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Abstract. In this paper, we introduce a method to express a local linear
operated in the neighbourhood of each point in the discrete space as a
matrix transform. To derive matrix expressions, we develop a decompo-
sition and construction method of the neighbourhood operations using
algebraic properties of the noncommutative matrix ring. This expression
of the transforms in image analysis clarifies analytical properties, such
as the norm of the transforms. We show that the symmetry kernels for
the neighbourhood operations have the symmetry matrix expressions.

1 Introduction

Linear vs Nonlinear, Local vs Global, Shift-Invariant vs Shift-Variant are fun-
damental characteristics for classifying the mathematical properties of the oper-
ations for image processing. Geometric vs Algebraic and Combinatorial vs An-
alytical are fundamental methodologies for analysing and designing algorithms
and operations in discrete geometry and digital image processing.

In this paper, using an algebraic method for the description of the neighbour-
hood operations, we introduce the norm of the local operations as a classification
criterion for shift-invariant local linear operations for image processing [3]. To de-
fine the norm of the operations, we introduce a decomposition and construction
method for the neighbourhood operations of digital image processing using alge-
braic properties of the noncommutative matrix ring. Using this decomposition
and construction method, we develop a method to express the neighbourhood
operations [1,2] in matrix forms [4,6,7]. The matrix expressions of the neighbour-
hood operations yield the operator norm [13] of the operations. This norm of the
neighbourhood operations allows us to deal with the neighbourhood operations
analytically, that is, we can define the spectra of the neighbourhood operations.

In signal processing and analysis, it is well known that a shift-invariant linear
operation is expressed as a convolution kernel. Furthermore, a linear transform
in a finite dimensional space is expressed as a matrix [4,13,12]. It is also pos-
sible to express a shift-invariant operation as a band-diagonal matrix [3,4,5].
However, this expression is not usually used in signal processing and analysis.
In numerical computation of the partial differential equations, approximations
of the partial differentiations in discrete operations are one of the central issues
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[10,11,13]. The discrete approximations of the partial differentiations are called
the neighbourhood operation in digital signal and image processing. In mathe-
matical morphology, a neighbourhood operation is expressed as a small binary
matrix. This small matrix, which is called the structure element in binary math-
ematical morphology [2], expresses the local distribution of boolean value zero
and one in a small region.

For the analysis and expression of digital image transformations from the
viewpoint of functional analysis, we introduce a method to describe the neigh-
bourhood operations in the matrix form. Two kinds of expressions for the neigh-
bourhood operations, the tensor expression [15], which is called the matrix
expression in mathematical morphology [2,3], and the convolution operation,
which expresses the operation as a convolution between input and kernel, are
well established methods in digital signal and image processing. The kernel of
the convolution operation is expressed as a small matrix [3] in the context of
digital image processing. We address the third expression of the operations in
digital image processing. The matrix expression of the linear operation derives
the mathematical definition of the norm of the linear operation [4,10]. In dig-
ital image analysis, geometrical properties of the results of the operation are
the most important concerns, since the transformations are operated to extract
geometrical features such as the boundary curves, medial axis, and corners. The
norm of the linear operation allows us to analyse spectral properties of the oper-
ations. The spectrum of operations determine some analytical properties of the
transformation in the space of functions.

2 Mathematical Preliminaries

We assume that the sampled image f(i, j, k) exists in the M × M × M grid
region, that is, we express fijk as the value of f(i, j, k) at the point (i, j, k)� in
three-dimensional discrete space Z3. We use the following notations to express
shift-invariant local operation as three-dimensional discrete operations.

For the sequence w = (w(−1), w(o), w(+1)),

wfijk = w(−1)fi−1 jk + w(0)fijk + w(+1)fi+1 jk.

For the 3 × 3 matrix W =
(
w(−1), w(0), w(+1)

)
,

W fijk = w(−1)fi j−1 k + w(0)fijk + w(+1)fi j+1 k.

For the 3 × 3 × 3 tensor W =
(
W (−1), W (0), W (+1)

)
,

Wfijk = W (−1)fi j k−1 + W (0)fijk + W (+1)fi j k+1.

where W± and W 0 are 3 × 3 matrices in the 3 × 3 × 3 tensor W. For the
three-dimensional vector function xijk = x(i, j, k) = (xijk , yijk, zijk)� defined
in Z3,

Wx = (Wxijk ,Wyijk,Wzijk)�.
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For the 3 × 3 × 3 tensor W, the 5 × 5 × 5 tensor W2 is defined as

W2 = ((w(2)
ijk)) w

(2)
ijk =

∑

pqr

wi−p j−q, j−rwpqr .

where ((wijk)) expresses the tensor whose ijk element is wijk . These vector,
matrix, and tensor are called convolution kernels for one-, two-, and three- di-
mensional digital functions in digital signal and image processing. For these
vectors, matrices, and tensors, we define symmetry.

Definition 1. If w−1 = w+1, w−1 = w+1, and W−1 = W +1, we call that
vectors, matrices, and tensors are kernel symmetry.

In this paper, we derive a method to describe the kernel symmetry local opera-
tions as matrices and define the norm of operations using matrix expressions.

Hereafter, we use T and T to express the tensor and the matrix, respectively,
of the linear transform T to arrays in n-dimensional discrete space Zn for n ≥ 3.

We describe the fundamental numerical differentiations in tensor forms. In
numerical differentiation [11,13], since

∂

∂x
f(x, y, z) ∼= Δifijk = fi+ 1

2 j,k − fi− 1
2 jk,

we have
∂2

∂x2 f ∼= Δ2
i fijk = fi+1 jk − 2fijk + fi−1 jk.

If linear approximation is used to derive fi+ 1
2 jk from fijk and fi+1 jk, we have

Δifijk = fi+1 j,k − fi−1 jk.

Furthermore, the gradient ∇f = (fx, fy, fz)� and the Laplacian ∇2f for the
numerical computation of partial differential equations are approximated as

⎛

⎝
fx

fy

fz

⎞

⎠ ∼=

⎛

⎝
Δifijk

Δjfijk

Δkfijk

⎞

⎠ =

⎛

⎝
(fi+1 jk − fijk) + {−(fi−1 jk − fijk)}
(fijk+1 − fijk) + {−(fijk−1 − fijk)}
(fij+1 k − fijk) + {−(fij−1 k − fijk)}

⎞

⎠

=

⎛

⎝
fi+1 jk − fi−1 jk

fij+1 k − fij−1 k

fijk+1 − fijk−1

⎞

⎠

and

∇2f ∼= Δ2
i fijk + Δ2

jfijk + Δ2
kfijk

= (fi+1 jk − 2fijk + fi−1 jk) + (fij+1 k − 2fijk + fij−1 k)
+(fijk+1 − 2fijk + fijk−1)

= (fi+1 jk + fi−1 jk + fij+1 k + fij−1 k + fijk+1 + fijk−1) − 6fijk,

respectively. Therefore, the Laplacian for the numerical computation of the par-
tial differential equation is six times the 6-connected Laplacian from the view-
point of digital image analysis.
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The tensors [15] A6, A12, and A8 for the computation of averages in the 6-,
18-, and 26- neighbourhoods in Z3 for volumetric image analysis are

A6 =
1
6

⎛

⎝

⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠

⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠

⎞

⎠

A12 =
1
12

⎛

⎝

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠

⎛

⎝
1 0 1
0 0 0
1 0 1

⎞

⎠

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠

⎞

⎠ ,

A8 =
1
8

⎛

⎝

⎛

⎝
1 0 1
0 0 0
1 0 1

⎞

⎠

⎛

⎝
0 0 0
0 0 0
0 0 0

⎞

⎠

⎛

⎝
1 0 1
0 0 0
1 0 1

⎞

⎠

⎞

⎠ .

These tensors have the following properties,

A18 =
6
18

A6 +
12
18

A12, A26 =
6
26

A6 +
12
26

A12 +
8
26

A8.

Therefore, the tensors L6, L12, and L8 for the computation of Laplacians in 6-,
18-, and 26- neighbourhoods are

L6 = A6 − I, L18 = A18 − I, L26 = A26 − I.

In the next sections, we express these operations as matrices and compute the
spectral radii of these operations.

Setting fk(x1, x2, · · · , xn) to be the kth-order fundamental symmetry forms
of {xi}n

i=1, that is,

fk =
∑

all
{kth-order mononimals of {xi}n

i=1} ,

for example,

f1(x1, x2, · · · , xn) = x1 + x2 + · · · + xn,

f2(x1, x2, · · · , xn) = x1x2 + x2x3 + · · · + xn−1xn,

f3(x1, x2, · · ·xn) = x1x2x3 + x2x3x4 + · · · + xn−2xn−1xn,

...
fn(x1, x2, · · · , xn) = x1x2 · · · xn,

the kth-order fundamental symmetry forms {fk}n
i=1 satisfies the relation

Πn
i=1(1 + xi) = 1 +

n∑

k=1

fk(x1, x2, · · · , xn).
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3 Operations in Matrix Form

3.1 Differential Operation in Matrix Form

From the matrix

D =

⎛

⎜⎜
⎜
⎜
⎜
⎝

−2 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 · · · 0 1 −2

⎞

⎟⎟
⎟
⎟
⎟
⎠

, (1)

which computes the second-order derivative [10,11,13,15], we define the matrix
B,

B =
1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 · · · 0 0
1 0 1 0 · · · 0 0
0 1 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 · · · 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=
1
2
(D + 2I). (2)

The matrix B computes the average of vectors. Setting ρ(B) to be the spectrum
of the matrix B, we have the next theorem.

Theorem 1. The matrix B satisfies the relation ρ(B) < 1. For the proof, see
the appendix.

3.2 Matrix Ring over the Kronecker Product and Matrix Addition

Setting A ⊗ B to be the Kronecker product [14,15] of a pair of matrices, for the
matrix A, we define the symbol A⊗n as

A⊗n = A ⊗ A ⊗ · · · ⊗ A. (3)

Over the collection of symmetry matrices, the Kronecker product ⊗ and the
matrix sum + define the noncommutative ring [8,9] M(S, ⊗, +). Since the nth-
order fundamental symmetry forms {fk(A)}n

k=1 of the symmetry matrix A on
M(S, ⊗, +) is defined as

fk(A) =
∑

all
{the Kronecker products of k A and (n − k) I}, (4)

the symmetry forms are generated by

(I + A)⊗n = I +
n∑

k=1

fk(A). (5)

Since, for A ⊗ A, the eigenvalue is λiλj , we have the following relation.
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Lemma 1. for the n × n regular symmetry matrix A, setting {λk}m
k=1 to be the

eigenvalue of A,
fk(A)u = fk(λ1, λ2, · · · , λn)u. (6)

Since the number of terms of fk(A) is (
n
k

), Lemma 1 implies the next theorem.

Theorem 2. The spectral radii of fk(A) satisfies the relation

ρ(fk(A)) ≤
(

n
k

)
ρ(A). (7)

3.3 Averages in the Neighbourhood

Using {fk(A)}n
k=1, we define the operations for the computation of the average

in the neighbourhood and the Laplacian in the various neighbourhoods in Zn.
Setting

Nn(k)(x) = {x′ ∈ Zn, |x − x′| = k} (8)
we have the relation

n(k) = |Nn(k)| =
(

n
k

)
2k, (9)

since the number of terms in fk(B) is (
n
k

).

Therefore, setting
Nn(k) = fk(B), (10)

the matrix

An(k) =
(

n
k

)−1

Nn(k) (11)

computes the average of the points x′ in Nn(k)(x). Since ρ(B) < 1, eq. (7)
implies the next lemma.

Lemma 2. Since ρ(fk(Nn(k))) ≤ (
n
k

), we have the relation ρ(fk(An(k))) ≤ 1.

From the algebraic property of the fundamental symmetry forms, the matrices
{Nn(k)}n

k=1 are generated from (I + B)⊗n as

(I + B)⊗n = I +
n∑

k=1

Nn(k). (12)

We define the matrix of the Laplacian with x and x′ ∈ Nd(k) as the relation

Ld(k) = fk(D). (13)

In particular, Ln(1) is the discrete Laplacian with 2n connectivity in Zn, that is,

Ln(1) = D ⊗ I ⊗ · · · ⊗ I + I ⊗ D ⊗ · · · ⊗ I + · · · + I ⊗ I ⊗ · · · ⊗ D. (14)

Similarly to eq. (12), we have the relation

(I + D)⊗n = I +
n∑

k=1

Ld(k). (15)



Decomposition and Construction of Neighbourhood Operations 75

3.4 Construction of Laplacian Matrices

We define the rth Laplacian in Zn in the matrix form as

Ln(k) = An(k) − I (16)

As the generalisation of the Horn-Schunck Laplacian [16] in Zn, we have

L(m) =
m∑

i=k

αkAn(k) − I, 1 ≤ m ≤ n (17)

for
α1 : α2 : · · · : αn = n : (n − 1) : · · · : 1.

3.5 (mn − 1) Neighbourhood Operation

We define the matrix B(k) = ((bij)) as

bij =
{ 1

2δ|i−j|0, i �= j,
1 otherwise. (18)

Then, we have the relations B(1) = B and B(0) = I.
Setting

Nm
+ =

{
x = (i(1), i(2), · · · , i(n))� | 0 ≤ i(1), i(2), · · · i(n) ≤ m + 1

2

}
, (19)

we define the matrix

B(i(1)i(2)···i(n)) = B(i(1)) ⊗ B(i(2)) ⊗ · · · ⊗ B(i(n)). (20)

Matrix B(i(1)i(2)···i(n)) computes the average of the points p = (|i(1))|, |i(2)|, · · · ,
|i(n)|)� in Zn. Therefore, the matrix

Nn =
∑

(i(1)i(2)···i(n))∈Nn
+

γ(i(1)i(2)···i(n))B
(i(1)i(2)···i(n)) − γ00···0I (21)

for ∑

(i(1)i(2)···i(n))∈Nn
+

γ(i(1)i(2)···i(n)) = 1, 0 < γ(i(1)i(2)···i(n)) < 1 (22)

computes the weighted average of fp, p ∈ Zn for the points in the (mn − 1)
neighbourhood of each point. For ρ(B(i(1)i(2)···i(n))) ≤ 1, we have the property
that ρ(Nn) ≤ 1.

4 Operations in Z3

In this section, we construct the Laplacian and average operation in Z3 using
the results in the previous section.
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6-Neighbourhood Operations. Using the matrix B, we can construct the
operation to compute the average of digital functions in the 6-neighbourhood.

Theorem 3. The matrix

A6 =
1
3
(B ⊗ I ⊗ I + I ⊗ B ⊗ I + I ⊗ I ⊗ B) (23)

computes the average of fijk in the 6-neighbourhood of the point (i, j, k)�.

The matrix of the 6-neighbourhood Laplacian is

L6 =
1
6
(D ⊗ I ⊗ I + I ⊗ D ⊗ I + I ⊗ I ⊗ D). (24)

18-Neighbourhood Operations. The simple Laplacian in Z2 is

L8 = L4 +
1
4
(D ⊗ D). (25)

Equation (25) shows that the 8-neighbourhood Laplacian on Z2 involves the
fourth-order differentiation for the points (i − 1, j − 1)�, (i + 1, j + 1)�, (i +
1, j − 1)�, and (i + 1, j + 1)�. Therefore, from the viewpoint of the numerical
computation, it is desired to use the Laplacian in the form

L8 = α1L4 + α2
1
4
(D ⊗ D). (26)

such that α1 	 α2 > 0.
Equation (17) derives the next relation for n = 2,

L8HS =
2
3
L4 +

1
3

{
1
4
(D ⊗ D)

}
. (27)

This matrix is expressed in the 3 × 3 tensor as

L8HS =
2
3

⎛

⎝
0 1 0
1 −4 1
0 1 0

⎞

⎠ +
1
3

⎛

⎝
1 0 1
0 −4 0
1 0 1

⎞

⎠ =
1
12

⎛

⎝
1 2 1
2 −12 2
1 2 1

⎞

⎠ . (28)

In this section, we clarify the three-dimensional analogue of the operation of eq.
(27).

For the matrix

A12 =
1
3
(B ⊗ B ⊗ I + B ⊗ B ⊗ I + B ⊗ I ⊗ B), (29)

we have the next theorem.

Theorem 4. The matrix B18, such that

B18 =
6
18

B6 +
12
18

B12, (30)

computes the average in the 18-neighbourhood of each point.
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From this theorem, the Laplacian in the 18-neighbourhood is given as

L18 = B18 − I

=
6
18

B6 +
12
18

B12

=
6
18

(B6 − I) +
12
18

(B12 − I)

=
1
3
L6 +

1
3

{(B ⊗ B ⊗ I + I ⊗ B ⊗ B + B ⊗ I ⊗ B − I}

=
1
3
L6 +

2
3

{D ⊗ D ⊗ I + I ⊗ D ⊗ D + D ⊗ I ⊗ D} . (31)

The second term of the right-hand side of eq. (31) is the fourth-order numerical
differentiation, since D ⊗ D corresponds to the fourth time derivatives. This
algebraic property implies the next assertion.

Assertion 1. The 18-neighbourhood Laplacian L is a sum of the 6-
neighbourhood Laplacian and a fourth-order symmetry differentiation.

The three-dimensional version of the Horn-Schunck Laplacian is expressed in the
3 × 3 × 3 tensor form as

LHS =

⎛

⎝ 1
36

⎛

⎝
0 1 0
1 4 1
0 1 0

⎞

⎠ 1
36

⎛

⎝
1 4 1
4 −36 4
1 4 1

⎞

⎠ 1
36

⎛

⎝
0 1 0
1 4 1
0 1 0

⎞

⎠

⎞

⎠ , (32)

where the elements express the weights for the computation of the Laplacian of
the centre of the tensor, that is, L is the weighted 18-neighbourhood operation.
This operation is decomposed into two tensors as

LHS =
2
3

⎛

⎝

⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠

⎛

⎝
0 1 0
1 −6 1
0 1 0

⎞

⎠

⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠

⎞

⎠

+
1
3

⎛

⎝

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠

⎛

⎝
1 0 1
0 −12 0
1 0 1

⎞

⎠

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠

⎞

⎠ . (33)

The first term and the second term of the right-hand side of eq.(33) are the 6-
neighbourhood Laplacian and the 12-neighbourhood Laplacian, respectively, in
three-dimensional discrete space. Therefore, the three-dimensional Horn-Schunck
Laplacian is in the form

LHS =
2
3
L6 +

1
3
L18

=
2
3
(D ⊗ I ⊗ I + I ⊗ D ⊗ I + I ⊗ I ⊗ D)

+
1
3
(D ⊗ D ⊗ I + D ⊗ I ⊗ D + I ⊗ D ⊗ D). (34)
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26-Neighbourhood Operations. In digital image analysis, the operations in
the 26-neighbourhood are used, since the operations in the 26-neighbourhood
derive the smoother results than the 6- and 18- neighbourhood operations.
In this section, we examine the norm properties of the operations in the 26-
neighbourhood. For the matrices A6, A12, and

A8 = B ⊗ B ⊗ B, (35)

we have the next theorem.

Theorem 5. The matrix B26, such that

B26 =
6
26

A6 +
12
26

A12 +
8
26

A8 (36)

computes the averages in the 26-neighbourhood of each point.

From this theorem, we can have the Laplacian in the 18-neighbourhood as

L26 = B26 − I

=
6
26

L6 +
12
26

L12 +
8
26

L8 (37)

As the 26-neighbourhood Horn-Schunck Laplacian is given as

L26HS =
3
6
L6 +

2
6
L12 +

1
6
L8 =

1
2
L6 +

1
3
L12 +

1
6
L8. (38)

4.1 Discrete Gaussian Kernel

By embedding signal sequences as

f = (f1, f2, · · · , fn)� → (0, 0, · · · , f1, f2, · · · , fn, 0, · · · , 0)�

with an appropriate number of zeros, a discrete version of the heat equation

∂

∂t
f(x, t) =

1
2

∂2

∂x2 f(x, t) (39)

is given as

f (t+1) − f (t) =
1
4
Df (t), f (0) = f . (40)

From this equation, we have the relation

f (t+1) = Gf (t) =
(

I +
1
4
D

)
f (t) =

1
2
(I + B)f (t) = Gtf (41)

where

G =
1
4

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

2 1 0 · · · 0
1 2 1 · · · 0
... 1 2 · · · 0
...

...
...

. . .
...

0 · · · · · · 1 2

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

. (42)
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The nD kernel is expressed as

Gt
n = (G⊗n)t = (G ⊗ G ⊗ · · · ⊗ G)t = (Gt ⊗ Gt ⊗ · · · ⊗ Gt) (43)

Since the 1D Gaussian convolution sequence is g =
( 1

4 , 1
2 , 1

4

)�, the 3D kernel in
the tensor form is Gt

3 for G = (G−1,G0,G1) where

G−1 =
1
4

⎛

⎝
1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

⎞

⎠ , G0 =
1
2

⎛

⎝
1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

⎞

⎠ , G+1 =
1
4

⎛

⎝
1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

⎞

⎠ . (44)

5 Conjectures for the Neighbourhood in Zn

In four-dimensional discrete space Z4, elemental operations, which is derived as
the fundamental symmetry forms of B on M(S, ⊗, +), for the computation of
the averages in the neighbourhoods are

A8 =
1
4
(B ⊗ I ⊗ I ⊗ I + I ⊗ B ⊗ I ⊗ I

+I ⊗ I ⊗ B ⊗ I + I ⊗ I ⊗ I ⊗ B), (45)

A24 =
1
6
(B ⊗ B ⊗ I ⊗ I + I ⊗ B ⊗ B ⊗ I + I ⊗ I ⊗ B ⊗ B

+B ⊗ I ⊗ bmI ⊗ B + B ⊗ I ⊗ B ⊗ I + I ⊗ B ⊗ I ⊗ B), (46)

A32 =
1
4
(B ⊗ B ⊗ B ⊗ I + I ⊗ B ⊗ B ⊗ B

+B ⊗ I ⊗ B ⊗ B + I ⊗ B ⊗ I ⊗ B), (47)
A16 = B ⊗ B ⊗ B ⊗ B. (48)

In three-dimensional discrete space, A12 and 6
14A6 + 8

14A8 correspond to the
averages in the FCC neighbourhood and the BCC neighbourhood, respectively.
From these properties of the operations in the noncubic neighbourhoods, we
have the following open problem and conjecture.

Open Problem 1. Using the fundamental symmetry forms of B on M(S, ⊗,
+), characterise the noncubic grid systems in Zn.

In Z4, A12 and 〈A6, A8〉 define the neighbourhood point configurations for FCC
and BCC grids [2], respectively. From these geometric properties of the noncubic
grids embedded in Z4, we have the next conjecture for the noncubic grids.

Conjecture 1. The pairs 〈An(k), An(n−k)〉 for k = 1, 2, · · · , (n − 1) derive the
n-dimensional versions of FCC and BCC grids.

6 Conclusions

We introduced a decomposition and construction method for the neighbourhood
operations of the digital image processing. First, we have derived a method
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to express the symmetry neighbourhood operations as matrices. The matrix
expressions of the neighbourhood operations derived the operator norm of the
operations. This norm of the neighbourhood operations allowed us to deal with
the neighbourhood operations analytically, that is, we defined the spectra of the
neighbourhood operations.
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Appendix

Spectrums of Matrices

For the matrix D, setting DU = ΛU , where U is an orthogonal matrix, and
Λ = Diag (λM , λM−1, · · · , λ1), the eigenvalues are λk = −2

(
1 − cos π

M+1k,
)
.

Since B = 1
2 (D+2I), we have the eigenvalues of B as μk = cos π

M+1k. Therefore,
ρ(B) < 1. Using the same treatment on the fundamental symmetrical polynomial
of μi, we can have the relation ρ(An(r)) < 1. Furthermore, since ρ(Bn(r)) ≤
maxi

∑
j |bn(r)

ij | = 1, we have ρ(B(i)) ≤ 1.
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