of a data registering function, OmstPutData(id,
data,size,hint), data retrieving functions, OmstGetData(id,data,size),
request synchronization functions to access a shared data space. Here, Data handling in-
formation are given by a logical sum of hints which indicate data sharing patterns, and
data transfer methods with hint in OmniStorage data registration API. These hints are
summarized as follows:

558 Y. Nakajima et al.

– Attributes of patterns of data transfer
• OMST POINT2POINT: Data may be transferred between worker processes.
• OMST BROADCAST: Data is supposed to be broadcasted to many processes.
• OMST ALL EXCHANGE:Data is supposed to be exchanged each other by each

worker process.
– Attribute to specify a specific data transfer layer.
In the OmniRPC applications with OmniStorage, shared data among workers are

managed by OmniStorage, while none-shared data including a parameter in parametric
search applications is managed by OmniRPC’s parameters.

Figure 3 and Figure 4 show a typical parametric search application with OmniRPC,
and the same application with OmniRPC and OmniStorage, respectively. Both of exam-
ples, an initial data are broadcasted to all workers. The master program calls OmstPut-
Data() to register data before a worker program accesses the data. Then the worker
program calls OmstGetData() to access the data. To identify a data, the same identi-
fier “mydat” in the name space of OmniStorage is used in both a master and workers.
Moreover, a hint of data sharing pattern is specified on the data registration API of
OmstPutData() so that OmniStorage can select an appropriate data transfer method
regarding a data sharing pattern. Here, a hint of broadcast pattern ofOMST BROADCAST
is specified.

3.2 Implementations

The data cache in OmniStorage is basically handled as the data file. OmniStorage ex-
ploits a data transfer method to transfer a cache data file between processes or to access
a cache data file. The cache files will be stored on a remote host so that a program can
exploit the data locality.

OmniStorage accommodates several data transfer methods to exploit an suitable data
transfer method according to a required data sharing pattern. Although in this paper,
OmniStorage employs three middleware as data transfer methods which have different
kinds of characteristics for performance evaluations as follows:

Omst/Tree: Omst/Tree exploits our file broadcasting middleware taking network
topology into account. Figure 5 shows the overview of Omst/Tree. Omst/Tree uses
several relay servers between master and workers so that Omst/Tree can reduce the
amount of data communications between a master and workers.

Omst/BT: Omst/BT makes use of BitTorrent to be used as a data transfer method for
cache files. BitTorrent [9] is a P2P file sharing protocol in order to distribute a large
amount of files to many peers efficiently. Figure 6 shows the overview of Omst/BT.
When the number of seeder increases according to the progress of file distribution,
the load average of each peer gets lower and BitTorrent can achieve efficient data
transfers.

Omst/GF: Omst/GF utilize a grid-enabled distributed file system called Gfarm [10].
Gfarm provides a grid file system that can scale up to petascale storage, and realize
scalable I/O bandwidth and scalable parallel processing. Cache files on Omst/GF

Performance Evaluation of Data Management Layer 559

are managed by Gfarm. These caches are accessed by using the Gfarm remote I/O
functions. Omst/GF duplicates the cache files on several nodes in order to improve
the scalability of data transfer. For example, if broadcast type data transfer is used
in a program, Omst/GF duplicates two more cache files on file system nodes.

4 Performance Evaluation

The basic performance and the characteristics of OmniStorage implementations are in-
vestigated using three synthetic benchmark programs by data sharing patterns needed
by grid RPC applications. The benchmark programs consist of W-To-W, BROAD-
CAST, and ALL-EXCHANGE based on data sharing patterns as discussed at Section
2. Note, we do not mention the basic performance of the middleware used in OmniS-
torage, such as BitTorrent and Gfarm. As for these basic performances, refer the reports
[11,12,13].

Four clusters connected by different networks are used for performance evaluation.
Figure 7 shows cluster configurations and the measured network performance. Each
master program of benchmark programs is executed on cTsukuba, and a worker pro-
gram is assigned per computational node in the clusters. Here, each measured data in
the performance evaluations is a mean value of five trials. The software components of
OmniRPC 1.2, libtorrent 0.9.1, Azureus 2.5.0.2, Gfarm 1.4, Boost C++ Library 1.33.1,
and Java2 SE 1.4.2 are used.

To conduct this performance evaluation, two experimental settings with 16 nodes,
where the network configurations between two clusters are different, are configured as
follows:

CASE1: Two clusters are in the same network — Using both eight nodes on Dennis
cluster and eight nodes on Alice cluster

CASE2: Two clusters are connected by WAN — Using both eight nodes on Dennis
cluster and eight nodes on Gfm cluster.

Figure 8 shows the elapsed time of W-To-W benchmark in case of machine config-
uration of CASE1 and CASE2. In spite of the experimental configuration, Omst/GF
achieves better performance than other data transfer methods. In case of Omst/GF and
Omst/BT, a worker can directly communicate with another worker so that the efficiency
of data transfer between two workers may be improved. On the other hand, to perform
W-To-W pattern sharing using only OmniRPC system, two more RPCs, one to send data
from a worker to a master, and one to send data from the master to another worker, are
required. These sharing patterns cause bottlenecks to improve the performance. More-
over if the necessary number of W-To-W type sharings increases, the efficiency of data
transfers would go from bad to worse.

Although Omst/BT could not achieve better performance than using only OmniRPC
system. When the number of running workers is small, the BitTorrent protocol cannot
perform data transfers efficiently. Moreover, Omst/BT needs pre-procedures, such as
creating a torrent file and uploading the torrent file, before the data sharing among a
master and workers starts so that the performance of Omst/BT is degraded.

560 Y. Nakajima et al.

W
W

W

W

R

M

W
W

WW

RW

M: Master node
R: Relay node
W: Worker node
 : Omst/Tree process

Cluster A

Cluster B
Data retriving requestData transmission

Fig. 5. Omst/Tree implementation

HostA (Seeder)

OmniStorage’s API

User Program

(Master)

BitTorrent Client

Add

Metainfo

Index Site

Upload

Metainfo

Metainfo

Web Server
HostB (Leecher)

OmniStorage’s API

User Program

(Worker)

BitTorrent Client

Download

Metainfo

BitTorrent Protocol

Data Transfer

Metainfo : ****.torrent

Data

Data

Add

Metainfo

Data

Data

(1)

(5)(2)

(6)

(4)(3)

(6) (6)

(7)

Cache Cache

Tracker Site

Tracker

Fig. 6. Omst/BT implementation

Gfm (8nodes)
Dual Xeon 3.2GHz,
1GB Mem, 1GbE
3ware RAID 750GB

Tsukuba WAN

516.0Mbps

55.4 Mbps
42.7Mbps

Alice (8nodes)
Dual Xeon 2.4GHz,
1GBMem, 1GbE,
7200RPM IDE HDD

Dennis (8nodes)
Dual Xeon 2.4GHz,
1GBMem, 1GbE,
7200RPM IDE HDD

cTsukuba
Dual Xeon 2.4GHz,
1GBMem, 1GbE,
7200RPM IDE HDD

Fig. 7. Experimental platform

0
100
200
300
400
500
600
700
800
900

16 64 256 1028 16 64 256 1028

Dennis-Alice Dennis-Gfm

El
ap

se
d

tim
e (

se
c)

Size of data (MB) / Used cluster

Omst/BT
Omst/GF
OmniRPC

Fig. 8. Elapsed time of W-To-W benchmark

Figure 9 shows the elapsed time of BROADCAST on two types of machine con-
figuration. Regardless of the data size, Omst/Tree achieves better performance in most
cases. In case of two clusters connected by high speed network, Omst/BT can achieve
approximately the same performance on the Omst/Tree. Particularly when the data size
is 1024MB, Omst/BT obtains better performance than Omst/Tree does. In Omst/BT, a
data file is divided many small pieces, and each piece is transferred in parallel to other
processes so that the efficiency of data transfer is improved. Omst/GF performance is
degraded because of the increase of number of data communication between a master
and a worker by an inadequate scheduling about a host selection in Gfarm.

Figure 10 shows the elapsed time of ALL-EXCHANGE benchmark program in case
of CASE1 and CASE2. Omst/GF succeeds twice faster than Omst/BT in all data size
and two cluster configurations. In case of the original OmniRPC system, a master sends
a large amount of data many times so that the data sharing between the master and a
worker becomes a serious bottleneck, as a result, the performance is degraded. Some
factors of performance bottleneck on Omst/BT are caused by both inadequate algo-
rithms, such as the way to selection peer on a tracker and choking algorithm on a peer,
and parameter configurations of BitTorrent, such as the limit bandwidth and the limit
of connections on a data seeder. However there may be an opportunity to improve the
performance by optimizing these parameters or replacing the algorithm.

Performance Evaluation of Data Management Layer 561

0

500

1000

1500

2000

2500

16 256 1028 16 256 1028

Dennis-Alice Dennis-Gfm

El
ap

se
d

tim
e (

se
c)

Size of data (MB) / Used cluster

Omst/BT
Omst/GF
Omst/Tree
OmniRPC

Fig. 9. Elapsed time of BROADCAST bench-
mark

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

16 256 1028 16 256 1028

Dennis-Alice Dennis-Gfm

El
ap

se
d

tim
e (

se
c)

Size of data (MB)/Used cluster names

Omst/BT
Omst/GF
OmniRPC

Fig. 10. Elapsed time of ALL-EXCHANGE
benchmark

5 Discussion for an Optimal Data Transfer Method

We discuss for an optimal data transfer method of OmniStorage according to three data
sharing patterns from the basic performance evaluation.

W-To-W: Omst/GF is preferred in case of a data sharing pattern of W-To-W. One of
reasons may come from the environment in the performance evaluation such that
there are too small number of workers to get merits of BitTorrent protocol.

BROADCAST: Omst/Tree is preferred for BROADCAST when the network topology
of a grid environment is known. In case that the network topology is not known
beforehand, Omst/BT is preferred because the BitTorrent protocol aims to be used
in a peer-to-peer environment where the network topology is unknown. In addition,
when a user exploits more than 1000 nodes, Omst/Tree requires more complex
configurations to run than Omst/BT. Whence Omst/BT is suitable in such case.

ALL-EXCHANGE: A suitable data transfer method is Omst/GF in case of ALL-
EXCHANGE. In this evaluation, BitTorrent parameters is not optimized in order
to improve the Omst/BT’s performance. However, there is a chance to improve the
performance of Omst/BT.

We move to discuss the merit of exploiting hint information of data sharing pattern
in order to achieve the efficient data sharing. The hint information of the data tells
the OmniStorage which data sharing pattern is required and how the data is used in
a remote process. Therefore, OmniStorage can select an optimal data transfer method
which is the most suitable for the data sharing pattern. In addition, OmniStorage can
transfer the data efficiently taking the network topology into account. Suppose that
OmniStorage does not handle the data hint information, OmniStorage use W-To-W
data sharing pattern, and cannot accomplish the efficient data transfers in case that data
broadcasting is required. By exploiting some hint information for data, OmniStorage
can exploit an optimal data transfer method depending on data sharing patterns so that
it can achieve the efficient data transfer in terms of scalability and performance.

562 Y. Nakajima et al.

6 Related Work

DIET [14] implemented a data management layer called Data Tree Manager (DTM) to
avoid multiple redundant transmissions of the same data from a master to workers using
a data cache mechanism, and to provide a persistent data access mechanism without any
information of data location by using an identifier. This approach mainly focuses on
how to handle the persistent data shared among workers. DTM may reduce the amount
of data transfer using the data cache mechanism and finding the shortest path to the
data from a consumer. On the other hand, OmniStorage focuses on improving both the
efficiency of data transfer among workers and the scalability of grid RPC applications.
DIET DTM supports W-To-W data sharing pattern, but it does not support other data
sharing models and mechanisms to share the data efficiently. OmniStorage can select
an optimal data transfer method from several data transfer methods taking required
data sharing pattern into account so that OmniStorage improves the efficiency of data
transfer among a master and workers including in case of BROADCAST and ALL-
EXCHANGE patterns.

NetSolve [2] integrates Distributed Storage Infrastructure (DSI) named Internet
Backplane Protocol [15] to control the placement of data that will be accessed by work-
ers so that a master can reduce the times of the same data transfer to workers. However,
data in DSI is still explicitly transferred to/from the storage servers at the application
level. That means, a master should know both which node stores the data and which
node are closer to the worker before the program runs. On the other hand, OmniStorage
can adapt to dynamic environment since OmniStorage provides high-level data access
APIs without data location information, such as a node name, and optimizes the data
transfer automatically. [6] gave a performance result of NetSolve with DSI using a ma-
trix multiply, but the detailed performance evaluation based on data sharing patterns
hasn’t been presented yet.

Tanimura el al. proposed a task sequencing which allowed direct data transfer of only
file type parameter between RPC workers using Gfarm distributed file system as a data
repository on Ninf-G [16]. On the other hand, OmniStorage can handle both file and
array data and optimize the data transfer by selecting a suitable data transfer method
with hint information.

Batch-Aware Distributed File System (BAD-FS) [17] and Stork [18] aim to orches-
trate I/O-intensive batch workloads on remote clusters. They manage data placement,
data replication according to job requests submitted to a job scheduler. They statically
optimize data transfer beforehand the execution. However, OmniStorage focuses on
run-time data transfer instructed by an application.

7 Conclusion and Future Work

OmniStorage is designed and implemented to realize a data management layer that aug-
ments functionality of the Grid RPC model in order to decouples the data transmission
from RPC mechanism aiming to achieve flexible and efficient data transfer and choose
a suitable data transfer method of OmniStorage. The basic performance of three imple-
mentations is investigated using synthetic benchmark programs based on data sharing

Performance Evaluation of Data Management Layer 563

patterns needed by grid RPC applications. OmniStorage achieved better performance
than the original OmniRPC system in terms of both scalability and efficiency of data
transfer. We have demonstrated the merits of a programming model which decouples
the data transmission from the RPC. Moreover, taking a hint information of data shar-
ing patterns into account, OmniStorage accomplishes both high performance and high
scalability of applications. As our future work, we will optimize some parameters of
OmniStorage especially parameters for Omst/BT.

References

1. Nakada, H., Sato, M., Sekiguchi, S.: Design and Implementations of Ninf: towards a Global
Computing Infrastructure. Future Generation Computing Systems 15(5-6), 649–658 (1999)

2. Arnold, D., Agrawal, S., Blackford, S., Dongarra, J., Miller, M., Seymour, K., Sagi, K., Shi,
Z., Vadhiyar, S.: Users’ Guide to NetSolve V1.4.1. Innovative Computing Dept. Technical
Report ICL-UT-02-05, University of Tennessee (June 2002)

3. Caron, E., Desprez, F.: Diet: A scalable toolbox to build network enabled servers on the grid.
International Journal of High Performance Computing Applications 20(3), 335–352 (2006)

4. Sato, M., Boku, T., Takahashi, D.: OmniRPC: a Grid RPC system for Parallel Programming
in Cluster and Grid Environment. In: Proceedings of the 3st International Symposium on
Cluster Computing and the Grid, pp. 206–213 (2003)

5. Aida, Y., Nakajima, Y., Sato, M., Sakurai, T., Takahashi, D., Boku, T.: Performance Im-
provement by Data Management Layer in a Grid RPC System. In: Proceedings of the First
International Conference on Grid and Pervasive Computing, pp. 324–335 (2006)

6. Beck, M., Arnold, D., Bassi, A., Berman, F., Casanova, H., Dongarra, J., Moore, T., Obertelli,
G., Plank, J., Swany, M., Vadhiyar, S., Wolski, R.: Middleware for the use of storage in
communication. Parallel Comput. 28(12), 1773–1787 (2002)

7. Del-Fabbro, B., Laiymani, D., Nicod, J.-M., Philippe, L.: Dtm: a service for managing data
persistency and data replication in network-enabled server environments: Research articles.
Concurr. Comput.: Pract. Exper. 19(16), 2125–2140 (2007)

8. Nakajima, Y., Sato, M., et al.: Implementation and performance evaluation of CONFLEX-G:
grid-enabled molecular conformational space search program with OmniRPC. In: Proceed-
ings of the 18th Annual International Conference on Supercomputing, pp. 154–163 (2004)

9. BitTorrent, http://www.bittorrent.com/
10. Tatebe, O., Morita, Y., Matsuoka, S., Soda, N., Sekiguchi, S.: Grid datafarm architecture for

petascale data intensive computing. In: Proceedings of 2nd IEEE/ACM International Sym-
posium on Cluster Computing and the Grid, pp. 102–109 (2002)

11. Qiu, D., Srikant, R.: Modeling and performance analysis of bittorrent-like peer-to-peer net-
works. In: Proceedings of The 2004 conference on Applications, technologies, architectures,
and protocols for computer communications, pp. 367–378 (2004)

12. Bharambe, A.R., Herley, C., Padmanabhan, V.N.: Some observations on bittorrent perfor-
mance. In: Proceedings of the 2005 ACM SIGMETRICS international conference on Mea-
surement and modeling of computer systems, pp. 398–399 (2005)

13. Ogura, S., Matsuoka, S., Nakada, H.: Evaluation of the inter-cluster data transfer on Grid
environment. In: Protocols of 3rd International Symposium on Cluster Computing and the
Grid, pp. 374–381 (2003)

14. Del-Fabbro, B., Laiymani, D., Nicod, J.-M., Philippe, L.: Data management in grid applica-
tions providers. In: The First International Conference on Distributed Frameworks for Mul-
timedia Applications (DFMA 2005), pp. 315–322 (2005)

http://www.bittorrent.com/

564 Y. Nakajima et al.

15. Bassi, A., Beck, M., Moore, T., Plank, J.S., Swany, M., Wolski, R., Fagg, G.: The Internet
Backplane Protocol: a study in resource sharing. Future Generation Computer Systems 19(4),
551–561 (2003)

16. Tanimura, Y., Nakada, H., Tanaka, Y., Sekiguchi, S.: Design and Implementation of Dis-
tributed Task Sequencing on GridRPC. In: Proceedings of the 6th IEEE International Con-
ference on Computer and Information Technology (2006)

17. Bent, J., Thain, D., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H., Livny, M.: Explicit control
a batch-aware distributed file system. In: Proceedings of the 1st Symposium on Networked
Systems Design and Implementation, p. 27 (2004)

18. Kosar, T., Livny, M.: Stork: Making data placement a first class citizen in the grid. In:
Proceedings of the 24th IEEE International Conference on Distributed Computing Systems
(ICDCS 2004), pp. 342–349 (2004)

	Performance Evaluation of Data Management Layer by Data Sharing Patterns for Grid RPC Applications
	Introduction
	Data Sharing Pattern for Data Management Layer
	Data Sharing Pattern in Grid RPC Applications
	Data Sharing Pattern

	OmniStorage: A Data Management Layer for Grid RPC Applications
	Design of OmniStorage
	Implementations

	Performance Evaluation
	Discussion for an Optimal Data Transfer Method
	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

