
Constructing Cryptographic Hash Functions
from Fixed-Key Blockciphers

Phillip Rogaway1 and John Steinberger2

1 Department of Computer Science, University of California, Davis, USA
2 Department of Mathematics, University of British Columbia, Canada

Abstract. We propose a family of compression functions built from
fixed-key blockciphers and investigate their collision and preimage se-
curity in the ideal-cipher model. The constructions have security ap-
proaching and in many cases equaling the security upper bounds found
in previous work of the authors [24]. In particular, we describe a 2n-bit to
n-bit compression function using three n-bit permutation calls that has
collision security N0.5, where N = 2n, and we describe 3n-bit to 2n-bit
compression functions using five and six permutation calls and having
collision security of at least N0.55 and N0.63.

Keywords: blockcipher-based hashing, collision-resistant hashing, com-
pression functions, cryptographic hash functions, ideal-cipher model.

1 Introduction

This paper is about fixed-key constructions for turning blockciphers into compres-
sion functions. When we say that a blockcipher-based construction is fixed key we
mean that just a handful of constants are used as keys, so that our starting point is
actually a small collection of permutations. The idea of doing cryptographic hash-
ing from such a starting point was introduced by Preneel, Govaerts, and Vande-
walle some 15 years ago [20], but the approach did not catch on.

For years, the customary starting point for building cryptographic hash func-
tions has been (non-fixed-key) blockciphers, even if this hasn’t always been made
explicit. But a fixed-key design has some definite advantages. For one thing,
blockciphers usually have significant key-setup costs, so fixing the keys can be
good for efficiency. More than that, blockcipher designs are typically not very
conservative with respect to related-key attacks—but this and more is needed
when a blockcipher is used in any standard way to build a collision-resistant hash
function. A fixed-key design effectively addresses this concern, banishing the need
for related-key-attack security on a large space of keys. Finally, a fixed-key de-
sign concentrates the cryptographic work into a highly compact primitive, say a
map π: {0, 1}128 →{0, 1}128 instead of a map E: {0, 1}512×{0, 1}160 →{0, 1}160.
Cryptographically processing fewer than half as many bits, a fixed-key design
embodies an aspiration for minimalism.

So far, it has not been clear that it is possible to turn an n-bit permutation
into a hash function that outputs n or more bits and has desirable collision-
resistance bounds. Nobody has ever demonstrated such a design, and, three

D. Wagner (Ed.): CRYPTO 2008, LNCS 5157, pp. 433–450, 2008.
c© International Association for Cryptologic Research 2008

434 P. Rogaway and J. Steinberger

v1

v2

y1

y3

π2 y2

π3

π1x1

x2

x3
w1

1

2

2

2

1

2

1

0

1

1

0

1

1

2

algorithm LPA
231 (v1 v2)

x1 ← v1 + 2v2

y1 ← π1(x1)
x2 ← 2 v1 + 2 v2 + y1

y2 ← π2(x2)
x3 ← 2 v1 + v2 + y2

y3 ← π3(x2)
w1 ← v1 + y1 + y2 + 2 y3

return w1

algorithm LPA
mkr (v1 · · · vm)

for i ← 1 to k do
xi ← ai · (v1, . . . , vm, y1, . . . , yi−1)
yi ← πi(xi)

for i ← 1 to r do
wi ← ak+i · (v1, . . . , vm, y1, . . . , yk)

return w1 · · · wr

Fig. 1. Top & bottom left: Compression function LPA
231 (usually denoted LP231) for

a suitable matrix A = (aij). Horizontal lines carry n=128 bit strings and x1, x2, x3, w1

are computed as in x3 = 2 v1 + v2 + y2 with arithmetic and constants 0, 1, and
2 = 012610 all in F2128 . Permutations π1, π2, π3: {0, 1}n →{0, 1}n are modeled as inde-
pendent random permutations to which the adversary can make forward and backwards
queries. Bottom right: Defining LPA

mkr for an (k+r) × (k+m) matrix A over F2n .
Function lpA

mkr is identical but uses a single permutation π.

years ago, Black, Cochran, and Shrimpton seemed to cast a shadow on the
possibility [6]. They showed that a prior construction in the literature was wrong,
in the sense of having a query-efficient attack, and that, in fact, so will any
iterated hash function whose underlying compression function maps 2n bits to
n bits using a single call to an n-bit permutation. But Black et al. never said
that provably-sound permutation-based hashing is impossible—only that such a
scheme couldn’t be extremely efficient.

In earlier work, the authors extended the Black et al. findings [24]. We showed
that one expects to find a collision in an m k→ r compression function—meaning
one that maps mn bits to rn bits by calling a sequence of k n-bit permutations—
with about N1−(m−0.5r)/k queries, where N = 2n. The result is in the ideal-
cipher model and assumes a random-looking compression-function, formalized by
a notion of collision-uniformity. The result suggests that a desirable-in-practice
2 2→ 1 construction can’t deliver acceptable security so a 2 3→ 1 design is the

Constructing Cryptographic Hash Functions from Fixed-Key Blockciphers 435

Fig. 2. Proven collision resistance (left curve) and preimage resistance (right curve)
for LP231 with n = 128 and a suitable matrix A, as given by Theorems 1 and 2. In
the ideal-permutation model, no adversary asking q = 2x queries (the x-axis) can have
find a collision (left) or preimage (right) with probability exceeding the value shown.

best one can hope for in a good single-length construction. Similarly, a collision-
uniform 3 4→ 2 construction can’t have a satisfying provably-good bound, and
even a (collision-uniform) 3 5→ 2 construction will fail at around N3/5 queries,
and a 3 6→ 2 design at around N2/3 queries. The same paper also proves that the
preimage resistance of a m k→ r scheme is limited to about N1−(m−r)/k queries,
again assuming random-like behavior, now formalized as preimage uniformity.
Stam has recently shown that the collision-uniformity assumption cannot be
removed [29].

Results. In this paper we give practical constructions that approach the lim-
its described above for uniform permutation-based compression functions. Given
numbers n, m, k, and r, and given an appropriate matrix A, we define an m k→ r
compression function LPA

mkr. The matrix A is (k+r) × (k+m) entries of n-bit
strings, which we regard as points in the field F2n . We will often omit men-
tion of A and, when we do, move the subscripts up, say writing LP231 in lieu
of LPA

231. By varying A the LPA
mkr schemes encompass all permutation-based

m k→ r constructions where each permutation’s input as well as each n-bit block
of output is linearly determined from all that’s come before. See Fig. 1. We call
a function from this schema an LP compression-function (linearly-determined,
permutation-based).

We first study LP231, the smallest potentially “good” LP scheme. We exhibit
a condition on the matrix A for which the scheme demonstrably achieves security
to about N1/2 queries, which is of course optimal for any hash function that
outputs n bits. Our analysis is in terms of concrete security, and for n=128, it
turns out that the adversary must ask more than 259.72 queries to get a 0.5 chance
to find a collision. See the left-hand curve of Fig. 2.

Besides collision resistance we also consider the preimage resistance of LP231.
Under the same conditions on its matrix, the scheme has asymptotic security
of N2/3 queries, which is optimal for any preimage-uniform 2 3→ 1 scheme [24].

436 P. Rogaway and J. Steinberger

scheme maps collision resistance preimage resistance
security attack tight? security attack tight?

LP231, lp231 2 3→ 1 N0.50 N0.50 � N0.67 N0.67 �
LP241, lp241 2 4→ 1 N0.50 N0.50 � N0.75 N0.75 �
LP352, lp352 3 5→ 2 N0.55 N0.60 N0.80 N0.80 �
LP362, lp362 3 6→ 2 N0.63 N0.66 N0.80 N0.83

LPSS
231 2 3→ 1 N0.50 N0.50 � N0.50 N0.67

lpSS
231 2 3→ 1 N0 N0 N0 N0

Fig. 3. Rows 1–4: Automated analyses of our schemes instantiated with an appropri-
ate sequence of matrices. The attacks are from prior work [24]. Rows 5–6: Automated
analysis of the SS-scheme [28] and its single-permutation variant.

Numerically, for n = 128 one must ask more than 284.25 queries to get a 0.5
chance to find a given preimage. See the right curve of Fig. 2.

Next we look at LP352 and LP362. Such double-length schemes are important
because, in practice, the source of our permutations is likely to be AES, and its
blocklength of n = 128 is below what people want in a hash function’s output.
We also look at the LP scheme just like LPA

mkr except that a single permutation
is used throughout, instead of k independent ones. This is desirable because it
yields a more minimalist scheme, one needing less hardware or a smaller memory
footprint. Let lpA

mkr be defined as in Fig. 1 but with all permutations the same.
When we don’t want to specify A we write lp231, lp352, and so on.

For the mechanisms named in the last paragraph, doing an analysis like we did
for LP231 seems infeasible, generating too many cases. We therefore developed
a computer program that is capable of carrying out these analyses. It is fed
a matrix A and computes asymptotic upper bounds for collision resistance and
preimage resistance. For LP352 our program establishes collision resistance to at
least N0.55 queries; for LP362, at least N0.63. The same program finds bounds
for the single-permutation constructions lp231, lp352, and lp362 that are the
same as for the corresponding multiple-permutation schemes. See Fig. 3. All of
these results assume an appropriate matrix A (see Section 4).

While collision security of N0.55 or N0.63 may not seem excessive for a com-
pression function of output length 2n (whose collision security could ideally
reach N), one should bear in mind that the attacks described in [24] assume
information-theoretic adversaries. We do not know any actual (implementable)
attacks for LP352 or LP362 that have running time less than N . Also, collision
and preimage security may increase when compression functions are used in an
iterated construction.

Further related work. Shrimpton and Stam describe a 2 3→ 1 compression
function based on an n-bit to n-bit random function [28]. While cryptographic
practice does not seem to directly provide such objects, their construction is the
first to obtain a good collision-resistance bound starting from a non-compressing
primitive. To make a permutation-based scheme they suggest to instantiate each

Constructing Cryptographic Hash Functions from Fixed-Key Blockciphers 437

random function as a permutation with a feed-forward xor. They go on to ex-
plain that it’s equivalent to modify just the first two, resulting in a scheme, call
it LPSS

231, that is LPA
231 where A has rows 10000, 01000, 11110, and 10101. This

matrix does not satisfy the criterion associated to our concrete security bound,
but our computer-based technique can handle it, proving asymptotic collision-
resistance of N0.5 queries. Preimage resistance is also N0.5, shy of the desired
N2/3. This is not a deficiency in the analysis, as it matches a known attack by
Joux [28]. We point out that lpSS

231, the single-permutation variant of LPSS
231, is

completely insecure, admitting a two-query preimage-finding attack and a our-
query collision-finding one. See Fig. 3.

An interesting recent hash function is the sponge construction of Bertoni, Dae-
men, Peeters, and Van Assche [4, 5]. The mechanism turns an n-bit permutation
(or function) into an arbitrary-output-length hash function that is indifferen-
tiable from a random oracle [8] (which is stronger than collision and preimage
resistance). But the concrete security bounds shown do not enable its use with
a 128-bit permutation; security is never as high as N1/2, and approaching that
is paid for with the scheme’s rate.

2 Preliminaries

The model. A compression function is a map H: {0, 1}mn → {0, 1}rn for a given
n, m, and r, with m > r. It is permutation-based if it is given by a (determinis-
tic) program with oracle access to permutations π1, π2, . . . , πk: {0, 1}n → {0, 1}n.
Numbers k and n are constants associated to H . An adversary A for finding col-
lisions in H is a probabilistic Turing machine with oracle access to the permuta-
tions used by H and their inverses. When A asks (+1, i, x) it receives y = πi(x)
(a forward query), and when it asks (−1, i, y) it gets x = π−1

i (y) (a backwards
query). We assume A never asks a pointless query, defined as a repeated query,
asking πi(x) and later π−1

i (πi(x)), or asking π−1
i (y) and later πi(π−1

i (y)).
Now run the adversary A with its collection of oracles, instantiating each

permutation by a uniformly chosen one. By the convention just given, the i-th
query made by the adversary is answered by a uniform point from a set of size
at least N ′=N−i+1>N−q where N =2n and q is the total number of queries
asked. Record the queries the adversary makes into a query history Q where the
elements of Q are triplets (i, x, y). A triplet (i, x, y) is in the query history if the
adversary asks πi(x) and gets back y, or it asks π−1

i (y) and gets back x. We
usually specify the value of i in a triplet implicitly by way of the names of the
other two arguments, like (x1, y1) for (1, x1, y1), or (x′

i, y
′
i) for (i, x′

i, y
′
i).

The adversary wins if it outputs values v, v′ with v �= v′ such that H(v) =
H(v′). We assume that the adversary makes the queries necessary to compute
H(v) and H(v′). As a result, one can tell from looking at the adversary’s query
history Q whether it has the information necessary to construct a collision. We
thus dispense with the adversary having to output anything, giving the adversary
the win if its query history contains a queries from which a collision in H can
be constructed. Let Advcoll

H (A) be the probability that A wins. The probability

438 P. Rogaway and J. Steinberger

is taken over the random permutations π1, . . . , πk and A’s coins (if any). Let
Advcoll

H (q) be the maximal value of Advcoll
H (q) over all adversaries A that ask

at most q queries, in all, to its oracles. Let Coll(Q) be the event that a collision
can be constructed from queries in Q. Note that Advcoll

H (A) = Pr[Coll(Q)].
We can similarly define preimage resistance. The adversary’s collection of

oracles and the rules under which it operates are the same as for collision re-
sistance, but now the adversary is said to win if it finds the preimage for a
particular point w ∈ {0, 1}rn. Rather than asking the adversary to output the
actual preimage, we can again look at the adversary’s query history Q to see if
it holds the information necessary to determine a preimage for w under H . We
denote this predicate PreimH,w(Q). We will usually omit the subscripts. We let
Advpre

H (A) = maxw{Pr[A asks queries Q for which PreimH,w(Q)]}. Informally,
a compression function is preimage resistant if the adversary can’t invert a given
point without asking an unreasonable number of queries.

The subject schemes. Identify n-bit strings and points in the finite field F2n .
In this way n-bit strings inherit addition and multiplication. Given vectors of
n-bit strings x = (x1, . . . , xa) ∈ ({0, 1}n)a and y = (y1, . . . , yb) ∈ ({0, 1}n)b let
x · y be the n-bit string

∑min(a,b)
i=1 xiyi that is the inner product of the shorter

vector and the truncated longer one. The i-th row of a matrix A is the vector ai

and its row-i, column-j element is aij .
Fix positive integers n, k, m and r and a (k+r) × (m+k) matrix A of n-bit

strings and permutations π1, . . . , πk: {0, 1}n → {0, 1}n. We call these variables
the parameters of our scheme. They induce a hash function LPA

mkr: {0, 1}mn →
{0, 1}rn that is defined in Fig. 1. The number n is called the blocksize; m is the
input length; r is the output length; k is the number of permutation calls; A is the
scheme’s matrix, and (π1, . . . , πk) are its permutations. If they are all different
then we’re in the multiple-permutation setting and the adversary has forwards
and backwards access to each. If a single permutation π is used throughout
then we’re in the single-permutation setting and the adversary has forwards and
backwards access to it. Compression functions LPA

mkr (multiple permutations)
and lpA

mkr (a single permutation) differ only in this way.

3 Concrete Security Bounds for LP231

Our theorem statements refer to a function β(q, p, b, B). It is defined as the
probability that the sum of q independent random variables that are b with
probability p and value 0 with probability 1−p exceeds B. It is easy to get good
upper bounds on β. For example if B < b then β(q, p, b, B) ≤ pq, and if b �= 0
then, letting x = B/b and t = �x� + 1, observe that, by the sum bound,

β(q, p, b, B) = β(q, p, 1, x) ≤ pt

(
q

t

)

. (1)

This “binomial bound” is sharp enough for our purposes except for code asso-
ciated to computing Corollary 4. There we bound β by combining the binomial
bound and a standard Chernoff bound, selecting the smallest upper bound.

Constructing Cryptographic Hash Functions from Fixed-Key Blockciphers 439

We will prove that LP231 achieves good collision resistance and preimage
resistance if its matrix A satisfies a certain “independence criterion” that will be
defined within the proof. A random matrix will satisfy the criterion with high
probability, while a sample small-entry matrix A that works is

A =

⎡

⎢
⎢
⎣

1 2 0 0 0
2 2 1 0 0
2 1 0 1 0
1 0 1 1 2

⎤

⎥
⎥
⎦ . (2)

The numbers represent points in F2128 by identifying their binary representation
with coefficient vectors of a polynomial (eg, 3=x+1). We use x128+x7+x2+x+1
as our irreducible polynomial. We are now ready to state our main result on the
security of LP231.

Theorem 1. Fix n, q ≥ 1 and let H = LPA
231 where A ∈ F

4×5
2n satisfies the

independence criterion. Let N = 2n and N ′ = N − q. Then, for any positive
integers b1, b2, B1, and B2,

Advcoll
H (q) ≤ 12N β(q, 1/N ′, 1, b1) + 4N β(q, 1/N ′, 1, b2)

+12N β(q, q/N ′, b1, B1) + 2N β(q, q/N ′, b2, B2)
+4N β(q, q/N ′, b1, B2) + 3 β(q, qB1/N

′, 1, 0) + β(q, qB2
2/N ′, 1, 0) .

The content of Theorem 1 is a bit opaque, both because of the non-standard
function β and the universally quantified b1, b2, B1, B2. Indeed for a given q
and n one must optimize the constants b1, b2, B1, B2, likely by computer, to get
the best possible bound. To clarify the strength of Theorem 1, the following two
corollaries will help.

Corollary 1. Let Hn = LPAn
231 where An ∈ F

4×5
2n satisfies the independence

criterion. Let ε > 0. Then lim
n→∞Advcoll

Hn
(2n/2 − ε) = 0. �

Corollary 2. Let H = LPA
231 where A ∈ F

4×5
2128 satisfies the independence crite-

rion. Then Advcoll
H (259.72) < 0.5. �

The first corollary captures the asymptotic behavior of the formula in Theorem 1.
The proof is in the full version of this paper [23]. There one chooses reasonable
but non-optimal values of b1, b2, B1, B2 and the bound falls out. As commented
on earlier, the asymptotic statement is the best one can hope for in a 2 → 1
construction because of the always-present birthday attack. The second corollary
is obtained by computer-aided optimization of b1, b2, B1, B2 and q for n = 128.
The selected constants are (b1, b2, B1, B2) = (1, 1, 12, 12). In Fig. 2 we show a
graph of our security bound for the case of n=128 (the left-hand curve) with the
choice of constants just named. The birthday attack (elided for clarity) would
appear just to the right of that curve, rising from 0 to 1 with a midpoint at
q = 265.7. The space between such curves is the “gap” in the proven collision-
resistance of LP231. It is about a factor of 60.

For preimage resistance we have analogous results, with the bound pushed well
to the right. The proof of the following is in the full version of this paper [23].

440 P. Rogaway and J. Steinberger

Theorem 2. Fix n, q ≥ 1 and let Hn = LPA
231 where matrix A ∈ F

4×5
2n satisfies

the independence criterion. Let N = 2n and N ′ = N − q. Then, for any positive
integers b1, b2 and B2,

Advpre
H (q) ≤ 12N β(q, 1/N ′, 1, b1) + 4N β(q, 1/N ′, 1, b2)

+ 2N β(q, q/N ′, b2, B2) + 4N β(q, q/N ′, b1, B2)
+ β(q, B2/N

′, 1, 0) . �

We once again clarify the strength of the theorem through a couple of corollaries.

Corollary 3. Let Hn = LPAn
231 where An ∈ F

4×5
2n satisfies the independence

criterion. Let ε > 0. Then lim
n→∞Advpre

Hn
(22n/3 − ε) = 0. �

Corollary 4. Let H = LPAn
231 where A ∈ F

4×5
2128 satisfies the independence crite-

rion. Then Advpre
H (284.25) < 0.5. �

The proof of Corollary 3 is in the full version of this paper [23]. For Corollary 4,
we select b1 = b2 = 2 and B2 = 241.51, determined by computer optimization.
In Fig. 2 we illustrate the preimage-resistance security bound for n=128 as the
right-hand curve.

While collision-resistance security is asymptotically as good as anything that
can be achieved by an n-bit output compression function, preimage resistance
is limited by the fact that this is a 2 3→ 1 schemes [24]. For n=128, the known
attack has at least a 0.5 chance of success with 286.92 queries. This implies a
“gap” in the proven preimage-resistance of LP231 of about a factor of 6.

Overview of the proof of Theorem 1. The proofs of the two theorems
are similar. We will give a very high-level sketch of Theorem 1; due to space
limitation, for the actual proof, we must direct the reader to the full version of
this paper [23].

The problem of finding a collision is first reformulated in terms of solving a set
of linear equations using variables from the query history. To upper bound the
probability of the adversary obtaining a solution to the equations, we first upper
bound the probability adversary getting lucky in certain ways that could be
helpful in finding a solution, and then upper bound the probability of obtaining
a solution assuming the adversary has not been “lucky”. One obtains a final
bound by adding the probability of getting lucky to the probability of obtaining
a solution without being lucky. (Being “lucky” may mean, for example, finding a
large number of solutions to a certain subsystem of equations.) In terms of events,
one defines an event Lucky(Q) and then one gives separate upper bounds for
Pr[Lucky(Q)] and Pr[¬Lucky(Q)∧Coll(Q)]; the sum of the two bounds is an upper
bound for Pr[Coll(Q)]. In fact there are really two levels or “stages” of luckiness:
one defines events Lucky1(Q) and Lucky2(Q), and then upper bounds the three
probabilities Pr[Lucky1(Q)], Pr[¬Lucky1(Q) ∧ Lucky2(Q)] and Pr[¬Lucky2(Q) ∧
Coll(Q)], and takes the sum of the three terms. These three terms correspond
to the three lines in the bound of Theorem 1 (in that order). The event Lucky1
is defined in terms of parameters b1 and b2 and the event Lucky2 is defined in

Constructing Cryptographic Hash Functions from Fixed-Key Blockciphers 441

terms of parameters B1 and B2, hence the appearance of these variables in the
statement of Theorem 1.

The above description is still rather simplified; for example event Lucky1(Q)
is really the disjunction of two events, “WinA(Q)” and “WinB(Q)”, which are
themselves the disjunction of 12 and 4 different events. Similarly Lucky2(Q) is the
disjunction of three events—“WinC(Q)”, “WinD(Q)” and “WinE(Q)”—which are
themselves the disjunction of 12, 2 and 4 different events each. Finally Coll(Q)
is shown equivalent to an event WinF(Q) which is the disjunction of 4 different
events. All in all, approximately 40 different named events are considered. This
kind of multilevel decomposition of the collision event into sub-events is similar
to the technique employed in the analysis of MDC-2 [30].

4 Automated Analyses of LP Compression Functions

Overview. We now describe the theory underlying a computer program we
designed to get asymptotic security bounds like those of Corollaries 1 and 3 but
for constructions larger than LP231, where the analysis gets too complex to do
by hand. The method is applicable both to collision-resistance and preimage-
resistance, and can be applied to both the multiple-permutation and single-
permutation settings. (For the latter, our intuition has always been that, with
a suitable matrix, lp231 should offer comparable security to LP231. But the
amount of casework is much larger; analyzing lp231 by hand would require about
30 times as much paper as LP231.) The security lower bounds produced by our
program are always correct, but are not always tight. For example, we suspect
that a good realization of LP362 has collision security of N0.6, but our automated
analysis only proves a bound of N0.55.

While the program is mainly designed to prove security lower bounds, it can
also be used to find attacks. For example, the Joux preimage attack on LPSS

231
(Shrimpton-Stam with permutations and feed-forward xors [28]) was located by
our program before we knew of it. The program likewise discovered constant-
query collision and preimage attacks on lpSS

231. Of course it is not too hard to
reconstruct such attacks with foreknowledge of their existence, but it is useful to
have a program that can locate such attacks automatically. Note that because
of correctness, an easily-attacked scheme is always given a poor bound by the
program (at least as bad as the attack shows), but a poor bound does not
necessarily indicate the program has located an attack, because the weak bound
could be caused by the program’s own limitations.

At this point our program can only obtain asymptotic results, not concrete
numerical bounds like those in Corollaries 2 and 4. One could, theoretically, trace
back through the computation and replace asymptotic bounds by numerical ones,
thereby obtaining concrete numerical values. We may try to do so in the future,
but it is harder than it sounds.

At least one scheme to which we applied our automated analysis, LPSS
231, is

small enough that one should be able to get numerical results by carrying out a

442 P. Rogaway and J. Steinberger

hand analysis of the type made for LP231. For most schemes this would not be
feasible, as the number of cases searched by the code is too large.

Reduction and basic ideas. The problem of finding a collision or preimage
can be recast as the problem of finding a solution to the system Mx = b where M
is a matrix with constant entries in F2n , where b is a constant vector with entries
in F2n , and where x is a vector to be filled with the adversary’s queries and
possibly containing some free variables which the adversary can arbitrarily set.
For example, for LPA

231 with a matrix A = (aij), finding a collision is equivalent
to solving the system
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
a21 a22 0 a23 −1 0 0 0 0 0 0 0 0 0 0 0
a31 a32 0 a33 0 a34 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 a11 a12 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 a21 a22 0 a23 −1 0 0 0
0 0 0 0 0 0 0 0 a31 a32 0 a33 0 a34 −1 0

a41 a42 0 a43 0 a44 0 a45 −a41 −a42 0 −a43 0 −a44 0 −a45

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where x = (v1, v2, x1, y1, x2, y2, x3, y3, v
′
1, v

′
2, x

′
1, y

′
1, x

′
2, y

′
2, x

′
3, y

′
3)

T. (Our matrix
has minus signs for readability, but these have no effect in a field of characteristic
two.) Here v1, v2, v

′
1, v

′
2 are variables the adversary can choose arbitrarily, but

each pair (xi, yi) or (x′
i, y

′
i) must come from the adversary’s query history. The

first three rows stipulate the linear relationships between the inputs of the first
word and the inputs/outputs of the permutations in that word; the next three
rows do the same for the second word; and the last row stipulates a collision.
Note that the adversary can obtain a trivial solution by setting (xi, yi) = (x′

i, y
′
i)

for i = 1, 2, 3, which corresponds to a “collision” between two equal words. Since
this is of course uninteresting, we require that (xi, yi) �= (x′

i, y
′
i) for some i, or

more precisely that (xi, yi) is a distinct query from (x′
i, y

′
i) for some i, as two

queries could have the same inputs and outputs and still be distinct (if they
come from different permutations).

Since the latter condition is a bit cumbersome to work with, it is easier to
assume that all queries in x are distinct, and to analyze with separate linear
systems the special cases in which the queries are not all distinct. For example,
for the adversary to obtain an attack with (x3, y3) = (x′

3, y
′
3) but with all other

queries distinct, the adversary must solve the modified system
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 −1 0 0 0 0 0 0 0 0 0 0 0
a21 a22 0 a23 −1 0 0 0 0 0 0 0 0 0
a31 a32 0 a33 0 a34 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 a11 a12 −1 0 0 0
0 0 0 0 0 0 0 0 a21 a22 0 a23 −1 0
0 0 0 0 0 0 −1 0 a31 a32 0 a33 0 a34

a41 a42 0 a43 0 a44 0 0 −a41 −a42 0 −a43 0 −a44

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

obtained by adding the x′
3-column to the x3-column, adding the y′

3-column to
the y3-column, and dropping the x′

3 and y′
3-columns: this accounts for setting

Constructing Cryptographic Hash Functions from Fixed-Key Blockciphers 443

x3 = x′
3 and y3 = y′

3. Here x′ = (v1, v2, x1, y1, x2, y2, x3, y3, v
′
1, v

′
2, x

′
1, y

′
1, x

′
2, y

′
2)

T

is x with x′
3 and y′

3 dropped. Thus by analyzing a separate system for each way
of identifying queries, the problem reduces to analyzing the probability of solving
systems of the form Mx = b where the queries in x are all distinct.

Our program operates in the limit, where the entries of M and b, as well as
the query coordinates themselves, come from larger and larger fields F2n . This re-
quires some additional explanations. Say that two matrices of M and M ′ of the
same dimensions but over possibly different fields are column similar if the rank
of each subset of columns of M is equal to the rank of the corresponding subset
in M ′. What our program effectively does is this: given a sequence of column sim-
ilar matrices (Mn)n≥h where each Mi is a matrix with entries in F2i , and given
an arbitrary infinite sequence (bn)n≥h and a number α ∈ (0, 1), it upper bounds
the limit as n → ∞ of the probability of the adversary obtaining a solution to
Mn x = bn if it uses no more than q = Nα queries. Of course we cannot input an
infinite sequence (Mn)n≥h or (bn)n≥h; all the program ever knows about (Mn)n≥h

is the rank of each subset of columns of Mh, which it knows because it is given Mh

itself. As for the sequence of right-hand sides (bn)n≥h, its values are never used to
compute the upper bound, so we do not care.

The result of the computation is obviously dependent on Mh, so we must
explain how this matrix is chosen. Say that one wishes to instantiate LPA

mkr

with n = 128, so the entries of A will be points in F2128 . Then Mh = M128 is a
function of A, and A is simply chosen at random. One can choose the entries of A
uniformly in F2128 , or one can limit the entries of A to numbers with few bits
in order to increase the efficiency of LPA

mkr (if the entries are chosen from too
small a set, however, Mh can have poor linear independence properties leading
to a sub-optimal bound; then A must be re-chosen).

One can significantly increase the speed of the computation by giving the
program a matrix Mh′ that is column-similar to Mh but where h′ is smaller than
h=128, such as, say, h′=7, because field operations over F27 can be implemented
more efficiently than over F2128 . Finding such a matrix Mh′ requires trial and
error, but is generally not too hard. If Mh′ cannot be found, a second method
is to generate Mh′ directly by choosing a random matrix A′ with entries in F2h′

and then to use a field embedding of F2h′ into F2128 to recover A. The only
disadvantage of this method is that one does not obtain a matrix A with small
entries. Sample matrices A and Mh′ used for our computations are given in the
full version of this paper [23].

System constraints. The problem thus reduces to upper bounding the prob-
ability of the adversary obtaining a solution to a system Mnx = bn where Mn is
an unknown matrix over F2n column similar to a given matrix Mh with entries
in F2h and bn is an arbitrary vector with entries in F2n . But, beyond this, there
are also stipulations on the solution x, certain entries of which must come from
the adversary’s query history. We now make this part precise.

A system constraint ρ on a matrix M is a partition of M ’s columns into a set
of free columns, a set of null columns, and zero or more sets of two columns each
called query pairs. Each query pair of has a first and second column. When we

444 P. Rogaway and J. Steinberger

multiply M by a column vector x its entries inherit ρ’s partition of the columns
of M , so we can speak of the “free” or “null” entries of x, and of pairs of entries
of x that form query pairs. If Mn is a matrix with entries in F2n and bn is a
vector with entries in F2n and Q = Q(A) is the query history of an adversary
interacting with ideal-permutation oracles of domain (and range) F2n , then we
say that Q solves Mnx = bn with respect to ρ, or that Q solves (Mnx = bn, ρ),
if there exists a vector x with entries in F2n such that: (i) every null entry of x
is 0, (ii) if (x, y) is a query pair of x with first element x and second element y
then (i, x, y) is a query in Q for some πi, and (iii) no two query pairs of x
correspond to the same query in Q. If ρ is understood we simply say that Q
solves Mnx = bn.

Note that in the above definition we do not attach any importance to which
query pairs are mapped to which kind of queries in Q; in fact, it does not even
matter for the definition how many oracles the adversary is interacting with. All
that matters is that when the adversary makes a query to one of its oracles, the
resulting output comes uniformly at random from a pool of size at least N ′ = N−q.
As always, the adversary can make both forward and backward queries.

From here on it will simplify the discussion if we assume there is a single
matrix M and vector b under discussion, which implicitly depend on n. However
one should remember that all one knows about M is the rank of any subset of
columns of M , and that b is arbitrary.

Induction. Note that it is trivial to tell whether the adversary can solve
(Mx = b, ρ) if ρ has no query pairs, since in this case the problem reduces to the
feasibility of a standard system of linear equations. Determining the probabil-
ity of the adversary solving (Mx = b, ρ) becomes increasingly complicated as ρ
has more query pairs. To upper bound the probability of the adversary solving
(Mx = b, ρ) the program works by induction on the number of query pairs in ρ,
using bounds on the probability of solving systems (Mx = b, ρ′) where ρ′ has
fewer query pairs than ρ.

What is ultimately of interest is whether for a given α ∈ (0, 1) the adversary
has zero probability, in the limit, of finding some solution to the system in q=Nα

queries (consider α as fixed throughout). But to get the induction to work we
also need to know, if the adversary has nonzero chance of solving the system
in the limit, how many solutions the adversary can reasonably expect to get.
Here the “number” of solutions of a system (Mx = b, ρ) with respect to a query
history Q is counted in a special way: solutions x and x′ only count as distinct if
the values of some query pair are different in them (meaning they are mapped to
distinct queries of Q). If ρ has no query pairs at all, then the number of solutions
is defined as 1.

The following definition formalizes the idea of “how many solutions the ad-
versary can reasonably expect to get”. It is central to the analysis.

Definition 1. Let α ∈ (0, 1). A number β ≥ 0 is an α-threshold of (Mx = b, ρ)
if for any ε > 0, the probability that there exists some c for which the adversary
obtains at least Nβ+ε solutions to (Mx = c, ρ) in q = Nα queries goes to zero
as n → ∞.

Constructing Cryptographic Hash Functions from Fixed-Key Blockciphers 445

Observe that b is immaterial in the definition. Also note the α-threshold is not
unique since every number greater than an α-threshold is also an α-threshold.
On the other hand, it is easy to see that the set of α-thresholds is a half-closed
interval: if β + ε is an α-threshold for every ε > 0, then β is also an α-threshold.

As an example, consider the system Mx = b where M consists of a single row
and x = (x, y)T has two variables, so that the system can be written

m11x + m12y = b1 (3)

where b1 is the unique entry of b and where [m11 m12] = M . Take ρ to be
the system constraint on M with a unique query pair consisting of (m11, m12)
(so ρ has no free columns or null columns), so that solving (Mx = b, ρ) means
getting a query (i, x, y) such that (x, y) solves (3). If m11, m12 �= 0 one can show
that the probability of finding such a query in q = Nα queries where α ∈ (0, 1)
goes to 0 as n → ∞ (each query made has chance 1/N ′ ≈ 1/N of solving the
system, so a sum bound shows the chance of success is at most Nα/N , which
is � 1 for large n). Furthermore, one can show the probability of there being
a c ∈ F2n such that (Mx = c, ρ) has many solutions—say more than N ε—
approaches zero as n → ∞, for fixed ε > 0 (otherwise put, the set of values
{m11x+m12y : (i, x, y) ∈ Q(A)} is “well spread-out” in F2n). By definition, this
means that (Mx = b, ρ) has zero α-threshold.

In the above example the α-threshold of (Mx = b, ρ) does not depend on α. As
a second example, consider a system Mx = b where M is a 1 × 4 matrix, written

m11x1 + m12y1 + m13x2 + m14y2 = b1. (4)

We assume each m1j is nonzero. Let ρ partition the columns of M into two query
pairs, (m11, m12) and (m13, m14). Then one can show that max(0, 2α − 1) is an
α-threshold of (Mx = b, ρ). (Intuitively, each query made, whether forward
or backward, gives a random value of m11x1 + m12y1 and a random value of
m13x2 + m14y2; thus q queries give q2 pairs of random values; for any c ∈ F2n

the expected number of such pairs that sum to c is q2/N = N2α−1; one can finally
show that the probability of there being a c with more than N εNmax(0,2α−1) pairs
summing to it approaches zero as n → ∞ for fixed ε > 0, which by definition
means that max(0, 2α−1) is an α-threshold of (Mx = b, ρ).) Thus, for example,
if an adversary makes q = Nα = N3/4 queries there is negligible chance there
will be some c for which (Mx = c, ρ) has more than N1/2+ε solutions, for fixed
ε > 0 and as n → ∞.

The crux of the problem lies in knowing how to compute an α-threshold for
a system (Mx = b, ρ) given α-thresholds for every system (Mx = b, ρ′) where ρ′

has fewer query pairs than ρ. There are a few ways for doing this, possibly
giving different numbers (the method giving the smallest result is the better,
obviously). We will sketch some of the methods. Note that if ρ has no query
pairs then (Mx = b, ρ) has a zero α-threshold, by our earlier convention on how
to count the number of solutions to a system.

The induction step. Take a system (Mx = b, ρ). Say each system (Mx = b, ρ′)
where ρ′ has fewer query pairs than ρ has a (previously computed)

446 P. Rogaway and J. Steinberger

α-threshold βρ′ . We can assume the adversary has found at most Nβρ′+ε solu-
tions for each system (Mx = b, ρ′). Here ε > 0 can be as small as desired. Making
these assumptions costs us a small additive constant for each ρ′, because it is
possible for the adversary to obtain more than Nβρ′+ε solutions to (Mx = c, ρ′)
for some c and ρ′, if it is lucky, but, by the definition of an α-threshold, the sum
of these additive constants goes to zero as n → ∞.

We introduce some more notation. We write (Mx = b, ρ, Q) to emphasize
that the set of solutions of (Mx = b, ρ) depends on Q. Also recall that two
solutions of (Mx = b, ρ, Q) are counted as distinct only if the two solutions map
some query pair of ρ to different queries in Q; a good way to think of the set
of solutions is that each solution only specifies the values for the query pairs of
ρ, the free variables being left unspecified. We write the elements of Q as tuples
(x, y) rather than as triplets (i, x, y) since the index of the permutation queried
does not matter in the model.

One can first observe that, for any solution x of (Mx = b, ρ, Q), one of the
queries in Q used by x comes last in chronological order in Q. We say this query
creates the solution. A natural way to bound the probability of the adversary
obtaining many solutions to (Mx = b, ρ) is to compute the probability that any
given query creates a solution, and to consider that only q queries are made in
total, so that only so many solutions can be expected. To further break down
the problem one can evaluate separately, for each query pair in ρ, the probability
that a given query creates a solution where the query is matched to that pair.

So take a query pair (C1, C2) in ρ, where C1, C2 are the two columns of the
query pair. Say the adversary has already made a certain sequence Q′ of queries,
and is now making, say, a new forward query π(x) to one of its oracles; we want
to know the probability that the resulting output y = π(x) creates a solution x
of (Mx = b, ρ, Q) where Q = Q′ ∪ {(x, y)} and where the coefficients x, y are
used for the columns C1, C2 respectively (to denote this, we will say that the
query (x, y) is used in position (C1, C2)). We distinguish between the case when
C2 is linearly independent of the free columns of ρ and the case when it is not.

Say first that C2 is linearly independent of the free columns of ρ. Let ρ′ be
the system constraint obtained from ρ by changing C2 into a free column and
changing C1 into a null column. Also let b′ = b − xC1. Then for each solution
of (Mx = b, ρ, Q) where (x, y) is used in position (C1, C2) there is exactly one
solution of (Mx = b′, ρ′, Q′). Moreover, for every solution x in (Mx = b′, ρ′, Q′)
there is at most one value of y for which the query (x, y) extends the solution x
to a solution of (Mx = b, ρ, Q) where (x, y) is used in position (C1, C2). This is
because C2 is linearly independent from the free columns of ρ, so that when the
coefficients of all columns of M have been fixed except for the coefficient of C2
and the coefficients of the free columns of ρ, there is at most one coefficient
for C2 for which the remaining linear system will have a solution for a given
right-hand side. So the number of successful outputs y is at most the number of
solutions of (Mx = b′, ρ′, Q′).

If ρ′ has an α-threshold β, then the probability the returned value y will
give a solution of (Mx = b, ρ, Q) where (x, y) is used in position (C1, C2) is

Constructing Cryptographic Hash Functions from Fixed-Key Blockciphers 447

thus at most Nβ+ε/N ′, since (Mx = b′, ρ′, Q′) has at most Nβ+ε solutions and
since y is returned uniformly at random from a set of size at least N ′. Since the
adversary makes q = Nα queries in total the “expected” number of solutions
is Nα+β+ε/N ′. There are two cases to distinguish: α + β ≤ 1 and α + β > 1.
For the first case, the expected number of solutions is ≤ N ε and it isn’t hard to
show that the probability that there exists a c for which the adversary obtains
more than N2ε solutions to (Mx = c, ρ) in this way goes to zero as n → ∞.
If α + β > 1, a similar argument shows that the probability of the adversary
obtaining more than Nα+β+2ε−1 solutions to (Mx = c, ρ) for some c in this way
goes to 0 as n → ∞. If the adversary’s only means of constructing solutions
to (Mx = b, ρ) was to fill in last the values of the query pair (C1, C2) with
a forward query, one would thus obtain an α-threshold of max(0, α + β − 1)
for (Mx = b, ρ), because ε > 0 is arbitrary. But of course there are the other
possibilities to consider: backward queries and solutions were the last query pair
filled in is not (C1, C2). (In the end, the maximum α-threshold is retained unless
some query pair column of ρ is linearly dependent on the free columns of ρ; see
the next case.)

In the second case the column C2 is linearly dependent on the free columns
of ρ. In this case let ρ′ be obtained from ρ by setting to “null” both C1 and C2,
and let b′ = b−xC1. Then the number of solutions of (Mx = b, ρ, Q) where (x, y)
is in position (C1, C2) is equal to the number of solutions of (Mx = b′, ρ′, Q′).
Let β be the α-threshold of (Mx = b, ρ′). Since there are at most Nβ+ε solutions
to (Mx = b′, ρ′), and since there are at most q = Nα queries (x, y) in the query
history, the total number of solutions of (Mx = b, ρ) obtained in q queries is at
most Nα+β+ε. Because ε > 0 is arbitrary, α + β is therefore an α-threshold of
(Mx = b, ρ). Note that unlike in the first case, we do not need to examine any
other query pairs of ρ to establish this threshold. This benefits the program’s
speed, as having the computation of ρ’s α-threshold depend only on one other
α-threshold instead of depending on several other α-thresholds helps stave off a
combinatorial explosion of cases.

A few other techniques for computing α-thresholds recursively, which some-
times give better bounds, are used by the program. These are discussed in the
paper’s full version [23]

Final probability of success. What ultimately interests us is the adver-
sary’s probability of obtaining some solution to the system (Mx = b, ρ) where ρ
is the original “root” system constraint with the maximum number of query
pairs and b is the original right-hand side. If, after applying the recursion, the
system (Mx = b, ρ) is found to have a nonzero α-threshold, then we cannot con-
clude anything; the program has effectively failed to show the scheme requires at
least q = Nα queries to break. But if (Mx = b, ρ) has a zero α-threshold, then
for any ε > 0 the probability of obtaining at least one solution of (Mx = b, ρ)
in q = Nα−ε queries goes to 0 as n → ∞. Seeing so requires revisiting how
the α-thresholds are obtained. From the recursion process, there is only one way

448 P. Rogaway and J. Steinberger

that a system constraint can have zero α-threshold: when, at every query, the
adversary has probability at most Nβ+ε′

/N ′ of obtaining a solution for some β
with α+β ≤ 1 (see the first case considered for the computation of α-thresholds).
By choosing ε′ < ε, then, we see that the adversary’s final probability of success
is bounded by the probability of solving the original system in q = Nα−ε queries
where each query has chance at most Nβ+ε′

/N ′ of giving a solution; but since
α−ε+β+ε′ < 1, a sum bound directly shows that this probability of success goes
to 0 as n → ∞. Thus the scheme asymptotically requires at least Nα queries to
be broken. To find the best α the program simply does a binary search.

Results. Findings produced using our program are presented in Fig. 3. Some
of the cases are solved quickly, but others take over an hour and involve the
exploration of millions of system constraints.

5 Discussion

It may be interesting to compare the efficiency of LP compression functions
and conventional blockcipher-based ones. It is conventional to use rate as a
rough measure of efficiency, but the rate of a blockcipher-based construction,
as conventionally defined [17, p. 340], doesn’t even attend to the number of
key bits employed. The simplest way to correct this is to say that the adjusted
rate of a blockcipher-based hash-function is the number of message bits pro-
cessed per blockcipher input bits, the latter including plaintext bits and key bits
(for simplicity, equally weighted). Then SHA-1 would have an adjusted rate of
0.76; Davies-Meyer [16], 0.5; MDC-2 [16], 0.27; Hirose’s double-length construc-
tion [11], 0.17; and MDC-4, 0.13. From this vantage, the adjusted rate of LP231,
0.33, and LP362, 0.17, are competitive. Regardless, adjusted rate is a coarse
measure of efficiency, and the current work aims only to probe the security and
feasibility of LP compression functions, not to vanquish any other design.

This paper has only dealt with making a compression function, not a full-
fledged hash function. Of course you can always turn the former into the latter
using Merkle-Damg̊ard [9, 18] or any of the other techniques that have emerged
in recent years [1, 3, 10, 22], but the “best” approach remains to be seen. Also,
we have considered only collision and preimage resistance. Certainly there are
other desirable properties one should aim for in a contemporary construction,
like being indifferentiable from a random oracle [8].

Acknowledgments

Most of the work on this paper was carried out while the second author was in the
Department of Mathematics at UC Davis. Both authors received funding from
NSF grant CCR-0208842 and a gift from Intel; many thanks to Intel, particularly
Jesse Walker, and to the NSF, for their kind support.

Constructing Cryptographic Hash Functions from Fixed-Key Blockciphers 449

References

1. Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-property preserving it-
erated hashing: ROX. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 130–146. Springer, Heidelberg (2007)

2. Bellare, M., Ristenpart, T.: Hash functions in the dedicated-key setting: design
choices and MPP transforms. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A.
(eds.) ICALP 2007. LNCS, vol. 4596, pp. 399–410. Springer, Heidelberg (2007)

3. Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and
the EMD transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of
the sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 181–197. Springer, Heidelberg (2008)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In: Ecrypt
Hash Workshop (2007), http://sponge.noekeon.org/

6. Black, J., Cochran, M., Shrimpton, T.: On the impossibility of highly-efficient
blockcipher-based hash functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 526–541. Springer, Heidelberg (2005)

7. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based
hash function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

8. Coron, J., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how to
construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

9. Damg̊ard, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

10. Dodis, Y., Pietrzak, K., Puniya, P.: A new mode of operation for block ciphers and
length-preserving MACs. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 198–219. Springer, Heidelberg (2008)

11. Hirose, S.: Some plausible construction of double-block-length hash functions. In:
Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg
(2006)

12. Hattori, M., Hirose, S., Yoshida, S.: Analysis of double block length hash functions.
In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 290–
302. Springer, Heidelberg (2003)

13. Joux, A.: Multicollisions in iterated hash functions. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)

14. Knudsen, L., Lai, X., Preneel, B.: Attacks on fast double block length hash func-
tions. Journal of Cryptology 11(1), 59–72 (1998)

15. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

16. Matyas, S., Meyer, C., Oseas, J.: Generating strong one-way functions with cryp-
tographic algorithm. IBM Tech. Disclosure Bulletin 27, 5658–5659 (1985)

17. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996)

18. Merkle, R.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

19. Nandi, M.: Designs of efficient secure large hash values. Cryptology ePrint report
2005/296

http://sponge.noekeon.org/

450 P. Rogaway and J. Steinberger

20. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
a synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

21. Preneel, B., Govaerts, R., Vandewalle, J.: On the power of memory in the design
of collision resistant hash functions. In: AUSCRYPT 1992. LNCS, vol. 718, pp.
105–121. Springer, Heidelberg (1993)

22. Ristenpart, T., Shrimpton, T.: How to build a hash function from any collision-
resistant function. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 147–163. Springer, Heidelberg (2007)

23. Rogaway, P., Steinberger, J.: Constructing cryptographic hash functions from fixed-
key blockciphers. Full version of this paper. Available from either author’s web page
(manuscript, 2008)

24. Rogaway, P., Steinberger, J.: Security/efficiency tradeoffs for permutation-based
hashing. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 220–236.
Springer, Heidelberg (2008)

25. Peyrin, T., Gilbert, H., Matthew, F., Robshaw, J.: Combining compression func-
tions and block cipher-based hash functions. In: Lai, X., Chen, K. (eds.) ASIA-
CRYPT 2006. LNCS, vol. 4284, pp. 315–331. Springer, Heidelberg (2006)

26. Satoh, T., Haga, M., Kurosawa, K.: Towards secure and fast hash functions. TIE-
ICE: IEICE Transactions on Communications/Electronics/Information and Sys-
tems, 55–62 (1999)

27. Shannon, C.: A mathematical theory of communication. Bell System Technical
Journal 27, 379–423, 623–656 (1948)

28. Shrimpton, T., Stam, M.: Building a collision-resistant compression function from
non-compressing primitives. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldors-
son, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126.
Springer, Heidelberg (2008)

29. Stam, M.: Beyond uniformity: better security/efficiency tradeoffs for compression
function security. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 397–
412. Springer, Heidelberg (2008)

30. Steinberger, J.: The collision intractability of MDC-2 in the ideal-cipher model.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer,
Heidelberg (2007)

	Constructing Cryptographic Hash Functionsfrom Fixed-Key Blockciphers
	Introduction
	Preliminaries
	Concrete Security Bounds for LP231
	Automated Analyses of LP Compression Functions
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

