Availability for DHT-Based Overlay Networks
with Unidirectional Routing

Jan Seedorf' and Christian Muus?

! NEC Laboratories Europe
Kurfuerstenanlage 36, 69115 Heidelberg, Germany
jan.seedorf@nw.neclab.eu
2 University of Hamburg
Vogt-Koelln-Strasse 30, 22527 Hamburg, Germany
christian@muus.de

Abstract. Distributed Hash Tables (DHTs) provide a formally defined
structure for overlay networks to store and retrieve content. However,
handling malicious nodes which intentionally disrupt the DHT’s func-
tionality is still a research challenge. One particular problem - which is
the scope of this paper - is providing availability of the DHT’s lookup
service in the presence of attackers. We focus on DHTs with unidirec-
tional routing and present concrete algorithms to extend one particular
such DHT, namely Chord. Our extensions provide independent multi-
path routing and enable routing to replica roots despite attackers on the
regular routing path. In addition, we investigate algorithms to detect
adversary nodes which employ node-ID suppression attacks during rout-
ing. We demonstrate how these techniques can be combined to increase
lookup success in a network under attack by deriving analytical bounds
for our proposed extensions and simulating how our algorithms come
close to these bounds.

1 Introduction

Distributed Hash Tables (DHTs) [12] [13] [19] [20] offer a formally defined sub-
strate for structured overlay networks to efficiently and consistently store data
items. However, in general it cannot be guaranteed that nodes in the network
behave according to the DHT-protocol. This opens the door for a broad range
of attacks on DHTs [2] [7] [16].

Our contribution is the enhancement of a DHT with unidirectional routing
so that it can handle a high degree of adversary nodes in the network and
still provide successful lookups. Unidirectional routing has the advantage that
all routing paths for a particular resource converge towards the node in the
network responsible for storing that resource. While this is a disadvantage from
a security perspective (as we will show) this property is beneficial for caching
frequently queried resources [9]. We present concrete algorithms to extend a
particular DHT, namely Chord [I9], while preserving an unidirectional routing
structure. Furthermore, we provide a theoretical analysis of our solutions and
exhibit simulation results to show the effectiveness of our algorithms.
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In Section 2 we discuss related work and compare it to our approach. Section 3
presents a formal DHT model and our attacker model. In section 4 we define the
scope of our work: lookup availability. Section 5 presents Chord, the rationale
why we chose this DHT, and theoretical results on lookup availability in Chord.
We present concrete algorithms for Chord extensions in section 6, including
simulation results. Section 7 concludes the paper with a short summary.

2 Related Work

Much work on various DHT security challenges exists. Here we survey previous
work with focus on DHT lookup availability (the scope of our work).

Srivatsa and Liu present an analytical model for the failure rate of an arbitrary
lookup in DHTs [I§]. They derive theoretical bounds but do not provide concrete
algorithms. In a previous publication we showed that for unidirectional DHTs
stronger bounds can be obtained [I5].

Castro et al. investigate lookup availability in a multidirectional DHT (Pastry
[13]) [2]. They suggest constrained routing tables against routing table poisoning.
Further, they rely on multipath routing to derive techniques for recursive routing
in a multidirectional DHT which explore alternate routing paths. In contrary, we
investigate an unidirectional DHT (Chord [19]) which does not provide multipath
routing. Therefore, our problem domain is different and some of our solutions
are specific to unidirectional DHTs.

Danezis et al. use a weak form of a social network, the bootstrap graph, to
improve lookup performance in a Chord network under attack [6]. Marti et al.
use an external, existing social network to increase the lookup success rate in
Chord [I0]. Hence, unlike our approach, the approaches in [6] and [I0] rely on
the existence of a social network to increase lookup availability. However, both
of these approaches are complementary to our approach and we consider using
these techniques as add-ons to our algorithms interesting future research.

The approach closest to ours is Cyclone [I4], an extension to Chord which
can guarantee multiple independent paths in Chord in the special case where
the ID-space is fully utilised. Compared to Cyclone, our solutions are beneficial
in any network, independent of ID-space utilisation. In addition, our work differs
from the one in [14] because we use iterative routing (which allows the detection
of node-ID suppression attacks) and we directly route to replicated content for
increased availability.

Contrary to our work, none of the previous extensions to Chord [6] [10] [14]
considers nor mitigates the case where the node responsible for storing content
(or its predecessor) is an adversary node. Not only do we consider this case in our
model, additionally we provide techniques to alleviate this problem. Further, our
approach is the first to enable the detection of node-ID suppression attacks on
every routing hop in Chord. For our extensions to Chord we assume that secure
node-ID assignment against Sybil attacks [7] is used. Techniques for secure node-
ID assignment in a DHT have been suggested by Awerbuch and Scheideler [I],
Condie et al. [3], or Fiat et al. [§] and are outside the scope of this paper.
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3 Formal DHT Model and Attacker Model

The two basic primitives provided by a DHT are store (key,data), and lookup
(key) = data. DHT's have been designed to guarantee consistent data storage and
load balancing even when nodes enter and leave the network at a high frequency.
Examples of Distributed Hash Tables are CAN [12], Pastry [13], Chord [19], and
Tapestry [20]. To be able to classify threats on DHTSs, precisely define the scope
of our work, and to formally specify our extensions to Chord we use a formal
model of a DHT.

3.1 Formal DHT Model

Our formal model of a DHT consists of the following:

Node-ID and Key-ID Space: An l—bit key identifier space K and an m — bit node
identifier space I define the basic DHT structure. The DHT provides a function
for mapping a key onto a key-ID k, frm,(key) = k € K and rules for mapping an
external identifier eI D onto a node identifier (node-ID) n;, fom(eID) =mn; € I.

Data responsibility: A data placement function fg, : K — I maps a key-ID
k € K onto the node-ID space I and a responsibility function fresp : I — 1
states which node n; € I is responsible for storing fgq,(k). Thus, the data item
for key k is stored at node n; = fresp(fap(k)). We denote the node responsible
for storing data belonging to key k as the root node for that key rooty. For
reliability, a replication function fy.e, : I — I" maps the key onto r other nodes
which store the data for k as well; we call these nodes the replica roots for key
k denoted by rooty, . .. root;,.

Routing: A routing table T,. at each node n; contains ¢ links to nodes at some
distance in the ID-space. Further, a second routing table Ts at each node n;
contains s direct neighbors in the DHT structure. Routing table functions fy, :
I — I' and f;s : I — I* determine which nodes are in 7). and T of any node
n; in the system. A routing function frouie : K — I specifies which entry the
routing table returns upon receiving a message (lookup or storage) for key-ID k.

State: Since the system is dynamic, its state changes constantly and a set of rules
for joining and leaving of nodes is necessary. As we do not examine joining and
leaving of nodes in this paper we do not define these rules formally. X~ denotes
the set of possible states. At any state o; € X we have N nodes in the system.
The set of all N nodes (denoted N C I), their N routing tables 7, and Ty, and
all the data items stored in the system define the current state o;.

3.2 Attacker Model

We assume the following attacker model: A network consisting of only good
nodes is infiltrated over a certain period of time by attacker nodes which either
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join the system or compromise good nodes. After this period, at a certain state
o; € X the system contains N, = f*N adversary nodes and N, = (1 — f)*N
good nodes, where f < 1 and N, N Ny = @. All adversary nodes may collude
(e.g., because they are controlled by a single external identity). Adversary nodes
route exclusively to adversary nodes and do not drop messages: Vn; € N, :
froute(k) = nj € Ng (i.e., adversary node suppress existing good nodes in their
routing tables); good nodes route to good and adversary nodes: Vn; € Ny :
froute(k) =N € N.

In principle, adversary nodes could also drop messages. However, this would
result in a less severe attack on lookup availability because this behaviour can
easily be detected through time-outs. In contrary, by continuing to route amongst
them (never reaching the target data item) colluding adversary nodes can absorb
more DHT routing resources in vain. Thus, by expecting adversary nodes not to
drop messages we consider a stronger attacker model.

Adversary nodes are distributed uniforml over the node-ID space I. Ad-
ditionally, we assume that any message sent on a single DHT-hop will arrive
unchanged (i.e., attacks on the IP-layer are out of scope).

4 Availability of the Lookup Service

In principle, without a trusted authority in the network, a single adversary can
control a large fraction of an overlay network with only a few external identities
[7]. An adversary node on the path from the query node to some key can either
drop the message, alter the message, or route the message to another adversary
node. Castro et al. were the first to thoroughly investigate this problem [2]. They
conclude that in order to achieve secure routing in a DHT three properties have
to be fulfilled: 1) Secure node-ID assignment, 2) Protection against routing table
poisoning, and 3) Secure message forwarding. In this context we define lookup
availability as follows:

Definition 1 The Availability of the Lookup Service is the probability that the
corresponding data item is returned by the DHT after a node has invoked an
arbitrary lookup for a key.

A lookup can consist of many routing attempts from the query node to the key.
Thus, a lookup can use several different paths and is finished if either it succeeds,
a threshold ¢, (limiting the number of hops used in the lookup) is reached, or all
possible paths between the query node and the node responsible for storing the
corresponding data item (i.e., root) have been tried without success. We define
a path in a DHT as follows:

! Existing work on secure node-ID assignment for DHTs and for Chord in particular
[ 2] [3] [8] provides solutions to achieve this property. Thus, this assumption is
reasonable if secure node-ID assignment techniques are used. We expect the use of
such techniques as a fundament for our extensions (see further section 4).
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Definition 2 A path p(ng, k) C N from a query node ng € N for key k € K
is any set of nodes such that routing from ng for key k will pass through these
nodes including rooty. Two different paths are called alternate if at least one
node (other than ng and rooty) is on both these paths and independent if they
share no common node other than ng and rooty.

As a metric for lookup availability in a DHT we use the success-rate of a random
lookup (as a secondary metric we use the hop count of a random lookup, denoted
with x):

Definition 3 The success rate p is the probability that a random lookup will
succeed: p = P(3p(ng, k)|Vn; € p(ng, k) : n; is good) where ng is a random query
node and k is a random key.

We assume that secure Node-ID assignment techniques against Sybil attacks
[7] are used [1] [2] [3] [8] and that the DHT is protected against routing table
poisoning (Eclipse attacks [16]): frm(), ftr(), and fi5() cannot be attacked. This
implies that at state o; in a reasonably large network the routing table T, of any
good node in the system contains with high probability f x d adversary nodes
and (1 — f) x d good nodes, where d < t is the number of distinctive nodes in
T,. Further, we assume that the integrity of data items stored in the DHT can
be verified by the application on top of the DHT, e.g., by using a public key
infrastructure or self-certifying keys/data [5].

Despite these assumptions attackers are still able to degrade the availability
of the DHT severely by attacking the routing function frouze(), i.e., message
forwarding. Our goal is to develop algorithms for f,.,ute() that provide resilience
against such attacks on the DHT-layer.

5 Extending an Existing Unidirectional DHT

As an example DHT with unidirectional routing we choose Chord [19]. Our goal
is to make as few general changes to regular Chord as necessary. In fact, we only
make very few changes to Chord that have to be adopted by all nodes in the
system (which we call global extensions). These changes do not change Chord’s
formal properties. Most extensions we introduce are local: nodes can optionally
decide to use a different f,oyuze() function than in regular Chord. However, these
local extensions do not affect other nodes or the DHT.

Chord uses the IP-address of a node as its external identifier (e/D). A pre-
defined hash function h() maps any el D onto an m — bit node-ID n; and also
any key onto an m — bit key-ID k. The node identifier space [ is a virtual ring
where node-IDs are ordered clockwise from 0 to 2™ — 1. Each node in the ring
is responsible for storing the content of all key-IDs that are equal to or less than
its own identifier but larger than the identifier of the node’s direct predecessor in
the Chord ring. For reliability against node failures, the data for k is also stored
at r nodes directly succeeding root; in the ring. In its routing table T, each
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Fig. 1. Iterative Routing in Chord

node n; stores links to m succeeding nodes in the ring (unidirectional routing
[9]). Additionally, each node keeps a link to its direct predecessor in the ring.

It is precisely specified how routing tables are filled (making routing tables
constrained, protecting against Eclipse attacks [2] [16] and thus making our as-
sumption of f;-() and fi5() being secure reasonable for Chord): The jth entry
in 7). contains the IP-address of the first node that follows n; by at least 2771
in the virtual ring: fi.(n;) = [succ(n; + 2°), succ(n; + 2Y), ..., suce(n; + 2™~ 1))
where succ(x) = n, > x(—=3In, € N|n, > n, > x). ‘> is a relation ‘succeeding
in the ring‘ using modular arithmetic to ensure that routing and data respon-
sibility is shared across 2™ — 1 in the ring. The first entry in 7, is the node
directly succeeding n;. The last entry in 7). contains a link to a node at least
2; away from n; in the ring. To achieve fast lookups, nodes forward messages
to the node with the highest ID in their routing table that is smaller than the
key-ID (greedy routing). Routing succeeds when the direct successor of a node
has a larger ID than the key-ID. This successor node is responsible for the key.
Additionally, each node keeps a list of its s direct successors Ts to handle node
failures. Routing is either iterative (the query node contacts other nodes to get
iteratively closer to the key) or recursive (a query message is passed through the
network hop by hop).

Figure 1 exemplifies iterative routing in a Chord network [I5]. In the routing
tables displayed the rightmost column shows to which other nodes in the DHT
links exist. The two leftmost columns point out how to compute precisely which
node is in the particular routing table entry, i.e., determining the value where
the first node ‘succeeding‘ this value in the ring must be in that routing table
entry (compare to the previous paragraph). In this example, a query node with
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node-ID 8, ng, starts a lookup for key-ID 57. ng sends a message to the node in
its routing table that has the node-ID closest to but not larger than the key-ID
(57) which is n4e in this example (1). n4g replies by returning to ng the node with
the highest node-ID from its routing table not larger than the key-ID which is
nss in this example (2). ng sends out a query message to nss (3). nss determines
that the first node in its routing table, i.e., its direct successor in the ring, has
a node-ID (59) which is higher than the key-ID (57). ns5 concludes that this
node must be responsible for key-ID 57 and returns nsg to the query node ng
(4). To retrieve the data item for key-ID 57, ng contacts nsg (5) which answers
by sending the corresponding data item to ng (6).

In regular Chord, any lookup has to pass the predecessor of the node storing
the content for the key looked up. This is also referred to as the shield problem
[I1] [I5] and a consequence of unidirectional greedy routing. We denote the
predecessor of rooty, with shieldy for any key k. Formally, we define shield;, =
n; € N|(n; < rooty) A (—=3In; € N|n; < n; < rooty,).

An important consequence of the shield problem is that in Chord only one
independent path from the query node n, to root; exists for any lookup. Hence,
the success rate for an arbitrary lookup in regular Chord is bound by the fol-
lowing inequality [15]:

P(lookupsuccess) < (1 — f)* (1)

To see why inequality () holds, consider a random lookup for a key. In our model,
with probability (1 — f), rooty is good and with probability (1 — f), shieldy, is
good. Any lookup can only succeed if both nodes are good because any lookup
has to pass these two specific nodes. Since it is statistically independent if either
one of the two nodes is controlled by an adversary equation () holds.

In [I8] an upper bound for DHTSs is given on the failure rate for an arbitrary
lookup which can be converted into a lower bound on the success rate by taking
the opposite event and mapped to Chord [15]:

1-— (1 —(1- f)(é) logN) < P(lookupsuccess) (2)

6 Algorithms for Increased Lookup Availability

In this section we describe our extensions to Chord for increasing lookup avail-
ability. In principle, we combine three techniques: 1) We use the direct successor
list of each node to accomplish independent multipath routing. 2) To overcome
the shield problem we directly route to replica roots. 3) We use density checks
on each iterative routing hop to detect paths that contain adversary nodes as
early as possible.

For all our techniques described below we use the following general (global)
extension to Chord: Each node in the network must support iterative routing
where at each routing hop the query node receives not only the next hop from the
node it queried (as in regular Chord) but instead the whole routing table T, of
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the queried node and its list of direct successors Ts. Note that this extension only
affects the size of each iterative query response. In particular, it does not affect
the total number of links stored at each node because the additional information
received at each iterative routing step is only stored temporarily during the
lookup. We call this extension complete-knowledge iterative routing because at
each iterative routing hop the query node receives the complete information the
hop node has about the network. All other routing techniques we introduce are
solely computed at the query node (locally). Thus, it does not affect the success
rate of a lookup if other nodes in the network use these techniques or not.

6.1 Multiple Independent Paths

In the case a lookup path has failed, we explore two techniques to let the lookup
continue (we refer to this as failover routingﬂ: a) by starting a new independent
path at the query node (independent restart) or b) by starting a new path at the
closest node to the key received during the previous path which has not been
used in the lookup (backtracking).

For both techniques the query node maintains a temporary list 7}, of nodes it
has used in the lookup so far. In each individual path it explores during a lookup
the query node only uses nodes it has not used before in this lookup, i.e., nodes
¢ T,,. In regular Chord the direct successor list T’ is only used for redundancy
(i.e., in the case of node failures). We allow each node to use the list of direct
successors T on every routing hop. Since we use complete-knowledge iterative
routing a query node can in principle use for the next hop any node from the
routing table T;. and the direct successor list T it received from the node on the
last hop. However, for our extensions at each hop the nodes in T are only used
in routing if all nodes from 7. have been used previously in the lookup, i.e., are
already in T),. ng (the query node) always routes greedy (as in regular Chord):
It always uses the node n; € T, (or n; € Ty if Vn; € T,. : n; € T,,) with the
highest node-ID smaller than k. This assures that queries make progress.

With unidirectional greedy routing independent paths converge towards the
root [9]. Using T’ allows a path to continue if at some hop in T, all entries smaller
than k are already in T,,,. For independent restart, using T,,, guarantees that all
paths in a lookup are independent. Further, independent restart allows for up
to s (the number of entries in every Ts) independent paths because this is the
maximum number of independent paths that can converge on the penultimate
hop before reaching the root. Because with backtracking a new path does not
start at the query node, this technique explores alternate (not independent)
paths.

In our model, adversary nodes suppress good nodes in the routing tables T;.
and Ty they return. This implies that once a path has reached an adversary
node, only adversary nodes will be added to T, on this path. Thus, node-ID
suppression attacks do not prevent our technique to subsequently explore a path
with only good nodes on every hop.

2 Remember that in our model a lookup consists of several individual paths.
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6.2 Direct Replica Routing

To tackle the situation where
rooty, shieldy, or both are mali-
cious we allow to route directly to
the replica roots of k. Chord repli-
cates content at r replica roots
which are the r nodes directly suc-
ceeding root; in the ring. How-
ever, in regular Chord the replica
roots are only used for redun-
dancy (i.e., node failure of rooty,).

We now extend Chord in a way
that routing to the replica roots of
a key k is possible without passing
shieldy nor rooty: We allow direct
routing to a node n; € rooty ...root, = REPy if n; € Ts (we refer to this as
direct replica routing). Because at every hop T contains s direct successors in
the ring, the query node can check if some of these nodes are € RE Py, (ng simply
has to verify if In; € Ti|k < n; < root},). If all replica roots retrieved at some
hop have been queried without success, a failover (backtracking or restart) is
pursued.

Using direct replica routing results in each key k& having effectively s shield
nodes (the s direct predecessors of rooty) which we denote with
shieldy...shield;, = SHI;. By setting s = 2r (globally) in the system, any of
the » 4+ 1 closest shield nodes to a particular key k can route directly to any of
the r replica root nodes for k. In general, setting s > r ensures that the last
replica root root; is accessible from s — r 4 1 shield nodes.

Figure 2 exemplifies how replica roots can be reached through more than one
node (b) compared to regular Chord (a). Any T the query node n, will receive
from an adversary node will only contain the next s adversary nodes in the ring.
However, by setting s = 2r we guarantee that reaching one good shield node of
the r closest shield nodes to k is enough to reach one good replica root € RE Py
(if existing).

Fig. 2. Direct Replica Routing

6.3 Detecting Node-ID Suppression Attacks

Recall that in our attacker model a network of good nodes is infiltrated and
routing tables in Chord are constrained (and therefore protected against routing
table poisoning). Thus, good nodes have (with high probability) f x d adversary
nodes and (1— f) xd good nodes in their routing table 7). as well as f x s adversary
nodes and (1 — f) X s good nodes in Ts. Adversary nodes suppress good nodes in
the routing tables they return. This enables them to attack lookup availability
even if complete-knowledge iterative routing is used by the query node.

We can detect these attacks by using density checks: the query node n, cal-
culates the average distance o between nodes in its direct successor list T as
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a="""7 where n; is the last entry in T and ny is the first entry in 7. From
any routing table T(n;) that ng receives from a node n;, ny can compute a(n;)
and compare it with its own average distance by computing § = gé:q)) If 6 > tg
(a density threshold), n, considers n; to be an adversary node.

An adversary node n, can only decrease its a(n,) by either creating artificial
entries in Ts(n,) (which will be detected on the next hop if such an entry is
chosen by n,) or limit suppression of good nodes in Ts(n,) (which would give n,
access to good nodes). With a low density threshold ¢, there is a risk of falsely
estimating good nodes as adversary ones. However, this only affects froute() of
ng locally.

6.4 Theoretical Analysis of the Proposed Extensions

Our proposed extensions to Chord provide several independent paths between
ng and rooty, and route directly to the replica roots of a key k so that not a
single root node can control all access to data items for a key k. Thus, there
exist at most s shield nodes (one on the penultimate hop of every independent
path) denoted shieldy . .. shield;, and for every key k there are r routable replica
roots, denoted rooty, . .. root],.

We now extend the theoretical results for regular Chord from Section 5 to this
case. Analytically, we use a sample space (2 for a random lookup. {2 samples all
shields and all replica roots for an arbitrary key and determines for each shield
and replica root node if it is an adversary node. We are interested in the following
events in our sample space:

A = {"at least one shield node is good”} B = {”at least one replica root is good”}

E = {7at least one replica root and one shield node are not adversary nodes”}

Event E states an upper bound on the success rate for an arbitrary lookup
because this event is the minimum requirement for any lookup to succeed (a
lookup can still fail under this event if all paths explored contain at least one
adversary node).

We now derive the probability for event E for the case that we have precisely
s shield nodes and r routable replica roots for any key k:

P(A)=1-f" P(B)=1-f" 3)

P(lookupsuccess) < P(E) = P(A)« P(B) = (1— f%)« (1 — ") (4)

Note that it is possible to multiply P(A) and P(B) because these events are
statistically independent in our model. Adapting the lower bound from inequality
@) to s independent paths we get [I§]

1-— (1 - (1- f)(i‘) logN)s < P(lookupsuccess) (5)

With our extensions, there exist at most s independent paths and exactly r
replica roots. Since equation (l) provides an upper bound, it holds for our ex-
tensions even though some lookups might explore less than s independent paths.
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However, the lower bound in inequality (B) does not apply to our extensions.
Still, it indicates analytically that as more independent paths are explored (which
is the effect of our multipath-extensions to Chord) the lower bound on the success
rate increases. In any case, we are interested in the maximum success rate (and
thus the upper bound) that our extensions can theoretically achieve.

6.5 Simulations

To see how close our algorithms come to theoretical limits we simulated mul-
tipath routing combined with direct replica routing (which we call MRR for
Multipath Replica Routing) for various network sizes N and attacker rates f and
compared it to the upper bound on p from equation (). In all our experiments we
simulated 1000 lookups in 10 random Chord networks with |I| = 232 and adver-
sary nodes behaving according to our attacker model. We only consider lookups
where Ts(ny) N REP, = @, i.e., lookups where no replica root is contained in
the direct successor list of the query node.

Figure B shows results for independent restart (we also conducted simulations
for backtracking with very similar results). It can be observed that our algorithms
come very close to the upper bound (u bound) on lookup success in equation (@),
almost reaching theoretical limits even for high attacker rates.

We noticed however that with ¢, = oo (as in Figure [)) the average hop
count x can get quite high with increasing levels of network infiltration (e.g.,
for f = 0.7, N= 2000 and a success rate of 92% we obtained an average of 635
hops per lookup). In some applications for which DHT's have been proposed (e.g.,
signalling in real-time communications [I7] or a distributed DNS architecture [4])
the time it takes for a lookup to succeed is crucial. To reflect this requirement
and investigate the effectiveness of our algorithms with a timing constraint, we
conducted simulations with a hop threshold t,. Figure @ displays MRR with
backtracking (-b) and independent restart (-r) compared to regular Chord with



Availability for DHT-Based Overlay Networks 89

t=50

1 |s=16
0.2 =8
0,1 4 |N=4000 .
0,0 T T T T T

01 0,2 0,3 04 0,5 0,6 0,7 f 08

- RC—+ & MRR-b - MRR-r -©- MRR-rd[1.5] - MRR-rd[2.5] - u_bound‘

Fig. 4. Success rate for MRR, compared to regular Chord and upper bound (¢, = 50,
N= 4000)

independent restart (RC-r) for ¢, = 50. Additionally, the figure shows the success
rate for MRR-r with density checks (MRR-rd) for ¢4 = [1.5,2.5].

It can be noticed that independent restart performs better than backtracking
for attacker rates up to f = 0.6. Further, the detection of node-ID suppression
attacks with density checks on every hop increases lookup availability percep-
tibly. One can see that a higher threshold ¢, is better suited for low attacker
rates whereas a lower threshold results in better performance for high attacker
rates (in Figure(), for attacker rates higher than f = 0.3, t; = 1.5 performs
better). In general, it is advisable to set t; < 1 because the range of an attacker’s
successor list increases reciprocal to f with node-ID suppression attacks.

In addition to increasing the success rate,
density checks also significantly decrease the

hop count x. Table 1 illustrates this by Table 1. p and x for MRR-r (£=0.6,

showing p and x for MRR-r (with and N=2000)

without density checks) with f=0.6 and th ta p X
N=2000. Compared to MRR-r without any MRR-r 100 co 0.49 74.1
hop threshold, density checks achieve a more MRR-r oo oo 0.98 321

than 35 % lower success rate. However, not.e MRR-rd 100 1.5 0.62 59.8
that tbe average hop count needed for this MRR-rd 100 2.5 0.61 68.1
result is a factor of 5 lower. Compared to

MRR-r using the same hop threshold (¢, =

100), routing with density checks requires ~14/6 less hops on average (tq4 =
1.5/2.5) even though it achieves a higher success rate. We consider exploring the
tradeoff between p, x and ¢, interesting future research (in the end, deciding on
this tradeoff depends on application constraints/demands).
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7 Conclusion

We enhanced a DHT with unidirectional routing (Chord) to increase lookup
availability. Our proposed algorithms enhance Chord with independent mul-
tipath routing, direct routing to replica roots, and mechanisms for detecting
node-ID suppression attacks to provide resilience of the DHT’s lookup service
against attacks on the DHT-routing layer. We showed through simulations that
our algorithms can come very close to theoretical limits. For example, we can
achieve a lookup success rate of 98 % in a network with 60 % adversary nodes.

We consider combining our algorithms with techniques relying on social net-
works on top of a DHT (see related work) as well as exploring the tradeoff be-
tween the hop threshold, the average hop count, and the success rate interesting
future research.
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