Light-Weight Instruction Set Extensions for
Bit-Sliced Cryptography

Philipp Grabher, Johann Grofschédl, and Dan Page

University of Bristol, Department of Computer Science
Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, U.K.
{grabher, johann,page}@cs.bris.ac.uk

Abstract. Bit-slicing is a non-conventional implementation technique
for cryptographic software where an n-bit processor is considered as a
collection of n 1-bit execution units operating in SIMD mode. Particu-
larly when implementing symmetric ciphers, the bit-slicing approach has
several advantages over more conventional alternatives: it often allows
one to reduce memory footprint by eliminating large look-up tables, and
it permits more predictable performance characteristics that can foil time
based side-channel attacks. Both features are attractive for mobile and
embedded processors, but the performance overhead that results from
bit-sliced implementation often represents a significant disadvantage. In
this paper we describe a set of light-weight Instruction Set Extensions
(ISEs) that can improve said performance while retaining all advantages
of bit-sliced implementation. Contrary to other crypto-ISE, our design is
generic and allows for a high degree of algorithm agility: we demonstrate
applicability to several well-known cryptographic primitives including
four block ciphers (DES, Serpent, AES, and PRESENT), a hash function
(SHA-1), as well as multiplication of ternary polynomials.

1 Introduction

In some sense, the provision of cryptographic schemes to secure information be-
ing communicated or stored is a compromise: higher levels of security necessitate
higher levels of computational overhead. Given this fact, the study of low-cost
implementation techniques that improve the efficiency and/or memory footprint
of cryptographic schemes remains an ongoing research topic. In this context one
can consider a spectrum of approaches. At one extreme are software-based tech-
niques to manipulate algorithms so they are more efficient or more easily map to
the capabilities of the host platform; at the other are hardware-based techniques
which re-design or extend the platform to better suit algorithms. Somewhere in
this design space is the technique of identifying and implementing Instruction
Set Extensions (ISEs) [I6I27I35]. The premise is that, after a careful workload
characterisation, it is possible to identify a small set of operations that dominate
the execution time of a software implementation. By supporting these specific
operations using additional or modified hardware and exposing their behaviour
to the programmer via the Instruction Set Architecture (ISA), performance can

E. Oswald and P. Rohatgi (Eds.): CHES 2008, LNCS 5154, pp. 331 2008.
© International Association for Cryptologic Research 2008

332 P. Grabher, J. Groischadl, and D. Page

be significantly improved. This is often possible with only minor penalties in
terms of datapath disruption and logic overhead; ideally a generic ISE is more
attractive than one which is suited for use in only a single algorithm.

The design of custom instructions to support the execution of cryptographic
workloads has been actively researched in the recent past. Previous work on
cryptography extensions for general-purpose processors covered both public-key
[2IT6130] and secret-key algorithms [II5I8]. An example for the former are the
Cryptography Instruction Set (CIS) extensions to the SPARC V8 architecture
[17]. The CIS extensions consist of only six custom instructions, but allow one
to accelerate the full range of public-key algorithms standardised in IEEE 1363
[20]; these include RSA, DSA, Diffie-Hellman, as well as elliptic curve schemes
over prime and binary fields. Therefore, the CIS extensions are referred to as
domain-specific extensions, in contrast to application-specific extensions like the
ones described in [2/30], which support just a single public-key algorithm. The
idea of domain-specific extensions is based on the observation that virtually all
public-key algorithms of practical importance use either a multiplicative group
(Zy, or Zy,), a prime field, or a field of characteristic 2 as underlying algebraic
structure. Thus, by designing custom instructions that accelerate the arithmetic
of large integers and binary polynomials, it is possible to support a wide range
of public-key cryptosystems.

Previous work on optimised architectures for secret-key cryptography consid-
ered the design Application-Specific Instruction set Processors (ASIPs) and the
integration of custom instructions into general-purpose processors. Most of the
published instructions are optimised for a single secret-key algorithm such as
DES [12] or AES [4/I3I35]. Among the few exceptions are the instruction sets
of CryptoManiac [36], MOSES [32/33], and PAX [14], which were designed with
the objective of more general applicability. CryptoManiac’s architecture consists
of a conglomeration of different sets of custom instructions, each set crafted for a
specific algorithm based on its performance-critical core functions. Unfortunate-
ly, the design of custom instructions for a whole domain of algorithms is much
harder for secret-key cryptography than for public-key cryptography, mainly due
to the large number of different design strategies and underlying basic opera-
tions: instructions for accelerating the execution of one secret-key algorithm are
in most cases useless for other algorithms.

Look-up tables are a generic and low-cost processor extension to increase the
performance of various classes of applications, including secret-key algorithms
[38]. These look-up tables can be configured to implement different dataflow
subgraphs depending on the application being executed. Using this mechanism
reduces the latency of the subgraph’s execution and the number of temporary
values that need to be stored to the register file. In [29], Patterson demonstrated
the merits of this approach taking Serpent as example, whereby he achieved a
throughput of 10 Gbit/sec on an FPGA implementation.

In this paper we introduce an ISE which can be used to accelerate a range
of cryptographic algorithms that operate on data in a bit-oriented (rather than
word-oriented) manner. In particular, we consider bit-sliced algorithms [5]. The

Light-Weight Instruction Set Extensions 333

exemplar use of bit-slicing is given by Biham, who extracted a 5-fold performance
gain from DES [5]. However, beyond pure performance, one can identify another
more subtle advantage from the general approach. By, for example, eliminating a
(potentially very large) table used to represent S-box content, a typical bit-sliced
implementation will have a smaller data memory footprint; despite the fact that
the code memory footprint may slightly increase, the overall effect is usually a net
gain. Furthermore, elimination of such tables also eliminates the need to execute
instructions that access them. Depending on the exact memory hierarchy, this
can result in (more) predictable, data-independent execution and thus prevent
cache-based side-channel attacks [7I28]. Our proposed ISE capitalises on these
significant advantages of bit-sliced implementation while further improving their
performance, a factor which is often perceived as a disadvantage.

We organise the rest of this paper as follows. In Section [2] we recap on the
concept of bit-slicing and introduce the design of our ISE and the host platform
it is embedded into. We then use Section [3 to evaluate the ISE, demonstrating
its generic nature by presenting application in six different case studies; in each
case we are able to improve performance and reduce memory footprint versus
an implementation on the same platform without the use of our ISE. Finally, in
Section Bl we conclude and present some areas for further work.

2 ISE Definition

2.1 Bit-Sliced Implementation

Imagine a scalar processor with a w-bit word size, let x; denote the i-th bit
of a machine word x where i is termed the index of the bit. Such a processor
operates natively on word-sized operands. For example, with a single operation
one might perform addition of w-bit operands x and y to produce r = = + v,
or component-wise XOR, to produce r; = x; @ y; for all 0 < ¢ < w. This ability
is restricted however when an algorithm is required to perform some operation
involving different bits from the same word. For example, one might be required
to combine z; and x;, where ¢ # j, using an XOR operation in order to compute
the parity of z. In this situation one is required to shift (and potentially mask)
the bits so they are aligned at the same index ready for combination through a
native, component-wise XOR. The technique of bit-slicing, proposed by Biham
for efficient implementation of DES [5], offers a way to reduce the associated
overhead. Instead of representing the w-bit value = as one machine word, we
represent x using w machine words where word ¢ contains x; aligned at the same
fixed index j. As such, there is no need to align bits ready for use in a component-
wise XOR operation. Additionally, since native word-oriented logical operations
in the processor operate on all w bits in parallel, one can pack w different values
(say x[k] for 0 < k < w) into the w words and proceed using an analogy of a
SIMD-style parallelism. Conversion to and from a bit-sliced representation can
represent an overhead but this can be amortised if the cost of computation using
the bit-sliced values is significant enough.

334 P. Grabher, J. Groischadl, and D. Page

2.2 CRISP

A quarter century after many design decisions and assumptions were made by the
pioneers of RISC, we are still using largely similar processor designs. One expects
that such decisions were initially made using a mix of research and common sense
based on prevailing technologies of the time. Despite the huge success of these
assumptions, the technology landscape has now changed radically: the types
of program we execute today are different and many of the constraints which
guided initial thinking have disappeared. This is certainly true of cryptographic
workloads as evidenced by previous work on application specific processors such
as CryptoManiac [36] and Cryptonite [§].

CRISP (short for Cryptographic RISc Processor) represents an attempt to
reassess some of these design decisions in the context of cryptography. The aim
is to produce a processor design which is general purpose, but unencumbered
by the constraints of history. For this paper, it suffices to consider CRISP as a
conventional five-stage pipeline which, in contrast with the more conventional
3-address form, allows 6-address instructions. There are 16 general-purpose reg-
isters; this enables instructions to be encoded using a fixed 32-bit format. The
philosophy is that, although this approach might, for example, dictate a lower
clock frequency, central operations are more naturally described. Let the i-th
entry in the general-purpose register file be denoted by GPRJi|, the datapath
width be w and z; denote the j-th bit of some w-bit word x. A representative
example of said philosophy is the instruction for addition which uses three source
operands (a, b and ¢) and two target operands (p and ¢). A conventional proces-
sor would maintain, and specify instruction for manipulating, a carry-flag; since
an instruction can produce two results, CRISP treats the carry-flag as a general
purpose register. The addition is therefore specified as

t (GPRla] + GPRI[b]) + GPR|]
ADD D, Q7avbac g GPR[])] = tw—l...O
GPR[Q] = tow—1..w

such that the three source operands are added together and low and high w-bit
halves of the result are stored using the two target operands p and ¢. The clear
disadvantage of such an instruction is higher latency; the advantages include
removal for special-case management of the carry-flag and higher instruction
throughput. We are aiming to improve the instruction throughput with a level
of overhead somewhere between single issue and much more expensive multiple
issue. Although the 6-address instruction format of CRISP is unconventional, one
can imagine mechanisms to specify similar instructions in conventional 3-address
architectures. One example is the use of SIMD instructions that pack multiple
operands into registers addressed as one unit. Another approach is to serialise
the operand transfers from/to the register file, which effectively relaxes the port
constraints of instruction set extensions [31].

Within the general CRISP design we include three instructions which target
bit-sliced implementation of cryptography. The processor includes two special

Light-Weight Instruction Set Extensions 335

purpose registers LUTO0 and LUT1, which are used as 4-input, 1-output Look-Up
Tables (LUTs). Configuration of the LUTSs is performed by two instructions

CLUIOa +— LUT0; = a;
CLUTla +— LUT1; = a4

each of which load the given LUT with a 16-bit immediate operand a, essentially
configuring the LUTs. Use of the LUTSs is performed with a third instruction

GPRlq)i

LUTO[8-a;+4-bi+2-c;i+1-dj
LUTL8 a;+4-b;+2-¢;+1-d]

ULUT p,q,a,b,c,d +—

which takes the i-th bit of each source operand and concatenates them to form
an index into each LUT; the LUT output forms the i-th bit of the result, two
of which are computed in parallel.

To illustrate the benefit of our approach, we use the dataflow subgraph in
Figure[ll(a) as example, which takes four inputs and produces two outputs via a
series of simple logical instructions. On a general-purpose RISC processor, the
cost of evaluating this subgraph is exactly six instructions as depicted in Figure
[(b). However, this form of subgraph can be implemented naturally using the
LUTs described above; Figure[Ilc) shows that the corresponding implementation
consists of only two CLUT instructions and one ULUT instruction.

Since many important block ciphers rely on the efficient computation of bit-
level permutations, we include architectural support for this type of operation
within our design. Extensive research in this area has been conducted by Lee et
al. [23I37I34]. In [23], Lee et al. described how a combination of GRP and SHIFT
PAIR instructions can be used to perform arbitrary bit permutations. The GRP
instruction is defined as follows

GRP Rs, Rc, Rd

It moves the bits in the source register Rs to the most significant bit positions
and to the least significant bit positions according to the control bits in Rc. On

r r2 r3 rd AND r5, r1, r2 CLUTO 14084

XOR r6, r3, rd CLUT1 51448
OR 5, r5, r3 ULUT 15, r6, rl, r2, r3, rd

@ @ OR r6, r6, r2
XOR r5, r5, r6
AND r6, r6, rb

5 6

(a) (b) (c)

Fig. 1. An example dataflow subgraph (a) with the corresponding pseudo assembly
code for a basic RISC machine (b) and for a LUT-based implementation (c)

336 P. Grabher, J. Groischadl, and D. Page

ne []ofofr]r]or]o]

o [[ole e[« [o] o
Rd |blc|f|h|a|d|lel|g lim][m]
Fig. 2. GRP instruction [23] Fig. 3. Shift Pair instruction [23]

an n-bit processor, no more than log(n) GPR instructions are required to perform
an arbitrary n-bit permutation. Figure] illustrates the functionality of the GRP
instruction in case of 8-bit registers. The SHIFT PAIR instruction is instrumental
in supporting permutations that cross word boundaries. It concatenates two
source registers and separates the contiguous bit regions into two destination
registers as depicted in Figure

3 Performance Evaluation

We implemented an early prototype of the CRISP processor using the Processor
Designer tool-chain from CoWare. The tool-chain is based on the Language for
Instruction Set Architectures (LISA), which allows one to describe a processor
architecture at a high level of abstraction; the description allows automatic gen-
eration of an instruction set simulator, a complete suite of software development
tools, and synthesisable VHDL code. As such, although the results are often less
optimal than a hand-written alternative, the tool-chain allows one to quickly
explore the ISE design space in order to identify and assess the relative merits
of different custom instructions.

Starting with a LISA description of the CRISP 5-stage pipeline, we equipped
the processor with Harvard-style data and instruction RAMs, each of 4KB, and
synthesised the generated VHDL code using Xilinx ISE 7.3. Our experimental
platform was an ADM-XRC-II PCI card which hosts a Xilinx Virtex-II FPGA
(XC2V6000-4FF1152) device with 33,000 slices. The synthesis report indicated
that the processor core can operate at a maximum clock frequency of 30 MHz
and occupies a total of roughly 9,500 slices. The integration of our proposed
LUTSs has no negative impact on the critical path delay and requires about 280
slices. In order to demonstrate correct in-circuit behaviour, we augmented the
processor core to include an interface with Xilinx Chipscope. In terms of both
performance and area we posit that there is room for improvement: the automat-
ically generated VHDL code is not ideal in a number of cases. For instance, the
register file and RAM components are implemented as distributed RAM instead
of dedicated block RAM; this leads to a significant overhead in terms of slices
occupied by RAM resources and to long routing delays. Moreover, the tool-chain
is not able to identify exclusive read operations to the register file from different
instructions; it generates a total of 20 read ports although at most four would
be sufficient. As a consequence, the critical path of the design lies in this specific

Light-Weight Instruction Set Extensions 337

part of the implementation and not in the ALU which would allow an operating
frequency of nearly 50 MHz. We plan to address these issues at a later stage
of the project when the definition of the instruction set architecture has been
finalised.

Regardless of the implementation quality, our functional processor model is
sufficient to accurately assess the merits of our LUT-based ISE. We developed
six case studies which represent different cryptographic primitives with different
demands; the results presented below identify each algorithm, the potential for
LUT-based acceleration within the algorithm, and compare implementation re-
sults (in terms of performance and memory footprint) versus a non-LUT-based
alternative. It should be mentioned that bit-sliced ciphers use a non-traditional
format to represent data; hence, the format conversion from standard into the
bit-sliced domain introduces additional overhead before and after the encryption
operation. However, in a closed environment the data can be kept in bit-sliced
representation and so the need for a data conversion is omitted. In the following
performance evaluation we do not consider the overhead caused by conversion
to and from bit-slice representation.

3.1 SHA-1

SHA-1 is a cryptographic hash function which was designed and published by
the NIST in 1995. Although SHA-1 is today considered to be cryptographically
insecure, it is still employed in a vast range of standard applications and protocols
such as SSL, SSH, and IPSec. The algorithm accepts an arbitrary length input
message, split into 512-bit blocks, and produces a 160-bit message digest. The
state of computation is held in five 32-bit chaining variables a, b, ¢, d and e which
the algorithm processes in four rounds each composed of twenty operations. A
different nonlinear function is used in each of the four rounds; for instance the
nonlinear function for the third round is given by

fa(a,b,¢): (anc)V ((aVb)Ac).

Using a conventional RISC processor the evaluation of this function takes four
instructions; with our LUT-based approach the same function can be realised
with one ULUT instruction plus one initial CLUT instruction to configure the LUT
before the round starts. In Table [T, we compare results using our LUT-based
approach with the performance of SHA-1 on the same CRISP pipeline without
using LUTSs; the ISE permits a performance improvement by a factor of 1.11
while code memory footprint is reduced by 21%.

Table 1. Implementation results for SHA-1 compression function

Implementation Performance (cycles) Code footprint (bytes)
Standard SHA-1 1602 2620
SHA-1 with LUTs 1441 2060

338 P. Grabher, J. Groischadl, and D. Page

3.2 Multiplication of Ternary Polynomials

Fast arithmetic in finite fields of characteristic three is important for efficient
pairing evaluation using particular parameterisations. In algorithms for pairing
evaluation, multiplication in some extension field represents the time-critical
operation; the performance of this operation in turn depends on the efficiency
of the underlying base field arithmetic.

Using a polynomial basis representation, one can hold an element a € F3n as
two n-element bit-vectors o and a [19]. Using aff and al to denote the i-th

bit of af and a”, respectively, the vectors a’ and a” are constructed from a
such that for all 4

all = q; div 2

aF =a; mod 2.

That is, o and a” are a bit-sliced representation of the coefficients of a where
al and a” hold the high and low bits of a given coefficient, respectively. Given
such a representation, one can construct component-wise addition using logical
operations. For example, a component-wise addition r; = a; + b; of two field
elements a and b is specified by

rH = (alvbl) ot
rl = (@ vol) ot

7

where t = (aF v bH) @ (af v bE).

Using a conventional RISC processor, the cost of each component-wise addi-
tion is seven logical operations; with our LUT-based approach the same addition
can be collapsed to obtain the high and low bits with two CLUT instructions and
one ULUT instruction. To demonstrate the impact of this, we implemented the
comb method for field multiplication in Fzo7 (the characteristic-two analogue is
detailed in [I8, Algorithm 2.35]). A summary of the results is shown in Table 2
in comparison to the CRISP processor without LUTSs, the LUT-based approach
improves performance by a factor of 1.51 while code memory footprint is reduced
by 33%.

Table 2. Implementation results for multiplication in Fgo7

Implementation Performance (cycles) Code footprint (bytes)
Standard Multiply 8652 2656
Multiply with LUTs 5750 1784

3.3 Serpent

Serpent was one of five finalists in the AES competition; it is a 32-round substi-
tution-permutation block cipher that operates on 128-bit data blocks. Anderson
et al. [I] describe an efficient bit-sliced implementation in which each round is
constructed from three layers: a key mixing operation, an S-box operation, and
a linear transformation operation. In particular, the S-box layer is realised using

Light-Weight Instruction Set Extensions 339

a sequence of logical instructions that are applied to four 32-bit input words to
produce four output words; each S-box is represented, on average, by about 17
logical instructions.

Implementing each S-box operation on a conventional RISC processor is ham-
pered by the resulting register pressure which, in turn, can enforce costly spills
to memory. The advantage of using our LUTs for the S-box layer in Serpent is
two-fold: firstly, a series of logical operations can be implemented with only four
CLUT and two ULUT instructions; secondly, we reduce the number of temporary
variables such that there is less need to spill values into memory. To further
improve the performance of the Serpent encryption operation, specific portions
of the linear transformation layer can also be implemented with LUTs.

In Table Bl we compare the LUT-based approach to the original, reference
approach of Anderson et al. [I]. The LUT-based approach improves performance
by a factor of 2.2 and reduces code memory footprint by 53%.

Table 3. Implementation results for Serpent encryption

Implementation Performance (cycles) Code footprint (bytes)
Bit-sliced Serpent 2031 2112
Bit-sliced Serpent with LUTs 922 984
3.4 AES

AES can, by design, be implemented efficiently on 8-bit or 32-bit platforms. In
order to perform encryption (resp. decryption), the AES algorithm iteratively
applies a round function (resp. inverse round function) to a 4 x 4 state matrix
of elements in Fys. The round function is composed of four steps: SubBytes, a
non-linear substitution via an S-box that roughly equates to inversion in Fys;
AddRoundKey, the addition of key material via XOR; ShiftRows, which simply
rotates rows of the state; and MixColumns, which multiplies columns of the state
by a constant matrix.

An 8-bit implementation typically represents the state matrix as an array
of sixteen bytes and implements each step of the round function in a direct
fashion [T} Section 4.1]. A 32-bit implementation typically packs the columns
of the state matrix into four words and combines the round function steps into
a set of table look-ups [T} Section 4.2]. Previous work has developed effective
alternatives for bit-sliced implementations of AES [24I25121]. Kénighofer [21]
gives a detailed description of a fast bit-sliced AES implementation on a 64-bit
AMD Opteron processor. In this work, the state matrix is stored in eight different
registers throughout the encryption routine and four blocks are processed in
parallel. We implemented Konighofer’s method on our CRISP processor; the
half-sized datapath width means we process two blocks at a time.

In a bit-sliced AES implementation, SubBytes represents the time-critical
operation. In contrast to conventional implementations that usually store the S-
box as a table in memory, the S-box is expressed by a series of logical operations

340 P. Grabher, J. Groischadl, and D. Page

according to the description of Canright [10]. The basic idea is to decompose the
calculation of the multiplicative inverse in Fos into the calculation of the inverse
in Fos and Fy2, respectively. Certain parts of these subfield computations can be
mapped efficiently to our LUTSs, for instance the inverse of x = (xg, 1,22, x3) €
Fy4 is given by

= ((r3 ® 22) A (551 ®x0)) © x3 D 1

(1‘3 AN xl)

do (332/\.730)@6@1‘2@330

On a conventional RISC processor, the cost of computing the inverse in Faa is
eleven instructions; using a LUT-based approach the computation can be per-
formed with as little as two CLUT instructions and one ULUT instruction. Similar
to the Serpent case, the LUTSs are useful in terms of both reducing the number
of logical instructions as well as reducing the spills into memory. However, the
ShiftRows operation requires a closer examination. Each single byte within a
register that holds the state needs to be rotated by a different distance; on a
conventional RISC processor this can require a number of shift-and-mask type
operations. To overcome this problem, one can integrate a custom instruction for
efficient bit-level permutation, as proposed by Lee et al. [37], which reduces the
cost of ShiftRows dramatically. The execution times of these implementations
are given in Table @l comparing our LUT-based implementation to the standard
bit-sliced AES implementation of Kénighofer [21], we improve performance by
a factor of 1.23 and reduce code memory footprint by 36%. Having a dedicated
instruction for efficient bit-level permutation further improves performance by a
factor of 2.21 and reduces code memory footprint by some 59%. In [3], Bertoni
et al. describe a fast non-bit-sliced software implementation of the AES for a
32-bit RISC processor. Comparing this implementation to the fastest bit-sliced
version, our ISE permits a performance improvement by a factor of 1.36 on a
per-block basis and reduces code memory footprint by 26%.

Table 4. Implementation results on a per-block basis for AES encryption

Implementation Performance (cycles) Code footprint (bytes)
Standard AES [3] (i.e. 32-bit) 1662 1160
Bit-sliced AES [21] 2699 2080
Bit-sliced AES with LUTs 2203 1328
Bit-sliced AES with LUTs & perm. 1222 858

3.5 PRESENT

Bogdanov et al. [6] describe PRESENT, a light-weight block cipher that can
be efficiently implemented in hardware. PRESENT is a 31-round substitution-
permutation network block cipher operating on 64-bit blocks. The S-box layer
is realised as a table which maps 4-bit inputs to 4-bit outputs. In a bit-sliced
implementation, the 64-bit blocks are stored in sixty four different words such
that the i-th bit of each block is held in the i-th word; on a 32-bit datapath this

Light-Weight Instruction Set Extensions 341

allows us to process thirty two blocks in parallel. The S-box layer is expressed
by a sequence of thirty logical operations; in a LUT-based implementation this
is realised using four CLUT instructions and two ULUT instructions. The results
are summarised in Table B} compared to the reference implementation executed
on CRISP, our ISE improve performance by a factor of 1.42 and reduce code
memory footprint by 18%.

Table 5. Implementation results for PRESENT encryption

Implementation Performance (cycles) Code footprint (bytes)
Bit-sliced PRESENT 39986 500
Bit-sliced PRESENT with LUTs 28082 408
3.6 DES

The performance-critical operations in a standard DES software implementation
are bit-oriented (e.g. permutation); in some sense this is a result of the hardware
based origins of the algorithm. These sorts of operation are costly in software
when implemented on a conventional RISC processor. As mentioned previously,
Biham [5] described a fast implementation of DES using bit-slicing where the
overhead caused by bit-oriented permutations is vastly reduced. Each S-box
operation maps a 6-bit input to a 4-bit output and use of bit-slicing means their
application is a bottleneck; the S-boxes require at most 132 logical operations
and 100 instructions on average.

To reduce this cost, Kwan [22] presented an algorithm to generate S-boxes
with an average of 56 logical operations. We examined each S-box using the
Mimosys Clarity tool-chain [26] to identify where our ISE could be applied. The
tool-chain takes C source code as input and analyses the data-flow graph to find
subgraphs which can be implemented using a given ISA; in our case we had it
search for 4-input, 2-output subgraphs consisting only of logical operations. The
obtained speed-up factors of the bit-sliced DES S-boxes are detailed in Table [6}
compared to Kwan’s implementation we improve the performance of the S-box
layer by a factor of 1.12 using the LUT-mechanism.

Table 6. Analysis of bit-sliced DES S-Boxes

S-Box S1 S22 S3 S4 S5 S6 ST S8
Speed-up factor 1.10 1.11 1.09 1.12 1.12 1.13 1.13 1.13

4 Comparison and Discussion

In recent years, custom instructions for secret-key cryptography have been inte-
grated into a wide variety of platforms, ranging from high-performance ASIPs to

342 P. Grabher, J. Groischadl, and D. Page

Table 7. Comparison of general-purpose processors with crypto extensions

Design Base arch. Algorithms and throughput (in cycles per byte)
MOSES [32] Xtensa (32-bit) 3DES: 42.1 cpb, AES: 87.5 cpb

PAX [15] RISC (64-bit) 3DES: 79.5, AES: 7.86, Twofish: 39.0, Mars: 85.21
O’Melia [27] SPARC (32-bit) 3DES: 56.1 cpb, AES: 47.5 cpb, IDEA: 60.6 cpb
CRISP RISC (32-bit) SHA-1: 45.0 cpb, AES: 76.4 cpb, Serpent: 57.6 cpb

embedded processors optimised for small area and low power consumption. The
plethora of target applications makes a fair comparison of the different designs
very difficult, if not impossible. For example, Cryptonite []] is an ASIP dedicated
to cryptographic algorithmsEl and not a general-purpose processor with crypto
extensions like CRISP. On the other hand, the custom instructions described in
[AUT3I35] were designed for integration into general-purpose processors, but their
applicability is restricted to a single cryptosystem (AES), while the instructions
introduced in this paper allow one to accelerate any cryptographic algorithm
that can be implemented via bit-slicing.

Table [[shows a comparison of CRISP with other general-purpose processors
with crypto extensions which followed a similar design strategy, namely support
of more than just a single cryptographic algorithm and orientation towards the
embedded domain, which requires to consider both performance and hardware
cost rather than focussing solely on the former. We omitted CryptoManiac as
it is a 4-way VLIW processor optimised for high-bandwidth applications. Even
though we restrict our comparison to closely related designs, the figures in Ta-
ble [should be taken with a pinch of salt due to differences in the respective
base architectures (e.g. 32-bit vs. 64-bit). MOSES supports only two secret-key
algorithms (3DES and AES) while the instruction set of PAX is applicable to
a wider range of algorithms of which seven were evaluated in [I5] on basis of a
64-bit version of the architecture. The throughput figures of all four designs lie
between 40 and 90 cycles per byte for the different algorithms, except of AES on
PAX, which is extremely fast. In summary, the results of CRISP compare very
well with that of previous work, especially when considering the flexibility and
cost-efficiency of its crypto instructions.

5 Conclusions

We have presented a light-weight, generic instruction set extension for a 32-bit
RISC processor with a 6-address instruction format (four source registers and
two destination registers). Focusing on bit-sliced implementation, the ISE helps
to address the disadvantages of this technique; for example, it improves perfor-
mance and reduces code memory footprint, while maintaining all the advantages
including low data memory footprint and predictable execution. Thanks to the

! The programmability of an ASIP is limited to applications within the application do-
main it has been designed for (e.g. cryptography), while a general-purpose processor
can execute any kind of application.

Light-Weight Instruction Set Extensions 343

generic nature of the proposed extensions, our processor architecture allows for
a high degree of algorithm agility. This is a desirable feature when executing
algorithm-independent security protocols, such as SSL/TLS or IPSec, where the
support of several secret-key algorithms is essential. Moreover, the flexibility
of our design can even be exploited by next-generation algorithms rather than
being restricted to current-generation algorithms. In terms of hardware cost, the
implementation of our ISE represents a modest overhead (just 280 slices of a
Virtex-II device). Even though the proposed ISE might not be applicable in a
high-performance processor design, it represents an excellent trade-off between
implementation quality and cost for embedded and mobile processors.

Acknowledgements

The work described in this paper has been supported by the EPSRC under
grant EP/E001556/1 and, in part, by the European Commission through the
IST Programme under contract IST-2002-507932 ECRYPT. The information in
this document reflects only the authors’ views, is provided as is and no guarantee
or warranty is given that the information is fit for any particular purpose. The
user thereof uses the information at its sole risk and liability.

References

1. Anderson, R., Biham, E., Knudsen, L.: Serpent: A proposal for the Advanced
Encryption Standard. Technical report,
http://www.cl.cam.ac.uk/~rjal4/serpent.html

2. Bartolini, S., Branovic, 1., Giorgi, R., Martinelli, E.: A performance evaluation of
ARM ISA extension for elliptic curve cryptography over binary finite fields. In:
Proceedings of the 16th Symposium on Computer Architecture and High Perfor-
mance Computing (SBAC-PAD 2004), pp. 238-245. IEEE Computer Society Press,
Los Alamitos (2004)

3. Bertoni, G., Breveglieri, L., Fragneto, P., Macchetti, M., Marchesin, S.: Efficient
software implementation of AES on 32-bit platforms. In: Kaliski Jr., B.S., Kog,
C.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 129-142. Springer, Heidel-
berg (2003)

4. Bertoni, G.M., Breveglieri, L., Farina, R., Regazzoni, F.: Speeding up AES by
extending a 32-bit processor instruction set. In: Proceedings of the 17th IEEE
International Conference on Application-Specific Systems, Architectures and Pro-
cessors (ASAP 2006), pp. 275-279. IEEE Computer Society Press, Los Alamitos
(2006)

5. Biham, E.: A fast new DES implementation in software. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 260-272. Springer, Heidelberg (1997)

6. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450-466.
Springer, Heidelberg (2007)

7. Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: Goubin,
L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201-215. Springer, Heidel-
berg (2006)

http://www.cl.cam.ac.uk/~rja14/serpent.html

344

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

P. Grabher, J. Groischadl, and D. Page

Buchty, R., Heintze, N., Oliva, D.: Cryptonite — A programmable crypto processor
architecture for high-bandwidth applications. In: Miiller-Schloer, C., Ungerer, T.,
Bauer, B. (eds.) ARCS 2004. LNCS, vol. 2981, pp. 184-198. Springer, Heidelberg
(2004)

. Burke, J., McDonald, J., Austin, T.: Architectural support for fast symmetric-key

cryptography. In: Proceedings of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS 2000), pp.
178-189. ACM Press, New York (2000)

Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441-455. Springer, Heidelberg (2005)

Daemen, J., Rijmen, V.: The Design of Rijndael: AES — The Advanced Encryption
Standard. Springer, Heidelberg (2002)

Davies, P.L., Robsky, S.R.: Customized processor extension speeds network cryp-
tology. Electronic Design 50(19), 83-88 (2002)

Elbirt, A.J.: Fast and efficient implementation of AES via instruction set exten-
sions. In: Proceedings of the 21st International Conference on Advanced Informa-
tion Networking and Applications (AINA 2007), vol. 1, pp. 481-490. IEEE Com-
puter Society Press, Los Alamitos (2007)

Fiskiran, A.M., Lee, R.B.: PAX: A datapath-scalable minimalist cryptographic
processor for mobile devices. In: Embedded Cryptographic Hardware: Design and
Security, pp. 19-34. Nova Science Publishers (2004)

Fiskiran, A.M., Lee, R.B.: On-chip lookup tables for fast symmetric-key encryption.
In: Proceedings of the 16th IEEE International Conference on Application-specific
Systems, Architectures and Processors (ASAP 2005), pp. 356-363. IEEE Computer
Society Press, Los Alamitos (2005)

Grof3schadl, J., Savasg, E.: Instruction set extensions for fast arithmetic in finite
fields GF(p) and GF(2™). In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS,
vol. 3156, pp. 133-147. Springer, Heidelberg (2004)

Grofischadl, J., Tillich, S., Szekely, A., Wurm, M.: Cryptography instruction set ex-
tensions to the SPARC V8 architecture (preprint submitted for publication, 2007)
Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, Heidelberg (2004)

Harrison, K., Page, D., Smart, N.P.: Software implementation of finite fields of
characteristic three, for use in pairing pased cryptosystems. LMS Journal of Com-
putation and Mathematics 5(1), 181-193 (2002)

Institute of Electrical and Electronics Engineers (IEEE). IEEE Std 1363-2000:
IEEE Standard Specifications for Public-Key Cryptography

Konighofer, R.: A fast and cache-timing resistant implementation of the AES. In:
Topics in Cryptology — CT-RSA 2008. LNCS, vol. 4964, pp. 187-202. Springer,
Heidelberg (2008)

Kwan, M.: Reducing the gate count of bitslice DES. Cryptology ePrint Archive,
Report 2000/051 (2000), http://eprint.iacr.org

Lee, R.B., Shi, Z., Yang, X.: Efficient permutation instructions for fast software
cryptography. IEEE Mirco. 21(6), 56-69 (2001)

Matsui, M.: How far can we go on the x64 processors? In: Robshaw, M.J.B. (ed.)
FSE 2006. LNCS, vol. 4047, pp. 341-358. Springer, Heidelberg (2006)

Matsui, M., Nakajima, J.: On the power of bitslice implementation on Intel Core2
processor. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
121-134. Springer, Heidelberg (2007)

Mimosys. Clarity Product Datasheet (July 2006),
http://www.mimosys.com/pdf/Mimosys Clarity Product Datasheet.pdf

http://eprint.iacr.org
http://www.mimosys.com/pdf/Mimosys_Clarity_Product_Datasheet.pdf

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Light-Weight Instruction Set Extensions 345

O’Melia, S.R.: Instruction Set Extensions for Enhancing the Performance of
Symmetric-Key Cryptography. M.Sc. Thesis. University of Massachusetts, Lowell
(2007)

Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1-20.
Springer, Heidelberg (2006)

Patterson, C.: A dynamic FPGA implementation of the Serpent block cipher. In:
Paar, C., Kog, C.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 141-155. Springer,
Heidelberg (2000)

Phillips, B.J., Burgess, N.: Implementing 1,024-bit RSA exponentiation on a 32-
bit processor core. In: Proceedings of the 12th IEEE International Conference on
Application-specific Systems, Architectures and Processors (ASAP 2000), pp. 127—
137. IEEE Computer Society Press, Los Alamitos (2000)

Pozzi, L., lenne, P.: Exploiting pipelining to relax register-file port constraints of
instruction-set extensions. In: Proceedings of the 8th International Conference on
Compilers, Architecture and Synthesis for Embedded Systems (CASES 2005), pp.
2-10. ACM Press, New York (2005)

Ravi, S., Raghunathan, A., Potlapally, N.R., Sankaradass, M.: System design
methodologies for a wireless security processing platform. In: Proceedings of the
39th Design Automation Conference (DAC 2002), pp. 777-782. ACM Press, New
York (2002)

Ravi, S., Raghunathan, A., Potlapally, N.R.: Securing wireless data: System archi-
tecture challenges. In: Proceedings of the 15th International Symposium on System
Synthesis (ISSS 2002), pp. 195-200. ACM Press, New York (2002)

Shi, Z., Lee, R.B.: Bit permutation instructions for accelerating software cryptog-
raphy. In: Proceedings of the 12th IEEE International Conference on Application-
Specific Systems, Architectures, and Processors (ASAP 2000), pp. 138-148. IEEE
Computer Society Press, Los Alamitos (2000)

Tillich, S., Grofischadl, J.: Instruction set extensions for efficient AES implemen-
tation on 32-bit processors. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 270-284. Springer, Heidelberg (2006)

Wu, L., Weaver, C., Austin, T.M.: CryptoManiac: A fast flexible architecture for
secure communication. In: Proceedings of the 28th Annual International Sympo-
sium on Computer Architecture (ISCA 2001), pp. 110-119. ACM Press, New York
(2001)

Yang, X., Vachharajani, M., Lee, R.B.: Fast subword permutation instructions
based on butterfly networks. In: Media Processors 2000. Proceedings of the SPIE,
vol. 3970, pp. 80-86. SPIE (1999)

Yehia, S., Clark, N.T., Mahlke, S.A.; Flautner, K.: Exploring the design space of
LUT-based transparent accelerators. In: Proceedings of the 8th International Con-
ference on Compilers, Architecture and Synthesis for Embedded Systems (CASES
2005), pp. 238-249. ACM Press, New York (2005)

	Light-Weight Instruction Set Extensions for Bit-Sliced Cryptography
	Introduction
	ISE Definition
	Bit-Sliced Implementation
	CRISP

	Performance Evaluation
	SHA-1
	Multiplication of Ternary Polynomials
	Serpent
	AES
	PRESENT
	DES

	Comparison and Discussion
	Conclusions
	References

