
E. Luque, T. Margalef, and D. Benítez (Eds.): Euro-Par 2008, LNCS 5168, pp. 305–314, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Formal Model and Scheduling Heuristics
for the Replica Migration Problem

Nikos Tziritas1, Thanasis Loukopoulos1, Petros Lampsas2, and Spyros Lalis1

1 Dept. of Computer and Communication Engineering, University of Thessaly,
Glavani 37, 38221 Volos, Greece

{nitzirit,luke,lalis}@inf.uth.gr
2 Dept. of Informatics and Computer Technology, Technological Educational Institute (TEI)

of Lamia, 3rd km. Old Ntl. Road Athens, 35100 Lamia, Greece
plam@teilam.gr

Abstract. Replication of the most popular objects is often used in distributed
data provision systems to reduce access time and improve availability. In fact, a
given replica placement scheme may have to be redefined as object popularity
changes. Given two replica placement schemes Xold and Xnew, the Replica Mi-
gration Problem (RMP) is to compute a schedule of replica transfers and dele-
tions that lead from Xold to Xnew in the shortest time possible. In this paper, we
provide a rigorous problem formulation and prove that even for trivial cases
RMP is intractable. We also propose a set of heuristics and evaluate them for
different scenarios using simulations.

1 Introduction

Replication is crucial to the performance of distributed data provision systems such as
web and video server networks. The issue of defining a replication scheme, i.e. which
data objects to replicate on which nodes, was studied extensively under the context of
the replica placement problem (RPP) [1], [2], [3], [4]. Equally important, however, is
to derive an implementation strategy for obtaining the desired replication scheme. The
problem can be briefly stated as: given two replication schemes Xold and Xnew, find a
series of object transfers and deletions that lead from Xold to Xnew in the shortest time
possible. We refer to this as the Replica Migration Problem (RMP).

RMP has been tackled in [5] and [6] with focus primarily on disk farms, while [7]
focuses on content distribution networks. In all these cases the aim is to optimize the
migration time. More recently the problem has been incorporated in task scheduling
over the Grid [3] where the aim is to minimize the final makespan of task executions.
The problem is also studied in [8] but with the aim to minimize network usage. In [5]
and [7] object sizes are assumed to be equal, while in [5] and [6] hosting nodes are
assumed to be fully connected. We differ from the above work both in the scope of
the problem assumptions (which are more general) and the heuristics we propose.

Our contributions are as follows: (i) we provide a rigorous formulation of RMP as
a mixed integer programming problem with some of the constraints being quadratic;
(ii) we prove that even for trivial cases RMP-decision is NP-complete given different
object sizes; (iii) we propose and experiment with heuristics capturing different

306 N. Tziritas et al.

problem parameters such as deletions and the creation of auxiliary replicas. To the
best of our knowledge this is the first time RMP is stated and tackled in this way, with
the aim of minimizing replica migration time under various important parameters
such as object size, network bandwidth and storage space.

The rest of the paper is organized as follows. Section 2 presents the system model,
and Section 3 gives the formal problem statement. Then, Section 4 describes our heu-
ristics, which are evaluated via simulations in Section 5.

2 Problem Description

Consider a distributed system with M servers and N data objects. Let Si and s(Si) de-
note the name and the storage capacity (in abstract data units) of the ith server, 1≤i≤M.
Also, let Ok and s(Ok) denote the kth data object and its size, 1≤k≤N. We say that Si is a
replicator of Ok if it holds a replica thereof. Let X be a M×N replication matrix used
to encode a replication scheme as follows: Xik=1 if Si is a replicator of Ok, else Xik=0.
Servers communicate via point-to-point links. A link between Si and Sj, if it exists, is
denoted by lij and has a capacity of cij, representing the number of data units that can
be transferred via the link per (abstract) time unit. Let Tikj denote the transfer of object
Ok from source Si to destination Sj. This involves sending s(Ok) data units along a path
from Si to Sj. The transfer will complete after s(Ok)/r time units, where r is the transfer
rate of that path, equal to the available capacity of the bottleneck link. Both cij and r
are integers, denoting multiples of one data unit/time unit. Finally, the deletion of Ok
at Si, denoted by Dik, does not introduce any time penalty.

The problem we tackle is to define a series of transfers and deletions so that start-
ing from the current replication scheme Xold we reach a new replication scheme Xnew
in the shortest time. We illustrate it through the example of Figure 1, using a network
of 6 servers with 2 objects: A and B. In Xold, S1 and S2 hold object A whereas S5 and
S6 hold object B. Objects must be swapped in Xnew. Assuming object size and server
capacity of 4, schedule {D5B, T1A5, D2A, T6B2, D6B, T1A6, D1A, T2B1} implements Xnew in
6 time units. The start and end time of the transfers are listed in the table of Figure 1.
Transfers can occur in parallel, even if their paths overlap, provided that there is
enough capacity available. Specifically, in this schedule, T1A5 via links l13, l34 and l45 is
performed in parallel to T6B2 via links l64, l34 and l32, with a rate of 4 and 2, respec-
tively. However, if link l34 had a capacity of just 5 instead of 8, at least one of these
transfers would have been performed at a lower rate, if done in parallel.

It is important to note that it is not always possible to find a schedule, even for
valid problem statements where Xnew respects the server capacity constraints. For
example, if two servers with enough storage capacity to hold just one object must
exchange their objects, and there are no other servers that can be used as a source for
these objects, a deadlock-lie situation occurs, as shown in Figure 2. The investigation
of such cases is out of the scope of this paper. Therefore we extend the problem for-
mulation by assuming that there is one primary replica for each object Ok that re-
mains fixed on a designated primary server Pk in both Xold and Xnew.

 Formal Model and Scheduling Heuristics for the Replica Migration Problem 307

Transfer start end

1 5AT 0 1

6 2BT 0 2

1 6AT 2 4

2 1BT 4 6

Fig. 1. An example problem instance

Fig. 2. A deadlock example Fig. 3. Network construction for 2-proc reduction

Continuing with the example of Figure 1, one may observe that the aforementioned
schedule is not optimal. The optimal schedule is {T1A4, T5B3, D1A, D2A, D5B, D6B, T4A5,
T4A6, T3B1, T3B2, D4A, D3B} with a makespan of 3 time units. This schedule is non-
trivial in the sense that it involves auxiliary replicas, i.e., replicas that are not required
in Xnew and will be deleted at some point further in the schedule.

In fact RMP-decision is intractable. Due to space limitations we provide a proof
sketch by reducing the 2-processor scheduling problem (2-proc) [9], which is defined
as follows: given a set of tasks N and their execution times, assign them to 2 proces-
sors so that the total makespan is minimized. For each 2-proc instance we construct
the network of Figure 3, where N objects exist and their sizes correspond one to one
with the execution times of the N tasks. Xold consists of primary replicas stored at S1,
while in Xnew one additional replica per object must be created at S4. Notice that the
two paths connecting S1 and S4 play the role of the two processors in 2-proc. As a
consequence, there exists a solution to 2-proc if and only if a solution exists for RMP-
decision in the problem instance of Figure 3. Thus, RMP-decision is NP-complete.

3 Integer Programming Formulation

We formulate RMP as a mixed integer programming (MIP) problem with some con-
straints being quadratic. The idea is to consider a schedule of transfers and deletions,
similar to the example of Figure 1, and impose the respective validity requirements.
Each transfer is modelled using a transfer-start and a transfer-end event. Deletions
correspond to a single delete event.

308 N. Tziritas et al.

The formulation assumes a known upper bound for the number of events in the op-
timal schedule, let Z. An additional (dummy) void event is needed at the end of the
schedule in order to confirm that the desired replication matrix has been reached after
the Zth event. Thus, the total length of the schedule is Z+1, its tail comprised of at least
one void event (or more if the actual optimal schedule involves fewer than Z events).

For the case where no auxiliary replicas are created, a conservative value for Z is: 2
× outstanding replicas + superfluous replicas (outstanding are the new replicas that
must be created and superfluous are the old replicas that need to be deleted to reach
Xnew). This corresponds to the number of required transfers (2 events per transfer) and
deletions (1 event per deletion), which can be trivially determined as a function of Xold
and Xnew. In case auxiliary replicas can be created, the upper bound for Z is: 2 × out-
standing replicas + superfluous replicas + 3 × auxiliary replicas (for each auxiliary
replica, 2 events are needed to create it, and 1 event is needed to delete it). Given that
the number of auxiliary replicas for each outstanding replica cannot exceed (M-2)
(worst case, an auxiliary replica is created on all servers except the primary server and
the server where the outstanding replica is to be created): Z ≤ (3M-4)*outstanding +
superfluous. Note that these bounds do not hold for schedules that may contain dele-
tions and subsequent re-creations of replicas needed in Xnew.

Table 1 summarizes the variables used to describe the events in the schedule as
well as additional problem variables. Unless otherwise stated, the indices in the vari-
ables take the following values: 1≤k≤N, 1≤i,j≤M, 1≤u,v≤Z.

Table 1. Problem variables

Variable Description
u

ikjST 1 iff the uth event is the start of transfer Tikj, 0 otherwise

uv
ikjET 1 iff the uth event is the end of transfer Tikj whose start is the vth

event in the schedule (v<u), 0 otherwise
u
ikD 1 iff the uth event is the deletion of Ok at Si, 0 otherwise
uV 1 iff the uth event is void, 0 otherwise
u
ikX 1 iff iS has a replica of Ok before the uth event occurs, 0 otherwise
u
ijp 1 iff the uth event is a transfer start/end event and link lij is part of

the corresponding transfer path, 0 otherwise
ur the transfer rate for the uth event (integer≠0)

ut the clock time when the uth event takes place (real≥0)

The Replica Migration Problem can then be stated as: minimize tZ+1 subject to con-

straints (1)-(11). Constraints (1)-(6) relate event types among themselves and with the
current replication matrix, (7)-(9) concern path reservations for transfers, while (10)-
(11) tackle bandwidth assignment and time calculation.

 Formal Model and Scheduling Heuristics for the Replica Migration Problem 309

1uv u u u
ikj ikj ik

i k j v i k j i k

ET ST D V
∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀

+ + + =∑∑∑∑ ∑∑∑ ∑∑ u∀ , 1 1ZV + = . (1)

1 old
ik ikX X= ,i k∀ , 1Z new

ik ikX X+ = ,i k∀ , 1
k

u
P kX = k∀ , () ()u

ik k i
k

X s O s S
∀

≤∑ ,i u∀ . (2)

1u u uv u
jk jk ikj jk

i v

X X ET D+

∀ ∀

= + −∑∑ , ,j k u∀ . (3)

u u
ikj ikST X≤ , , ,i k j u∀ , 1u u

ikj jkST X≤ − , , ,i k j u∀ , u u
ik ikD X≤ , ,i k u∀ . (4)

u vu
ikj ikj

v u

ST ET
>

=∑ , , ,i k j u∀ , u uv
ikj ikj

i k j u i k j u v

ST ET
∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀

=∑∑∑∑ ∑∑∑∑∑ . (5)

|

1v xv u
ikj ikj ik

j v u j v u x v x u

ST ET D
∀ ∀ < ∀ ∀ < ∀ < <

− ≤ −∑∑ ∑∑ ∑ , ,i k u∀ . (6)

u u uv
si ikj ikj

k j k j v u

p ST ET
∀ ∀ ∀ ∀ ∀ <

= +∑∑ ∑∑∑ ,i u∀ . (7)

u u uv
jd ikj ikj

k i k i v u

p ST ET
∀ ∀ ∀ ∀ ∀ <

= +∑∑ ∑∑∑ ,j u∀ , u u
ij jx

i x

p p
∀ ∀

=∑ ∑ ,j u∀ . (8)

1u v uv
xy xy ikj

i k j

p p ET
∀ ∀ ∀

− ≤ −∑∑∑ , , ,x y u v∀ , 1u u u
xy ik

i k

p D V
∀ ∀

≤ − −∑∑ , ,x y u∀ . (9)

() 0uv v u
ikjET r r+ = , , , ,i k j u v∀ , u u v v v v

ij ij ji ij
v u v u

r p r p r p c
< <

+ + ≤∑ ∑ , ,i j u∀ . (10)

1u ut t +≤ u∀ ,
()

() 0uv u v k
ikj v

s O
ET t t

r
− − = , , , ,i k j u v∀ . (11)

Constraints (1) state that each event is either a transfer start, transfer end, deletion
or void, and that the last event is void. (2) requires that the replication scheme starts
with Xold and reaches Xnew without deleting primary replicas or violating server capaci-
ties. (3) captures the bit flips in the replication matrix, i.e. if the uth event is a transfer
end, then the resulting matrix should have a value of 1 at the corresponding cell; if it
is a deletion it should have a 0, while in all other cases the matrix cell should remain
unchanged. Since the variables of (3) are binary, the uth event cannot be a transfer-end
if 1u

jkX = , and similarly it cannot be a deletion if 0u
jkX = . (4) states that in order for a

transfer to start, the source server must have a copy of the object and the destination
server must not, while for deletions the server must have the replica to be deleted. (5)
states that each start event must have a corresponding end event that occurs later in
the schedule, and that the number of end events must be equal to the number of start
events, to avoid having orphan end events. (6) ensures that the source of a transfer
cannot be deleted before that transfer ends.

310 N. Tziritas et al.

Next come constraints related to path reservation (7)-(9). Whenever a transfer
start/end event occurs, a path from the source to the destination must be reserved (7)-
(8). To do this, we assume that all transfers start from a dummy source (7) and end to
a dummy destination (8). These dummy servers are connected through direct links of
unlimited capacity to all other servers. To guarantee that a path is not interrupted, (8)
requires that if a server (other than the dummies) has an incoming link belonging to
the path, it should also have an outgoing. (9) demands that corresponding start and
end events have the same path, while deletion and void events do not have a path.

Constraints (10) capture bandwidth management aspects. The first part states that
the sum of the rates of corresponding transfer start and end events equals zero, ensur-
ing that bandwidth is properly freed when a transfer completes. The second part re-
quests that the aggregate rates of current and past events do not exceed link capacity.
The final set of constraints (11) keeps track of clock time. The first part states that
events must be properly ordered in time, while the second part calculates the time of
an end event as the sum of the start time and the transfer duration. Note that the rate
of a start event must be positive (and thus the rate of an end event must be negative),
else the end event would occur prior to the start event in the schedule.

We have implemented this MIP problem in LINDO [10], a commercial optimizer.
Unfortunately, we were able to obtain solutions, within acceptable time, only for very
small problem sets (around 5 objects and servers).

4 Scheduling Heuristics

Given the computationally intensive nature of RMP, we have designed a set of heuris-
tics that can be used to produce solutions for this problem. These heuristics follow the
same generic algorithmic template, described in the following pseudocode:

(1) while (outstanding replicas exist)
(2) for each outstanding replica
(3) for each source for this outstanding replica
(4) select a transfer using <selection criterion>
(5) end for
(6) apply cut-off rule
(7) select source using <selection criterion>
(8) end for
(9) choose transfer/s with the earliest completion time
(10) choose transfer/s that require no deletions, if any
(11) choose transfer/s with the smallest hop count
(12) select a single transfer by breaking ties randomly
(13) if (free storage at destination less-than object size)
(14) perform deletion(s) according to <deletion rule>
(15) end if
(16) schedule the selected transfer
(17) end while
(18) delete remaining superfluous replicas

In a first phase, for each outstanding replica and possible source for it, one transfer
path is chosen subject to a selection criterion (lines 2-4). As a result, a set of tuples of
the form <outstanding replica; source; path> is produced. Then, a cut-off rule is ap-
plied to eliminate some candidates (line 6). Specifically, all transfers are discarded

 Formal Model and Scheduling Heuristics for the Replica Migration Problem 311

that have paths with an intermediate node that is either a replicator or a host for an
outstanding replica of the object to be transferred. The rationale is to favor transfers
that do not occupy many links. Then, the same selection criterion of line 4 is applied
(again) to choose one <source; path> candidate per outstanding replica (line 7).

In a second phase, out of the set of candidate transfers, one per outstanding replica,
the ones with the earliest completion time are selected (line 9). Among the remaining
candidates, the ones that require no deletions are chosen, and from those, preference
is given to transfers having the shortest path hop-wise (line 11). Ties are randomly
broken. Before scheduling the chosen transfer, in a third phase, the remaining storage
capacity at the destination is checked (lines 12-13). If needed, deletions of superflu-
ous replicas are performed at the server, according to a deletion rule.

These three phases are repeated until there are no more outstanding replicas, i.e. all
transfers have been scheduled. Finally, the remaining superfluous replicas are deleted
(line 18), at no extra cost. Given this template, the additional aspects of our heuristics
are introduced below.

Per Object variants (O-): This family of heuristics follows the generic template,
but on a per-object basis (imagine an extra outer loop, iterating over all objects added
in the generic algorithmic template). This considerably shrinks the search space for
selecting a transfer, reducing the running time, at the risk of producing inferior re-
sults, compared to the default “across-objects” versions. Still, there is an (indirect)
advantage: once the outstanding replicas of the selected object are created, all its
superfluous replicas can be safely deleted, knowing that they will never be used as
sources for future transfers. Objects are considered in descending size of the respec-
tive transfer volume (outstanding replicas × size).

Selection criterion options: The criterion for selecting transfers (in lines 4 and 7) is
either “earliest start time” (EST) or “earliest completion time” (ECT), computed
based on the transfers that have been scheduled and the available link bandwidth.

Deletion rule options: The default option is to choose randomly among the super-
fluous replicas. The second option (denoted with -d) is to delete them in ascending
order of their benefit/size ratio. Intuitively, the benefit of a replica indicates its impor-
tance as a potential source for future transfers. For each outstanding replica for which
the replica in question is the best source according to ECT rule (given an unloaded
network), the second-best source is found, and the time difference is computed be-
tween completing the transfer from the best and from the second-best source, respec-
tively. The aggregated time differences, give the benefit. If a replica is not the best
source for any outstanding replica, its benefit is zero.

Auxiliary Replica Creation operator (-ARC): This can be applied once the transfer to
be performed is chosen (right after line 12). It checks the inner nodes of the respective
path, assessing whether any of them could be used to create a useful superfluous replica,
as follows. For each additional outstanding replica, the ECT transfer source and path is
defined (given an unloaded network). If a node is found in the path of at least two such
transfers, it is considered as a candidate, provided it has sufficient storage. If such nodes
exist, the one closest (in terms of hops) to the source of the transfer to be performed is
selected (the original transfer is dropped), a transfer is scheduled to create an auxiliary
replica on it, and the algorithm continues with a new iteration.

Our heuristics are built as different combinations of the above options. Henceforth,
we refer to heuristics via acronyms, e.g., EST refers to the heuristic that uses the

312 N. Tziritas et al.

default template, EST as the selection criterion and the default deletion rule, while O-
ECT-ARC-d refers to the per-object heuristic that uses ECT as the selection criterion,
the benefit-driven deletion rule and the auxiliary replica creation operator.

5 Experiments

In a first set of experiments, 5 networks of 25 servers with connectivity 1 (tree net-
work) and 5 networks with connectivity 3 were generated using BRITE [11], under
the Barabasi-Albert connectivity model [12]. Link capacities and object sizes were set
equal to 1 and the number of objects was set to 100.

Fig. 4. Replica creations (connectivity 1) Fig. 5. Replica creations (connectivity 3)

Figures 4 and 5 depict the average makespan for the networks with connectivity 1

and 3, respectively, when starting from a single primary server that holds a replica for
each object, and creating additional replicas of all objects to 6, 12 and 24 servers
(corresponding to 25%, 50% and respectively 100% of the initially empty servers).

As it can be seen in Figure 4, for the tree networks the makespan of ECT and O-
ECT drops as more replicas need to be created. This apparently counterintuitive result
hints to the merits of creating auxiliary replicas when a limited number of disjoint
paths exist, as illustrated by the superior performance of their ARC counterparts. It is
also interesting to observe that these variants result in an almost constant makespan,
independently of the number of replicas to be created. This indicates that once auxil-
iary replicas are created at key locations, the creation of even more outstanding repli-
cas can be achieved at a small additional cost. The non-ARC variants have almost
equal performance to the ARC variants when replicas must be created on all servers.
Indeed, in this particular case, the non-ARC variants unavoidably create (outstanding)
replicas on every server, including the locations that are selected by ΑRC to create the
auxiliary replicas for the cases that require a smaller amount of replication.

However, the benefits of the ΑRC variants diminish for larger connectivity, as il-
lustrated in Figure 5. This is due to the fact that more outstanding replicas can be
created with single-hop transfers, reducing the importance of creating auxiliary repli-
cas. It can also be seen that ECT clearly outperforms O-ECT. This is explained by

 Formal Model and Scheduling Heuristics for the Replica Migration Problem 313

Fig. 6. Replica creations (GÉANT2) Fig. 7. Replica creations+deletions (GÉANT2)

noticing that the makespan of O-ECT is around 100, corresponding to 1 time unit per
object, which means that only one object is replicated at a time. On the contrary, ECT
aggregates transfers of different objects in each time slot, taking full advantage of
alternative paths that exist in the network. This leads to the creation of new replicas
that can be used as sources in subsequent time slots, thus maximizing link utilization.

The next set of experiments was performed using a real-world topology, namely
the European research and education network GÉANT2 [13]. The relative link capaci-
ties were derived from GÉANT2, while the size of objects was set so that a transfer
over the fastest link requires 10 time units. Again, the number of objects was 100.

Figure 6 shows the performance of EST-ΑRC, ECT-ΑRC and their per-object vari-
ants, when starting from a given number of randomly selected servers (in addition to
the primary server) that hold replicas of all objects, and creating additional replicas of
all objects on 50% of the remaining (initially empty) servers. Results show that ECT-
ΑRC and O-ECT-ΑRC achieve comparable performance, closely followed by O-
EST-ΑRC. The trends for the first three algorithms are decreasing as the number of
initial sources increases, which can be attributed to the increased link utilization when
more initial sources are available. EST-ΑRC is clearly inferior. This is due to the fact
that as the potential sources for an object transfer increase, the earliest starting trans-
fer is also more likely to cross a path with relatively limited capacity, thereby increas-
ing the overall makespan.

Last, we assess the performance of the benefit-based deletion criterion. For this
purpose we set the capacity of each server to allow the hosting of 10 objects, initially
place on each server a replica of 10 randomly selected objects, and vary the replica
overlap between Xold and Xnew: an overlap of 0% means that all replicas in Xnew are
stored in different locations compared to Xold (except for the primary replicas), while
an overlap of 75% means that only 1 out of 4 replicas needs to be relocated in Xnew.
The results are depicted in Figure 7. As it can be seen, benefit-based deletion clearly
outperforms random deletion, for both EST-ARC and ECT-ARC, when a large num-
ber of deletions need to be performed, i.e., for small replica overlaps. The perform-
ance gap shrinks as the number of required deletions drops.

As a conclusion (also based on additional experiments not shown here due to lack
of space), the heuristics which create auxiliary replicas and employ the benefit-based

314 N. Tziritas et al.

deletion rule achieve better overall results. The per-object variants generally perform
worse than their counterparts, but have a significantly reduced execution time (5 to
100 times faster, depending on the experiment).

References

1. Khan, S., Ahmad, I.: A Semi-Distributed Axiomatic Game Theoretical Mechanism for
Replicating Data Objects in Large Distributed Computing Systems. In: Proc. 21st Int. Par-
allel and Distributed Processing Symp (IPDPS 2007), Long Beach, California
(March 2007)

2. Loukopoulos, T., Lampsas, P., Ahmad, I.: Continuous Replica Placement Schemes in Dis-
tributed Systems. In: Proc. 19th ACM International Conference on Supercomputing (ACM
ICS), Boston, MA (June 2005)

3. Desprez, F., Vernois, A.: Simultaneous Scheduling of Replication and Computation for
Data-Intensive Applications on the Grid. Report RR2005-01, INRIA, France (January
2005)

4. Laoutaris, N., Smaragdakis, G., Bestavros, A., Matta, I., Stavrakakis, I.: Distributed Selfish
Replication. In IEEE Trans. on Parallel and Distributed Systems (TPDS) 17(12), 1401–
1413 (2006)

5. Hall, J., Hartline, J., Karlin, A., Saia, J., Wilkes, J.: On algorithms for efficient data migra-
tion. In: Proc. of the twelfth annual ACM-SIAM Symposium on Discrete algorithms
(SODA 2001), Washington D.C., United States, pp. 620–629 (2001)

6. Khuller, S., Kim, Y., Wan, Y.: Algorithms for data migration with cloning. In: Proc. of the
twenty-second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS 2004), pp. 448–461 (2004)

7. Killian, C., Vrable, M., Snoeren, A., Vahdat, A., Pasquale, J.: Brief Announcement: The
Overlay Network Content Distribution Problem. In: Proc. ACM Symp. on Principles of
Distributed Computing (PODC), Las Vegas, NV, July 2005, p. 98 (2005)

8. Loukopoulos, T., Tziritas, N., Lampsas, P., Lalis, S.: Implementing Replica Placements:
Feasibility and Cost Minimization. In: Proc. 21st Int. Parallel and Distributed Processing
Symp (IPDPS 2007), Long Beach, California (March 2007)

9. Garey, J., Johnson, D.: Computers and Intractability. W. H. Freeman and Co., NY (1979)
10. http://www.lindo.com
11. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: Boston University Representative

Internet Topology Generator (March 2001),
http://cs-pub.bu.edu/brite/index.htm

12. Barabasi, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–
512 (1999)

13. GÉANT2, Backbone Network Topology (January 2008),
http://www.geant2.net/upload/pdf/PUB-07-179_GN2_Topology_
Jan_08_final.pdf

	Formal Model and Scheduling Heuristics for the Replica Migration Problem
	Introduction
	Problem Description
	Integer Programming Formulation
	Scheduling Heuristics
	Experiments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

