Skip to main content

Dynamic AFM in Liquids: Viscous Damping and Applications to the Study of Confined Liquids

  • Chapter
Applied Scanning Probe Methods XII

Abstract

We present a study of dynamic atomic force microscopy (AFM) in liquid medium. In the first part, we investigate hydrodynamic viscous damping. Using an experimental analysis of the thermal noise motion of the cantilever, the dependency of the hydrodynamic damping versus the cantilever–surface separation was evaluated. In the second part, we present an improvement of the excitation holder that allows us to remove the spurious peaks not corresponding to the resonance frequency of the cantilever mechanical response. An analytical description of the motion of an acoustic-driven cantilever in liquid is given in the third part. \quad In the last part, we have used dynamic AFM to study a simple liquid confined between the cantilever tip and a graphite surface. The results show that the liquid undergoes ordering to layers with a characteristic size given by the molecular diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binnig G, Quate CF, Gerber Ch (1986) Phys Rev Lett 56:930

    Article  Google Scholar 

  2. Giessibl JF (1995) Science 267:68

    Article  CAS  Google Scholar 

  3. Ohnesorge F, Binnig G (1993) Science 260:1451

    Article  CAS  Google Scholar 

  4. Schabert FA, Henn C, Engel A (1995) Science 268:92

    Article  CAS  Google Scholar 

  5. Hoh JH, Sosinsky GE, Revel JP, Hansma PK (1993) Biophys J 65:149

    Article  CAS  Google Scholar 

  6. Müller DJ, Schabert FA, Büldt G, Engel A (1995) Biophys J 68:1681

    Article  Google Scholar 

  7. Putman CAJ, Vanderwerf KO, De Grooth BG, Vanhulst NF, Greve J (1994) Appl Phys Lett 64:2454

    Article  CAS  Google Scholar 

  8. Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunaga L, Gurley J, Elling V (1994) Appl Phys Lett 64:1738

    Article  CAS  Google Scholar 

  9. Shâffer TE, Cleveland JP, Ohnesorge F, Walters DA, Hansma PK (1996) J Appl Phys 80:3622

    Article  Google Scholar 

  10. Magonov SN, Elings V, Whangbo MH (1997) Surf Sci 375:L385

    Article  CAS  Google Scholar 

  11. Vinagradova OI, Butt HJ, Yakubov GE, Feuillebois F (2001) Rev Sci Instrum 72:2330

    Article  Google Scholar 

  12. Vinogradova OI, Yakubov GE (2003) Langmuir 19:1227

    Article  CAS  Google Scholar 

  13. Rankl C, Pastushenko V, Kienberger F, Stroh CM, Hinterdorfer P (2004) Ultramicroscopy 100:301

    Article  CAS  Google Scholar 

  14. Naik T, Longmire EK, Mantell SC (2003) Sensor Actuat A 102:240

    Article  Google Scholar 

  15. Benmouna F, Johannsmann D (2002) Eur Phys J E 9:435

    Article  CAS  Google Scholar 

  16. Maali A, Hurth C, Boisgard R, Jai C, Cohen-Bouhacina T, Aimé JP (2005) J Appl Phys 97:074907

    Article  Google Scholar 

  17. Chon JWM, Mulvaney P, Sader JE (2000) J Appl Phys 87:526

    Article  Google Scholar 

  18. Florin EL, Radmacher M, Fleck B, Gaub HE (1994) Rev Sci Instr 65:639

    Article  CAS  Google Scholar 

  19. Han W, Lindsay SM, Jing T (1996) Appl Phys Lett 69:4111

    Article  CAS  Google Scholar 

  20. Revenko I, Proksch R (2000) J Appl Phys 87:526

    Article  CAS  Google Scholar 

  21. Maali A, Hurth C, Cohen-Bouhacina T, Couturier G, Aimé JP (2006) Appl Phys Lett 88:163504

    Article  Google Scholar 

  22. Zhong Q, Imniss D, Kjoller K, Elings VB (1993) Surf Sci 290:L688

    Article  CAS  Google Scholar 

  23. Tamayo J, García R (1996) Langmuir 12:4430

    Article  CAS  Google Scholar 

  24. Sasaki K, Koike Y, Azehara H, Horaki H, Fujihira M (1998) Appl Phys A: Mater Sci Process 66:1275

    Article  Google Scholar 

  25. Bar G, Thomann Y, Whangbo M-H (1998) Langmuir 14:1219

    Article  CAS  Google Scholar 

  26. Garcia R, Pérez R (2002) Surf Sci Rep 47:197

    Article  CAS  Google Scholar 

  27. Meyer G, Amer NM (1988) Appl Phys Lett 53:1045

    Article  Google Scholar 

  28. Alexander S, Hellemans L, Marti O, Schneir J, Elings V, Hansma PK, Longmire M, Gurley J (1989) J Appl Phys 65:164

    Article  CAS  Google Scholar 

  29. Tamayo J, García R (1998) Appl Phys Lett 73:2926

    Article  CAS  Google Scholar 

  30. Cleveland JP, Anczykowski B, Schmid E, Elings V (1998) Appl Phys Lett 72:2613

    Article  CAS  Google Scholar 

  31. Aime JP, Boisgard R, Nony L, Couturier G (2001) J Chem Phys 114:4945

    Article  CAS  Google Scholar 

  32. San Paulo A, García R (2001) Phys Rev B 64:193411

    Article  Google Scholar 

  33. Lantz M, Liu YZ, Cui XD, Tokumoto H, Lindsay SM (1999) Surf Interface Anal 27:354

    Article  CAS  Google Scholar 

  34. Jai C, Cohen-Bouhacina T, Maali A (2007) Appl Phys Lett 90:113512

    Article  Google Scholar 

  35. Yagasaki K (2004) Phys Rev B 70:245419

    Article  Google Scholar 

  36. Bhushan B (2007) Springer handbook of nanotechnology, 2nd edn, Springer-Verlag, Heidelberg, Germany

    Book  Google Scholar 

  37. Persson BNJ (2000) Sliding friction: physical principles and applications, Springer, Heidelberg

    Google Scholar 

  38. Israelachvili J, Winnerström H (1996) Nature 379:219

    Article  CAS  Google Scholar 

  39. Horn RG, Israelachvili J (1981) J Chem Phys 75:1400

    Article  CAS  Google Scholar 

  40. Gee ML, McGuiggan PM, Israelachvili JN (1990) J Chem Phys 93:1895

    Article  CAS  Google Scholar 

  41. Granick S (1991) Science 253:1374

    Article  CAS  Google Scholar 

  42. Israelachvili J (1992) Intermolecular and surfaces forces, Academic, London

    Google Scholar 

  43. Klein J, Kumacheva E (1998) J Chem Phys 108:6996

    Article  CAS  Google Scholar 

  44. Kumacheva E, Klein J (1995) Science 269:816

    Article  Google Scholar 

  45. Demirel AL, Granick S (1996) Phys Rev Lett 77:2261

    Article  CAS  Google Scholar 

  46. O’Shea SJ, Welland WE, Pethica JB (1994) Chem Phys Lett 223:336

    Article  Google Scholar 

  47. Han W, Lindsay SM (1998) Appl Phys Lett 72:1656

    Article  CAS  Google Scholar 

  48. Lim R, Li SFY, O’Shea SJ (2002) Langmuir 18:6116

    Article  CAS  Google Scholar 

  49. Lim R, O’Schea SJ (2002) Phys Rev Lett 88:246101

    Article  Google Scholar 

  50. Antognozzi M, Humphris ADL, Milles MJ (2001) Appl Phys Lett 78:300

    Article  CAS  Google Scholar 

  51. Jeffery S et al (2004) Phys Rev B 70:054114

    Article  Google Scholar 

  52. Sader JE, Jarvis SP (2004) Appl Phys Lett 84:1801

    Article  CAS  Google Scholar 

  53. Uchihashi T et al (2004) Appl Phys Lett 85:3575

    Article  CAS  Google Scholar 

  54. Maali A, Cohen-Bouhacina T, Couturier G, Aimé JP (2006) Phys Rev Lett 96:086105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maali, A., Cohen-Bouhacina, T., Hurth, C., Jai, C., Boisgard, R., Aimé, JP. (2009). Dynamic AFM in Liquids: Viscous Damping and Applications to the Study of Confined Liquids. In: Bhushan, B., Fuchs, H. (eds) Applied Scanning Probe Methods XII. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85039-7_7

Download citation

Publish with us

Policies and ethics