
A. Das et al. (Eds.): NETWORKING 2008, LNCS 4982, pp. 302–313, 2008.
© IFIP International Federation for Information Processing 2008

Shim6: Reference Implementation and Optimization

Jun Bi, Ping Hu, and Lizhong Xie

Network Research Center, Tsinghua University,
Beijing, 100084, China

junbi@tsinghua.edu.cn

Abstract. Shim6 is an important multihoming solution. This paper studies shim6
from several perspectives, including shim6 protocol implementation, shim6
mechanism optimization and security enhancement. In order to provide a
shim6 research platform, we implement shim6 protocol on the Linux 2.6
platform as one of the first reference implementations. Based on this research
platform, we refine the shim6 address switching mechanism, which reduces
shim6 address switching time greatly. In addition, we propose an enhanced
shim6 security mechanism to defeat reflection-type DoS/DDoS attacks launched
from the multihomed site, by preventing source address spoofing in the
multihomed site.

Keywords: Multihoming, Shim6, IPv6.

1 Introduction

Multihoming to upstream ISPs is a requirement today for most IPv4 networks in the
Internet, especially for the enterprise networks. With the deployment of IPv6 network,
more and more devices can access to the Internet, and more and more sites will have the
requirement of multihoming. IPv6 multihoming will be a very common phenomenon
undoubtedly.

Currently, the shim6 mechanism [1] is an important multihoming approach. This
paper studies shim6 from several perspectives, including shim6 protocol implementation,
shim6 mechanism optimization and IPv4/IPv6 transition utilizing shim6. In order to
provide a shim6 research platform, we implement shim6 protocol on the Linux 2.6
platform, which is one of the first reference implementations in the world. Based on this
research platform, we refine the shim6 address switching mechanism, which reduces
shim6 address switching time greatly. In addition, we propose an enhanced shim6
security mechanism to defeat reflection-type DoS/DDoS attacks launched from the
multihomed site, by preventing source address spoofing in the multihomed site. In order
to explore the utilization of shim6 in other research fields, we propose a mechanism
called MI46 to optimize IPv4/IPv6 inter-operation using simplified shim6.

The rest of this paper is organized as follows: Section 2 describes our Linux-based
shim6 implementation; Section 3 and section 4 present the enhancements on shim6
protocol, including shim6 address switching mechanism refinement and shim6 security
mechanism enhancement. Section 5 concludes the paper.

 Shim6: Reference Implementation and Optimization 303

2 Reference Implementation of Shim6

Multihoming refers to the phenomena that one network end node accesses to the
Internet through multiple network paths mainly due to the consideration of fault
resilience. For the purpose of accessing to the Internet via multiple network paths, the
multihomed network end node often possesses several addresses. Once the current
network path fails, the multihomed network end node can immediately switch to
another address and use another network path to communicate.

In the shim6 approach, a new ‘SHIM6’ sub-layer is inserted into the IP stack in end
hosts that wish to take advantage of multihoming. The shim6 sub-layer is located
within the IP layer between the IP endpoint sub-layer and IP routing sub-layer. With the
shim6, hosts have to deploy multiple provider-assigned IP address prefixes from
multiple ISPs. These IP addresses are used by applications and if a session becomes
inoperational, shim6 sub-layer can switch to using a different address pair. The switch
is transparent to applications as the shim6 layer rewrites and restores the addresses at
the sending and receiving host.

For the purpose of transport layer communication survivability, the shim6 approach
separates the identity and location functions for IPv6 addresses. In shim6, the identifier
is used to uniquely identify endpoints in the Internet, while the locator is used to
perform the role of routing. There is a one-to-more relationship between the identifier
and locator. The shim6 layer performs the mapping function between the identifier and
the locator consistently at the sender and the receiver. The upper layers above the shim6
sub-layer just use the unique identifier to identify the communication peer, even though
the locator of the peer has changed. Hence, when the multihomed host switches to
another locator, the current transport layer communication does not break up since the
identifier is not changed.

Due to the lack of the implementation, there are a lot of problems on shim6 which
nobody can give some clear answers. Therefore, in order to start our research on shim6,
we first implement shim6 protocol based on Linux 2.6.x platform.

The control plane of shim6 mainly refers to the four handshakes process. The
function of first two handshakes are to confirm the peer whether deploys shim6, and
that of other two handshakes are to exchange the address list with the peer.

The data plane of shim6 includes two main functions: rewriting the source and
destination addresses of each packet, adding (the sender) /removing (the receiver) the
payload extension header to/from the packet.

The control plane of shim6 is implemented in the user space while the data plane is
implemented in the kernel space using netfilter mechanism [2] of Linux. That’s because
the four handshakes function of control plane is more complicated than the rewriting
packets’ addresses function of data plane. If the four handshakes function is
implemented in the kernel space, it may bring bad influence to the efficiency of the
kernel. However, if we want to modify the addresses of every packet, we must
implement the function of rewriting packets’ addresses in the kernel space. And it
doesn’t bring too much weight to kernel since the function of rewriting packets’
addresses is very simple. But, the data plane relies on the addresses mapping table that
is generated by the control plane. So, we implement modules of communication

304 J. Bi, P. Hu, and L. Xie

between the kernel and user space using the Linux netlink mechanism[3], in order to
transfer the addresses mapping table from the control plane to the data plane.

3 Optimization of Shim6

In our experimental platform of shim6, we explore some researches on optimization of
shim6 and get some achievements. The address switch mechanism of shim6 is defined
in REAP (REAchability Protocol)[4]. REAP contains two parts: failure detection
mechanism which detects failures between two communicating hosts, and address-pair
exploration mechanism which locates another operational address-pair if a failure
occurs.

The failure detection mechanism uses two timers (Keepalive Timer, Send Timer)
and Keepalive message to detect the failures between two communicating hosts. The
concrete process is as follows:

1. When host A sends data packets to host B, a send timer starts at the same time. The
suggested timeout value is 10s.

2. When host B receives data packets sent from host A, a Keepalive timer starts
simultaneously. The suggested timeout value is 3s. If host B sends no packets to
host A within the keepalive interval (less than Keepalive timeout value) after
receiving data packets from host A, host B sends a Keepalive message to host A.

3. If host A receives no packets (including data packets and Keepalive packets) from
host B before the send timer is timeout, it can be determined that there is a failure of
current address pair. And then the addresses exploration mechanism sets up to
locate another operational addresses pair.

The address-pair exploration mechanism uses the Probe message to examine the
reachability of the address-pair. Specifically, if host A wants to choose another
address-pair with host B, host A needs to send a series of Probe messages to host B until
receiving the Probe message sent from B. Upon receipt of the Probe message from host
B, host A can conclude that the new address-pair is reachable from A to B. After
receiving the first Probe message from host A, host B applies the same algorithm to
confirm that the address-pair is reachable from B to A. If the test fails, another
address-pair is selected to do the next address exploration. REAP defines some
suggested default values associated with the exploration process. The Initial Probe
Timeout which specifies the interval between initial attempts to send probes is 0.5s.
Then the exploration process uses the exponential backoff procedure to increase the
time between every probe if there is no response. So, each increase doubles the time. If
the exploration process reaches Max Probe Timeout (60 seconds), it will continue
sending at this rate until a suitable response is received.

From the above description, we can see the time of shim6 address switching can be
expressed as the following formula:

Shim6 address switching time = failure detection time + next address-pair
exploration time

 Shim6: Reference Implementation and Optimization 305

The failure detection time is the value of Send timer timeout (10s). The next
address-pair exploration time may grow exponentially. If the multihomed hosts have
numerous addresses and the address failure rate is high, the shim6 address switching
time will be very time consuming. For example, if the multihomed host A and B have
Na and Nb addresses respectively, then under the worst circumstance each host would
be required to detect about Na*Nb times to examine the next operational address-pair.

In the original shim6 address switching mechanism, the shim6 next address-pair
exploration process starts until the failure detection has finished, that is, after 10s, the
hosts start to explore the reachability of the next address-pair. In this paper, we explore
from the SCTP[5] protocol to refine the shim6 address switching mechanism, whose
main idea is: during the failure detection, the hosts maintain the reachability of next
address-pair simultaneously. In this way, once the failure occurs, the hosts can
immediately switch to next operational address-pair. The refined shim6 address switch
mechanism can shorten the shim6 address switching time to exactly 10s (that is the
failure detection time).

In the refined shim6 address switch mechanism, we use the Heartbeat message to
maintain the reachability of next address-pair. The details are as follows:

While host A and B communicate with each other using the current address-pair,
meanwhile host A and B send Heartbeat request to each other periodically.

Upon receipt of the Heartbeat request, the host sends back the Heartbeat
acknowledgement.

The host maintains a counter to record the number of Heartbeat requests that have
been sent but not received Heartbeat acknowledgements. When the counter value
reaches a certain threshold, this address-pair is marked un-reachable. Then another
address-pair is selected to examine the reachability using the same method.

We design several experiments to verify the effectiveness of the refined shim6
address switching method regarding the address number of each multihomed host and
address failure possibility as the variables. The experimental result shows that when the
multihomed hosts have numerous addresses, and these addresses are at a relatively high
probability of failure, the original shim6 address switching time significantly increases.
But the refined shim6 address switching time remains 10s constantly. Thus, in this
situation, the refined shim6 address switching mechanism can reduce the address
switching time effectively.

4 Source Address Spoofing Prevention for Multihomed Site

4.1 Problem Statement

Today's Internet is suffering from reflection-type DoS/DDoS attacks. Current source
address spoofing prevention methods have a coarse granularity, and the attackers can
still in some cases launch reflection-type DoS/DDos attacks or other attacks hard to
trace. The approaches based filtering, such as ingress filtering [6][7], can validate the
source address in real-time. But the current approaches based on filtering just validate
the IP source address according to the network prefix. Thus, these approaches can not

306 J. Bi, P. Hu, and L. Xie

prevent the IP source address spoofing in the edge network granularity, and leave some
room to launch reflection-type DoS/DDoS attacks. For instance, with the ingress
filtering, the attacker can still forge the IP source address that belongs to the same
multihomed site and attack the victim using the reflection-type DoS/DDoS. This type
attack scenario is shown in Figure 1.

Fig. 1. Reflection-type DDoS attack in the same multihomed site

This type security threats may be more serious with the IPv6 network deployment,
because the IPv6 multihomed site may be much larger than the one of IPv4. In this
situation, the ingress filtering is not sufficient. This paper aims to prevent the source
address spoofing when the host in the multihomed site sends packets to somewhere
outside this multihomed site. In addition, the replay attack must be handled. Even if the
forged IP source address packets can be identified, the replay packet can still be sent to
somewhere outside the multihomed site since its source address is valid.

4.2 The Algorithms

4.2.1 Source Address Validation Algorithm
In our solution, each edge router of the edge network is equipped with a security
gateway to carry out the authentication algorithm. Each security gateway is responsible
for handling the addresses assigned from the ISP to which the security gateway is

 Shim6: Reference Implementation and Optimization 307

attached. For example, in Figure 2, the security gateway A just handles the addresses
assigned from ISP A. When host A sends packets using the addresses based on prefix A
(PrefixA:PrefSite:hostA) as the source addresses, the packets may be sent to the edge
router B connected to ISP B, and the security gateway B will be confused and take
wrong action. In order to solve this problem, packets originating in the multihomed site
are passed through a source routing domain (see Figure 2), to which all edge routers are
connected. These routers would choose a route based on the destination and source
addresses of a packet, selecting the appropriate edge router for the given source address.

Fig. 2. The source address spoofing prevention solution for multihoming scenario

Initially, When a host wants to access the Internet, it should firstly carry out the
access authentication. This process can use the existing access authentication
mechanism such as 802.1x[8], NAC[9], NAP[10] and TNC[11], etc.

If the access authentication succeeds, the host generates a session key and sends it to
the security gateway via some key exchange mechanisms such as IKE and IKE2. The
session key is a random number that is at least 12-byte-long. The security gateway
binds the session key and the host’s IP address.

When the host sends packets to somewhere outside the multihomed site, it needs to
certify its ownership of a certain IP address via showing the security gateway its secret
session key which is shared with the security gateway by generating one signature for
each packet using the hash digest algorithm (MD5, SHA-1, etc). The approach mainly
includes the following steps. Host A sends a packet M to the security gateway B. M
carries a signature H[M||S] which is computed by the hash digest function using the
session key S and the certain part of the packet M (source address, timestamp, sequence
number, etc.) as the input. When the security gateway B receives the packet M, B can

308 J. Bi, P. Hu, and L. Xie

re-compute the hash value HB according to the packet M, since B also knows the
session key S. If HB is equal to the signature H [M||S] carried in the packet M, the
security gateway B can confirm that the packet has a valid source address; Otherwise, B
can conclude that the packet's source address is forged and then drops it.

4.2.2 The Anti-replay Algorithm
After validating the signature, the security gateway also identifies the replay packets by
checking whether the timestamp of the packet is expired and the sequence number of
the packet is increasing. The timestamp method works as follows: when the host A
sends a packet M to the security gateway, the packet M is marked with a timestamp Ta,
which represents the sending time of the packet M. Once the security gateway receives
the packet M, it reads its local time Tb. If |Tb-Ta|>△T, where △T is the admission time
window, the security gateway can conclude that the packet M is a replay one then drops
it. However, it’s hard to synchronize the clocks of the host and the gateway exactly.
Moreover, the transmitting time of the packet in the network is also uncertain.
Therefore, the admission time window △T is always larger than the real transmitting
time of the packet. This feature makes the timestamp method unfaithful for anti-replay.
When |Tb-Ta|<△T, the packet should be a non-replay one. But afterwards, if the replay
packet is received in the margin time (△T-|Tb-Ta|), the security gateway will regard it
as a normal packet incorrectly.

The main idea behind the sequence number method is: when the host A sends
packets to the security gateway, each packet carries an incremental sequence number. If
the latest packet’s sequence number is greater than the previous one, the packet is
normal; otherwise, the packet is a replay one. This method requires the packets to come
in order. If the packets come out of order, one can employ a sequence number window
to deal with it like IPSec. That the packets come out of order is mainly due to the load
balance policy or queuing in the router or other 3-layer devices. This paper deals with
the situation behind the first 3-layer device, thus we can assume that the packets
sending to security gateway from hosts in the edge network are always in order.
However, even though the packets come in order, this method may not identify some
replay packets when the sequence number is used in a cycle way. For example,
assuming the length of the sequence number is 16 bits, once the sequence number
reaches the maximum 65535, it will return to 0 and increase as the previous cycle. In
this case, if the attacker keeps a packet of the nth cycle and replays it in the (n+1) th

cycle, the security gateway can’t identify the replay packet.
In order to overcome the drawbacks of the timestamp and sequence method, we

combine these two methods to prevent the replay attack. The timestamp method can use
the sequence number mechanism to identify the replay packets in the admission time
window △T; And the sequence method can avoid the confusion between the normal
and the replay packet by limiting the period of the sequence number cycle within the
admission time window △T.

4.2.3 IPv6 Source Address Validation Header
In our approach, we design a new IPv6 extension header to carry the signature, the
sequence number and other useful information. We call this new extension header

 Shim6: Reference Implementation and Optimization 309

“source address validation header”. We develop a new IPv6 extension header rather
than use the IPv6 AH extension header to complete the authentication between host and
security gateway, because the AH extension header just can be carried once in the IPv6
packet according to the IPv6 specification. If we use it here, the host can not use the AH
extension header with its communication correspondent. That’s not the result we want.

Fig. 3. The format of the source address validation header

The format of the extension header is shown in Fig. 3:

• Next Header: 8-bit. Indicate either the type of the next extension header or the
protocol type of the payload (TCP/UDP).

• Payload Len: 8-bit. Length of the source address validation header in 8-octet
units, not including the first 8 octets.

• Algorithm: 8-bit. Point out the hash digest algorithm. For example, MD5 is set
to 1.

• Reserved: 8-bit. Reserved for future use. Zero on transmit.
• Timestamp: 32-bit. It is used to anti-replay as described above.
• Sequence Number: 32-bit. It is used to anti-replay as described above.
• Authentication Data: 128 bits if using MD5 as the hash digest algorithm. The

authentication data is computed by the hash digest algorithm. The input of the
hash digest algorithm includes: IPv6 source address, timestamp, sequence
number and session key.

• The security gateway needs to remove the source address validation header from
the packet. Considering the partial deployment, if we don’t remove the source
address validation header, the hosts in other multihomed site may drop the packet
due to misunderstanding of the new extension header. This step is unnecessary if
our approach has been globally deployed.

4.3 Experiment Simulation

4 3.1 The Performance Evaluation of Source Address Validation Algorithm
Because every packet needs to be authenticated when they are sent to somewhere
outside the edge network, the primary design requirement of source address validation

310 J. Bi, P. Hu, and L. Xie

algorithm is the high performance. In our approach, this requirement means whether
the performance of the hash digest algorithm is high enough. In addition, the security
gateway needs to record the (IPv6 address, session key) pair for every host in the edge
network, and each authentication procedure needs to look up the session key according
to the IPv6 address. We use the hash table to organize the (IPv6 address, session key)
pair, and its average performance for looking up is O(1). We conduct some experiments
to validate the source address validation algorithm. Table 1 shows our experimental
results, which are evaluated in the platform of Intel P4 2.0G CPU and 512M memory.

Table 1. The performance comparison of two main hash digest algorithms

HASH Digest algorithm The capacity per second (MB/S)

MD5 205

SHA-1 66

The results show that the performance of MD5 is about 1.64 Gbps This performance
can meet the requirements in the most cases. We should note that this result is derived
from the MD5 algorithm implemented in the software. If we implement the MD5
algorithm using hardware, we will get a higher performance. Therefore, the source
address validation algorithm in our approach is completely feasible.

Fig. 4. The topology of anti-replay algorithm simulation experiments

 Shim6: Reference Implementation and Optimization 311

4.3.2 The Effectiveness Evaluation of Anti-replay Algorithm
In order to validate the effectiveness of our anti-replay algorithm which integrates the
timestamp and the sequence number methods, we conduct several experiments to
compare the effects of the timestamp, sequence number and our anti-replay algorithm.
The experimental topology is shown as Fig 4. In Fig 4, host A is the victim, host B
sniffs the packets sent from A and replays them.

In the simulation experiment to validate effectiveness of the timestamp method, host
A and the security gateway G synchronize the clocks exactly. The packet transmitting
time from A to G is about 8~10ms. The host B takes 2ms±50% to sniff a packet and
replay it. We set the admission time window △T in the security gateway is 10ms, 11ms
and 12ms respectively to see the effectiveness of the timestamp method. Fig 5 shows
the result when the attacker B replays 10,000 packets.

Fig.5. The simulation result of the timestamp method

From Fig 5 we can see, the effectiveness of timestamp method seriously relies on the
size of admission time window △T. When △T=11ms, that is, △T has a growth of 10%
from the upper bound of packet transmitting time, the gateway can identify 68.7% of
replay packets. When △T=12ms, that is, △T has a growth of 20% from the upper bound
of packet transmitting time, the gateway can identify only 31.3% of replay packets. In the
simulation experiment, we make host A and the security gateway G synchronize the
clocks exactly. But, in the real network environment, it is hard to synchronize clocks
exactly. What’s worse, the packet transmitting time in real network may be more
fluctuant than that we set in the experiment. So, the admission time window △T may
have larger margin and the effectiveness may be much worse in the real network.

In the simulation experiment to validate effectiveness of the sequence number
method, the sequence number is 16-bit long. After recording the packets sent from A in
the nth sequence number increasing cycle, attacker B replays these packets persistently
in the (n+1)th sequence number increasing cycle. Fig 6 shows the accuracy of replay

312 J. Bi, P. Hu, and L. Xie

0

0.2

0.4

0.6

0.8

1

1.2

0 5000 10000 15000 20000 25000

Packet number recorded in the nth sequence

number increasing cycle

A
c
c
u
r
a
c
y

o
f

r
e
p
l
a
y

p
a
c
k
e
t
s

i
d
e
n
t
i
f
i
c
a
t
i
o
n

Fig.6. The simulation result of the sequence number method

packets identification in the (n+1)th sequence number increasing cycle when attacker B
respectively records 10, 20, 50, 100, 1000, 5000, 10000, 15000 and 20000 packets sent
from A in the nth sequence number increasing cycle.

From Fig 6 we can see, under condition of persistent replay, the accuracy of replay
packets identification in the (n+1)th sequence number increasing cycle is linear with the
packet number recorded in the nth sequence number increasing cycle. The experiment
result shows that almost all packets recorded can be replayed successfully under
condition of persistent replay.

We redo the above two simulation experiments to validate the effectiveness of our
anti-replay algorithm which integrates the timestamp and the sequence number
methods. The result is shown as Fig 7.

 a. Comparison with timestamp b. Comparison with sequence number

Fig. 7. The results of our anti-replay algorithm integrating timestamp and sequence number

 Shim6: Reference Implementation and Optimization 313

In Fig 7a, even though the admission time window △T has a large margin, with the
help of sequence number method, all replay packets are identified successfully. In Fig
7b, in the (n+1)th sequence number increasing cycle, when attacker B replays the
packets recorded in the nth sequence number increasing cycle, the security gateway can
identify nearly 100% replay packets since the intervals between replay packets and
normal packets exceed the admission time window △T.

From the above experiments we can conclude that the anti-replay algorithm this
paper proposed can overcome the shortcomings of both timestamp and sequence
number methods, and form a more effective, fine-grain anti-replay mechanism.

5 Summary

This paper studies shim6 from several perspectives, including shim6 protocol
implementation, shim6 mechanism optimization and security enhancement. In order to
provide a shim6 research platform, we implement shim6 protocol on the Linux 2.6
platform, which is one of the first reference implementations in the world. Based on this
research platform, we introduce HEARTBEAT message to refine the shim6 address
switching mechanism, which reduces shim6 address switching time greatly. In
addition, we propose an enhanced shim6 security mechanism to defeat reflection-type
DoS/DDoS attacks launched from the multihomed site, by preventing source address
spoofing in the multihomed site.

References

1. Nordmark, E.: Level 3 multihoming shim protocol, draft-ietf-shim6-proto-08.txt (2007)
2. http://www.netfilter.org
3. Salim, J., Khosravi, H., Kleen, A., Kuznetsov, A.: Linux Netlink as an IP Services Protocol.

RFC 3549 (July 2003)
4. Arkko, J., Beijnum, I.: Failure Detection and Locator Pair Exploration Protocol for IPv6

Multihoming. draft-ietf-shim6-failure-detection-07.txt (2006)
5. Stewart, R., et al.: Stream Control Transmission Protocol. IETF RFC 2960 (2000)
6. Ferguson, P., Senie, D.: Network Ingress Filtering: Defeating Denial of Service Attacks

which employ IP Source Address Spoofing. RFC2827 (2000)
7. Baker, F. and Savola, P.: Ingress Filtering for Multihomed Networks. RFC3704 (2004)
8. American National Standards Institute: IEEE-SA Standards Board: IEEE Standard for Local

and metropolitan area networks - Port-Based Network Access Control (2001)
9. Cisco Systems: Network Admission Control

10. Microsoft: Network Access Protection
11. TNC: TCG Trusted Network Connect TNC Architecture for Interoperability (2005)

	Shim6: Reference Implementation and Optimization
	Introduction
	Reference Implementation of Shim6
	Optimization of Shim6
	Source Address Spoofing Prevention for Multihomed Site
	Problem Statement
	The Algorithms
	Experiment Simulation

	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

