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Abstract. Due to the distributed nature of resources in grids that cover
multiple administrative domains, grid resource management cannot be
optimally implemented using traditional approaches. In order to investi-
gate new grid resource management systems, researchers utilize simula-
tors which allows them to efficiently evaluate new algorithms on a large
scale. We have developed the Grid Economics Simulator (GES) in sup-
port of research into grid resource management in general and economic
grid resource management in particular. This paper compares GES to
SimGrid and GridSim, two established grid simulation frameworks. We
demonstrate that GES compares favourably to the other frameworks in
terms of scalability, runtime performance and memory requirements. We
explain how these differences are related to the simulation paradigm and
the threading model used in each simulator.
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1 Introduction

Conducting research into resource management systems (RMS) on real grids is
difficult because of two reasons. Firstly, the costs involved in setting up and
maintaining such a system are high. Secondly, there is a need to test a new RMS
under a variety of different load patterns and infrastructural arrangements, which
is all but impossible to achieve with a real grid system. The large scale on which
a grid RMS needs to be studied magnifies the impact of these problems. As a
result, the only viable option for researchers is to resort to simulation.

The aim of a grid simulator is to allow easy comparison between different re-
source management approaches and to enable researchers to focus on the design
and implementation of the chosen approach, while leveraging the strength of the
existing framework in setting up the grid environment, running the simulation
and monitoring the desired metrics. Because a grid is intrinsically a large scale
system, a fundamental requirement for a grid simulator is scalability. An exam-
ple of such a large scale grid system is the system built by the the European
“Enabling Grids for E-sciencE” (EGEE) project. The EGEE infrastructure ser-
vices over 10000 users from 45 countries and offers a compute capacity of well
over 40000 CPUs, a figure which is expected to double over the course of the
next year. In order to simulate such a vast infrastructure, a simulator has to be
able to handle over 10 000 user entities and at least 100 000 computing nodes. In
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this contribution we evaluate the performance of SimGrid [1], GridSim [2] and
GES [3] in light of such large scale simulations.

2 Simulator Overview

Many frameworks have been developed for simulating grid systems [1I214]. We
have chosen to compare the performance of GES to SimGrid and GridSim because
of their maturity, extensive user base and active development status. The main dif-
ferences between the simulators are the chosen simulation paradigm and thread-
ing model. While GES uses single-threaded discrete-time based simulation, both
SimGrid and GridSim use massively multi-threaded discrete-event based simula-
tion. Whereas SimGrid offers the choice between the use of ucontexts (user space
threads) and pthreads (native threads), GridSim only supports native threading,
a consequence of the threading model used in current JVMs.

The differences in simulation paradigm can be easily explained by the focus
and history of the simulators. SimGrid has a strong focus on accurate network
simulation. This accuracy can be achieved best using discrete-event simulation.
GridSim started out as a framework for testing resource management policies in
grids and is built on top of the SimJava discrete-event engine. The addition of
a simulated network infrastructure enables the incorporation of network effects
in simulations [B]. GES was developed as a tool for studying economic resource
management approaches for grids, with a main focus on testing the algorithms
and protocols of various economic approaches. Under the assumption that net-
work contention is low there is less need to simulate a network and it is more
efficient to use a discrete-time engine.

2.1 SimGrid

SimGrid [6] is an extensive toolkit that provides core functionalities for the sim-
ulation of distributed applications. The codebase is written in C. Java bindings
that call into the C core using JNI will be provided in future releases. The toolkit
started out with a focus on centralized scheduling algorithms and was adapted
later on to allow for decentralized scheduling [7]. The simulator takes into ac-
count the computational speed of nodes as well as latency and bandwidth of the
network links connecting these nodes. SimGrid’s network model allows for faster
simulation times compared to approaches that use packet-level simulation.

The GRAS layer allows developers to implement distributed services and de-
ploy them in a simulated setting using the Meta-SimGrid (MSG) layer, or in
a real world setting using a socket-based communication layer. In the context
of our survey on simulation scalability we will evaluate the performance of the
MSG layer. This layer provides abstractions for hosts, tasks and processes. A
host represents a physical resource with computing capabilities that is able to
execute tasks. Hosts are linked to each other through a set of links. Currently,
it is not possible to create multi-processor hostdl. A process is a piece of logic

! This might be included as a future extension as communicated to us by the SimGrid
developers.
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that runs on a specific host and corresponds to a thread. A process can execute
tasks on its corresponding host or exchange them with other processes. A task
is defined by a computation amount and size.

2.2 GridSim

GridSim is written in Java on top of the SimJava 2.0 basic discrete event infras-
tructure. The simulator allows for packet-level simulation of the network and
provides an output statistics framework. It supports space and time shared allo-
cation policies as well as advance reservation. Contrary to SimGrid it is possible
to model clusters as a single entity. GridSim also contains a reusable Gridin-
formationService (GIS) which is responsible for the registration, indexing and
discovery of resource providers. It is possible to create a single GIS entity in the
simulation, but also to organize multiple GIS entities in a hierarchy compara-
ble to a DNS tree. Additionally, GridSim includes components oriented towards
data grids, the most important one being the ReplicaCatalogue (RC). Like the
GIS, a RC can be organized hierarchically. GridSim has also been used to study
economic grid resource management [8/9].

Every simulated entity in GridSim extends the GridSimCore class which in-
cludes both an Input and Output object to send and receive events. All three of
these classes extend the Sim entity class of SimJava. Since every Sim entity
is actually a Java thread, this means that every user or resource provider en-
tity requires at least three threads during simulation. GridSim entities use the
sim pause(), sim get next() and sim schedule() primitives of SimJava to
pause, receive the next Sim event object or schedule such an event.

2.3 GES

The Grid Economics Simulator (GES) has been developed to study economic
grid resource management systems [TO/TT/T2]. The simulator offers a toolkit for
analyzing and comparing different economic and traditional resource manage-
ment algorithms. An overview of the GES core layer is given in figure [l
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Fig. 1. Overview of the architecture of GES
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Two of the key design goals of the architecture are extensibility and reusabil-
ity. This “extend-and-refine” philosophy can be found throughout the whole
simulation core and its components. The domain layer contains base classes
for all domain entities such as Consumer, Provider, Job, GridResource and
GridEnvironment. The Bank entity as well as other components supporting eco-
nomic resource management are located in the economic layer. Support for tra-
ditional forms of resource management is provided through the non-economic
layer. Existing components can be easily extended when new RMS algorithms
are added to the framework. GES currently has support for a substantial number
of spot- and future market mechanisms [3I12].

Simulations can be distributed over multiple processing nodes through the
distribution layer. This layer interfaces with compute resources that host a
Jini-enabled compute service, clusters fronted by a Sun Grid Engine head node,
or clusters with a passwordless SSH setup. Currently, distribution is supported
at the granularity of a simulated scenario. For a more in depth view of all the
capabilities of GES, we refer to [3].

In order to investigate the communication complexity of resource manage-
ment approaches in more detail, we are planning to extend the simulator with
support for simulating the network infrastructure. This will also allow for the
development of network-aware scheduling algorithms, market mechanisms for
bandwidth pricing, as well as analysis of communication and data transfers.

3 Evaluation

We will test the general scalability of the different simulators and determine
whether they are capable of simulating a system on the scale of the EGEE grid.
In addition, we will investigate how the three simulators scale in terms of the
number of jobs in the system. We use a synthetic scenario that is specifically de-
signed to isolate the different variables which may affect the outcome of our tests.
Note that in the following, we will refer to grid users as consumers while entities
that contribute resources to the infrastructure are referred to as providers. All
tests use variations of a base scenario with the following parameters:

— Number of consumers N, = 1000

— Number of providers N, = 100

Total number of jobs N; = 10000

Number of jobs per consumer Nj, = Nj/N.

— Job length in processor time slots L; € [7,13]
Total number of CPUs Ncp,, = 1000

Number of cpus per provider NCpUlp = Nepu/Np

Since we want to focus on the performance properties of the simulators’ cores,
we split up the consumers in groups of 10 and associated each group with a sin-
gle provider which schedules incoming jobs in a round robin fashion. This sim-
ple setup allows us to evaluate the core performance of the different simulators
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while eliminating unwanted effects caused by complex network configurations or
interactions between entities.

For GridSim we performed the tests without a simulated network. For SimGrid
we were obliged to use a simple network topology because the network provides
the only interaction channel for consumers and providers. Since it is currently not
possible to aggregate multiple CPUs in one entity, we have modelled a provider
node by combining one forwarding host with Nepu  CPU hosts. The forwarding
host is connected to its CPUs with one link. The consumers are also connected
to their provider with one link. Every job is routed over these links from the
consumer to the forwarder and then to a CPU node. All links were configured
with maximal bandwidth and minimal latency properties. Because of their higher
potential scalability and configurability we used ucontexts instead of pthreads.
We limited the ucontext stack size to 64 KB.

All tests were performed on the CalcUA cluster at the university of Antwerp
which hosts 256 Opteron 250 nodes running a 64-bit Linux distribution. All
nodes used in the tests hosted 8 GB of RAM. During testing we measured the
simulation time in milliseconds and the maximum memory usage, both real and
virtual, by polling the simulation process every second. We used version 1.6.0 of
Sun’s JVM for the executing of all Java code.

3.1 Test I: General Scaling

This scenario is designed to evaluate the general scaling capabilities of each
simulator. We scale N, from 1 to 10000 while changing NN, such that N./N, =
10. The other parameters maintained their default values. In effect, this test
scales up the entire base scenario.

Figure [2 shows the time it took to perform the simulation on a logarithmic
scale as a function of the number of simulated consumers.

As shown in the graph, GES scales up better than both GridSim and SimGrid.
The difference in simulation time is over two orders of magnitude compared to
SimGrid and three orders of magnitude compared to GridSim when simulating
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Fig. 2. Simulation time as a function of the number of consumers
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Fig. 3. Real memory requirements as a function of the number of consumers

a grid with 9000 consumers. GridSim was unable to simulate an environment
with 10000 consumers because it would need to create well over 32000 threads,
more than a normally configured Linux kernel can handle. When scaling up
even further we were able to determine that SimGrid could handle a maximum
of 12000 consumers while GES had no problem simulating 100 000 consumers.

Figure [ shows the actual memory usage in function of the number of con-
sumers. SimGrid does not scale linearly in this regard which can be explained
by the fact that it uses a routing table and thus scales quadratically with the
number of hosts. While GridSim does scale linearly, its actual memory usage is
still substantial and likely related to its heavy use of threading.

3.2 Test II: Job Scaling

This scenario evaluates the influence of the number of jobs on the simula-
tion time. While keeping the total workload per consumer at 100. We scaled
N;, from 1 to 100.

The time it took to perform the tests is plotted in figure @l We can see that
SimGrid handles higher job loads better than GridSim and that GES is virtually
unaffected by the amount of jobs. It is clear that when using the discrete event
paradigm, the simulation time scales linearly with the number of jobs while
this is not the case for the discrete time paradigm. A discrete time paradigm in
contrast scales linearly with the size of a job while this has no effect on a discrete
event system. The suitability of either paradigm is determined by the resolution
at which we wish to model time. While it is interesting to model time in high
resolution for the analysis of interaction protocols, it is not necessary to do so
for the simulation of job execution.

The choice for discrete-event simulation often leads to a choice for a multi-
threaded model as well, because it is logical to think of events being passed
between independently running processes. It is not necessary however to use a
multi-threaded model in combination with discrete-event simulation as demon-
strated by a number of other projects [I3IT4]. It is clear from the previous test
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Fig. 4. Simulation time as a function of the number of jobs

that for the simulation of very large systems, a discrete-event simulator may
scale up higher when used in combination with a single threaded approach.

4 Threading and Virtual Memory

Both GridSim and SimGrid use threads for each simulated entity. GridSim
uses the Java threading model while SimGrid offers a choice between pthreads
and ucontexts on Linux. Both Java threads and pthreads are native while
ucontexts are user space threads. On a Linux machine with a normally config-
ured kernel, the number of simultaneous native threads is limited to just over
32 000. Since user space threads are not visible to the kernel, they overcome this
limitation. Moreover ucontexts offer more tweakable stack sizes than pthreads.

Because the choice of threading model is a key design issue, it is important to
understand the consequences and limitations of using a multi-threaded model.
One of the most obvious repercussions of using a native multi-threaded model is
the overhead caused by context switching. Especially for thread-based discrete-
event simulation this overhead can be substantial since a large number of threads
will be created. Threads can also be suspended by the scheduler at any time,
which may degrade performance unnecessarily. While threads are a good way to
develop systems with actual concurrent behaviour, it is not necessary to use real
threads to simulate this concurrency.

Each thread or context will also allocate a stack in virtual memory. This
stack will be created in real memory only when it is needed on a per page basis.
Therefore, threading does not necessarily have a direct impact on actual real
memory usage. However there are limits on the amount of wvirtual memory a
process can allocate. This limit is 4 GB on any 32-bit architecture of which in
general only 3GB can be used by the process itself on a Linux machine. On
64-bit Linux machines, the practical upper limit of virtual memory available
is the sum of the physical memory and the swap size unless oversubscribing
is allowed. To mitigate these limitations, it is possible to tweak the size of the
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Fig. 6. Virtual memory requirements of the simulators under general scaling scenario

thread stack. The typical thread stack size for Java threads is 320 KB on a 32-bit
and 1024 KB on a 64-bit Linux machine. It is possible to reduce this size with
a JVM argument to a minimum of 64 KB. For pthreads, the minimum stack
size is 56 KB while ucontext stacks can be even smaller. Another advantage
of pthreads and ucontexts is their ability to adjust the stack size per thread
while Java does not offer this flexibility.

The limitations on the scalability of a threaded approach are depicted in fig-
ures Bl and [6l The graph in figure [ includes both the maximum native thread
limit as well as the 32-bit memory wall. It also demontrates the effect of tweak-
ing the stack size on the virtual memory usage. The graph in figure [0 shows
the maximal virtual memory allocation of the three simulators as a function of
the number of consumers in the general scaling scenario. It shows that the JVM
by itself allocates 1 GB of virtual memory. This is used as a code cache which
contains the interpreter and code generated by the compilers. Although the size
of this cache is adjustable, and future JVMs will default to a more reasonable
amount, this will not impact our results as virtual memory is basically free on



552 W. Depoorter et al.

64-bit machines. From the graph we can also observe that GridSim is capable
of claiming close to 35 GB of virtual memory. The vastness of this allocation is
due to the standard thread stack size of 1 MB. SimGrid allocates a significantly
smaller amount of virtual memory. When we contrast this with the actual mem-
ory usage in figure 3] we can observe that SimGrid uses almost all of its virtual
memory while GridSim uses less than a tenth of its allocation.

5 Conclusion

In this contribution we have compared the scalability of GridSim, SimGrid and
GES. While both GridSim and SimGrid use a multi-threaded discrete-event core,
GES uses a single-threaded discrete-time core. As we have observed from the
results of our tests, both SimGrid and GridSim are unable to scale to the level
that would allow them to simulate very large scale grid infrastructures such as
EGEE. For GridSim the problem is rather fundamental in that it requires an
amount of threads during simulation that reaches the upper limit of threads
manageable by a normally configured Linux kernel. While SimGrid can sidestep
this issue using ucontexts, it still reaches an upper limit of 23000 simulated
entities. These results show that when trying to simulate very large scale grids,
a massively multi-threaded simulator is not the best choice.

Depending on the resolution at which time is to be simulated, it is better to
choose either the discrete-event or discrete-time simulation paradigm. Whereas
a detailed analysis of the impact of communication delays requires a high resolu-
tion and thus leans towards discrete-event simulation, a lower resolution discrete-
time engine is adequate for simulating the execution and scheduling of jobs in
a grid system. Irrespective of the choice for a discrete-time or discrete-event
model, one can decide to use a threaded or non-threaded simulation core. We
have quantified the impact of these choices through a comparative analysis of
GES, SimGrid and GridSim and have shown their effect on simulation perfor-
mance and scalability.
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