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Abstract. Segmentation is an important step to obtain quantitative in-
formation from tomographic data sets. To this end, global thresholding
is often used in practice. However, it is usually not possible to obtain
an accurate segmentation based on a single, global threshold. Instead,
local thresholding schemes can be applied that use a varying threshold,
depending on local characteristics of the tomogram. Selecting the best
local thresholds is not a straightforward task, as local image features of-
ten do not provide sufficient information for choosing a proper threshold.
Recently, the concept of projection distance was proposed as a new cri-
terion for evaluating the quality of a tomogram segmentation. In this
paper, we describe how Projection Distance Minimization (PDM) can
be used to select local thresholds, based on the available projection data
from which the tomogram was initially computed. By reprojecting the
segmented image, a comparison can be made with the measured pro-
jection data. This yields a quantitative measure of the quality of the
segmentation. By minimizing the difference between the computed and
measured projections, optimal local thresholds can be computed.

Simulation experiments have been performed, comparing our local
thresholding approach with an alternative local thresholding method and
with optimal global thresholding. Our results demonstrate that the local
thresholding approach yields segmentations that are significantly more
accurate, in particular when the tomogram contains artifacts.

1 Introduction

Tomographic reconstructions, which are generally gray-scale images, are often
segmented as to extract quantitative information, such as the shape or volume
of image objects. Such segmentation is often performed by local or global thresh-
olding [I]. However, the process of threshold selection is somewhat arbitrary and
requires human interaction. Many algorithms have been proposed for selecting
“optimal” thresholds with respect to various optimality measures [2]. Global
thresholds are typically selected from the histogram of the image, such that the
distance between the image and the segmented image is minimized. Rosenfeld
and Torre employ a method that is based on analyzing the concavity points on
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the convex hull of the image histogram. The deepest concavity points of the
convex hull are potential candidates for the threshold [3]. Ridler and Calvard
proposed an iterative, global thresholding method that models the gray-level
distribution in an image as a mixture of two Gaussian distributions representing
the background and foreground regions, respectively. Using the average of the
foreground and background class means, a new threshold is established, which
is iterated until convergence [4]. The clustering thresholding method of Otsu
minimizes the weighted sum of intraclass variances of the foreground and back-
ground pixels to establish an optimum threshold [5]. Kapur et al. based their
thresholding method on an entropy criterium. Thereby, the foreground and back-
ground classes are treated as two different sources [6]. The image is considered
to be optimally thresholded when the sum of the two class entropies reaches a
maximum.

Recently, Batenburg and Sijbers proposed a new approach for global threshold
selection that makes use of the available tomographic projection data [7I§]. By
reprojecting the segmented volume, the norm of the difference between the pro-
jections of the current segmentation and the measured projection data, called the
projection distance, can be computed. This yields a quantitative measure of the
quality of the segmentation. By minimizing the difference between the computed
and measured projections (Projection Distance Minimization, or PDM ), an opti-
mal threshold can be computed. It was demonstrated in [§], that PDM leads to a
significant improvement in segmentation accuracy, compared to histogram-based
methods.

However, the capabilities of global threshold selection methods are limited by
the maximum accuracy that can be obtained using global thresholding. If the
tomogram exhibits variations in the intensity of certain image features, global
thresholding can never lead to an accurate segmentation. For example, thick
structures typically tend to be brighter than very thin structures in a tomogram,
even if both structures consist of the same material in the original object. To
account for local image variations, local thresholding methods were proposed.
Abutaleb developed a local thresholding method based on the joint (2D) entropy
of a pixel neighborhood [910]. White and Rohrer developed a nonlinear, local
thresholding method in which the gray value of the pixel is compared with the
average of the gray values in a small neighborhood [IT]. If the pixel is significantly
darker than the average, it is assigned as foreground; otherwise it is classified
as background. Eikvil et al. developed a thresholding method in which a large
window, with a small window positioned at its center, is moved across the image,
and each pixel inside the small window is labeled on the basis of the clustering
of the pixels inside the large window [12]. Blayvas et al. proposed an adaptive
binarization method where the threshold is determined by interpolation of the
image gray levels at points where the image gradient is high [I3]. The local
thresholding method of Niblack adapts the local threshold according to the local
mean and standard deviation over a sliding window [14].

Most of these adaptive thresholding methods that use a varying threshold for
different regions of the image, lead to better results than global thresholding
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in some cases. However, selection of the local thresholds becomes increasingly
difficult as the size of the regions is made smaller, as the local histogram is
based on only a small number of pixels. Moreover, no objective criterion for the
segmentation quality is available if only the information from the reconstructed
image is used for segmentation.

In this paper, we propose an extension of the projection-based threshold se-
lection method from [8], that uses a locally varying threshold field, instead of a
single global threshold. The same optimization criterion, PDM, is now used to
find an “optimal” threshold field. The threshold field is represented on a square
grid that is coarser than the pixel grid of the tomogram. The thresholds for
pixels that do not coincide with grid points in the coarse grid are computed
by bilinear interpolation. Computing the threshold field for which the projec-
tion distance is minimal appears to be computationally hard. We describe how
a minimum of the projection distance can be computed efficiently for the case
that the threshold is only allowed to vary for a single grid point in the coarse
grid, while keeping the threshold values fixed for the remaining grid points. By
iterating this procedure several times for all coarse grid points, a local minimum
of the projection distance is reached.

Simulation experiments have been performed, comparing the result of local
thresholding based on PDM with the local thresholding method of Niblack [14]
and with global thresholding based on PDM [§]. Our results demonstrate that
the local thresholding approach yields segmentations that are significantly more
accurate, in particular when the tomogram contains artifacts due to truncation
of the projection data.

2 Method

For simplicity reasons, we restrict ourselves to two-dimensional tomograms. All
concepts can be generalized to a 3D setting in a straightforward manner. Similar
to algebraic reconstruction methods (i.e., ART, SART, see [I5]) the tomogram is
represented on a rectangular grid of width w and height h. Put n = wh. The grey
value image v € R" that we want to segment is a tomographic reconstruction
of some physical object, of which projections were acquired using a tomographic
scanner. Projections are measured as sets of detector values for various angles,
rotating around the object. Let m denote the total number of measured detector
values (for all angles) and let p € R™ denote the measured data. The physical
projection process in tomography can be modeled as a linear operator W that
maps the image v (representing the object) to the vector p of measured data:

Wov = p. (1)

For parallel projection data, the operator W' is a discretized version of the well-
known Radon transform. We represent W by an mxn matrix. From this point
on, we assume that an image v has been computed that approximately satisfies
Eq. ). This image now has to be segmented using a locally varying threshold.



Selection of Local Thresholds for Tomogram Segmentation 383

In this paper, we focus on the segmentation of objects that consist of a single
material, so that there are only two segmentation classes, for the object and the
background. We assume that the material is homogenous, i.e., a perfect recon-
struction of the original object should contain only two grey levels. However,
most common tomographic reconstruction algorithms yield an image that con-
sists of a range of grey levels, instead of a binary image, even if the object in
the scanner is perfectly homogeneous. This becomes particularly noticeable if a
reconstruction is computed from relatively few projections or if certain parts of
the projection data are missing (e.g., truncated projections, where the object is
larger than the field of view of the scanner). In such cases, the reconstruction
problem is severely underdetermined, and many grey level images can have the
same projections. Typically, continuous reconstruction algorithms do not use the
prior knowledge about the discrete grey levels, but rather compute an image that
contains many grey levels.

Even if prior knowledge about the two grey levels is not used in the recon-
struction algorithm, this knowledge can still be exploited by the segmentation
algorithm used after reconstruction. Our segmentation approach assigns a sin-
gle real-valued grey value to both segmentation classes. The projections of the
segmented image are then computed and compared to the measured projection
data. The difference between the computed and measured projections provides
a measure for the quality of the segmentation.

Although we assume that the original object consists of a single material,
we do not assume prior knowledge of the actual grey levels of the background
and the interior. These grey levels are treated as variables in the segmentation
problem. We denote the grey level for the background and the interior of the
object by p1 and pa, respectively. Put p = (p1 p2)?.

We first define a segmentation problem where the local threshold can vary
independently for each of the image pixels. The set of local thresholds for all
pixels is represented by a vector 7 € R™. We will refer to this vector as the
threshold field.

For any p € R?, t € R, define the threshold function rp: : R — {p1, p2} by

rp,t<v>={ powst) @

p2 (v>1)

We also define the threshold function 7, of an entire image v € R", which
yields a vector containing the thresholded pixel values:

T (©) = (rpr (V1) o 1o, (0a))T 3)

For grey levels p € R? and a threshold field 7 € R™, define the projection
difference d(p,T) by

d(p,7) = [|[Wrpr(v) = pll2. (4)
The projection difference is used as the optimization criterion for finding the

optimal threshold parameters. From this point, we will refer to this concept as
Projection Difference Minimization (PDM).
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Problem 1. Let W € R™*™ be a given projection matrix, let v € R™ be a grey
level image and let p € R™ be a vector of measured projection data. Find 7 € R"
and p € R?, such that d(p,T) is minimal.

In Problem[I] the threshold for each pixel is allowed to vary independently. This
means that the resulting segmentation class for each pixel i (either background
or interior) is independent of the grey value v;, as the threshold 7; can always
be chosen either smaller or larger than v;. In fact, this threshold selection prob-
lem is equivalent to a reconstruction problem from Discrete Tomography, where
the main objective is to reconstruct a binary image from its projections [16].
Although solving this discrete tomography problem can lead to very accurate
segmentation results, even if few projection are used, the problem is computa-
tionally very hard (see, e.g., [I7]). In cases where it is relatively easy to acquire
more projection images, continuous tomography followed by thresholding (either
local or global) is often preferable.

At the other end of the granularity spectrum is the case where all entries of 7
must have the same value, i.e., global thresholding. This approach was already
proposed in [8]. For binary images, it was demonstrated that only the global
threshold 7 has to be optimized, as the optimal grey values p; and ps can be
computed directly once the threshold 7 has been set.

In this paper, we focus on a segmentation problem that can be considered as
an “intermediate” problem, between discrete tomography and global threshold-
ing based on PDM. Instead of allowing the threshold field 7 to vary indepen-
dently for each pixel, the value of the threshold is specified on a coarse grid,
which is superimposed on the pixel grid of the image v. The threshold value for
each pixel of v; is then computed by bilinear interpolation from the set thresh-
old values. In this way, the local thresholds will vary only gradually, while the
threshold field can still vary significantly throughout the image. The choice for
bilinear interpolation is mainly motivated by computational convenience. More
sophisticated interpolation schemes (i.e., bicubic interpolation) may lead to bet-
ter results. However, such schemes typically yield more variables in the resulting
optimization problem.

Figure [0 illustrates how the coarse grid is superimposed onto the finer pixel
grid of the image v. Note that only a small portion of the image is depicted. As an
example, suppose that the thresholds are given for the four points indicated in the
figure (with corresponding threshold values 1, ..., ts. Let the (z,y)-coordinates
of these four points be given by (0,0),(1,0),(1,1) and (0, 1), respectively. We
refer to the four squares between (0,0) and its surrounding coarse grid points
as the quadrants surrounding (0,0). For any pixel p with center (x,,y,) in the
topright quadrant, the threshold ¢, is defined by

tp = (1 —zp)(1 —yp)ts + 2p(1 — yp)ta + (1 — 2p)ypts + TpYpta. (5)

Let k& be the total number of grid points on the coarse interpolation grid.
We refer to the vector of thresholds for these points by 7/ € R*. The mapping
I : RF — R™ assigns the corresponding interpolated threshold to each pixel in
the fine grid:
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Ly ls

Fig.1. A coarse grid is superimposed on the finer pixel grid of the reconstructed
image. The thresholds are only specified in the coarse grid points. The threshold for
each individual pixel is computed by bilinear interpolation.

T=1I(1") (6)

Using these definitions, we can now formulate the central problem of this paper:

Problem 2. Let W € R™*™ be a given projection matrix, let v € R™ be a
grey scale image and let p € R™ be a vector of measured projection data. Find
7/ € R¥ and p € R?, such that d(p, I(7')) is minimal.

We will now describe how a constrained version of Problem [2] can be solved effi-
ciently, where only one of the entries of 7/ is allowed to vary, while the remaining
entries are kept fixed. Again, consider the example from Figure[Il Suppose that
all thresholds on the coarse grid are kept fixed, except for ¢;. The only pixels
for which the thresholds are affected by a change of ¢; are those in the four
quadrants surrounding ¢1, as shown in the figure.

For a pixel p with grey level v, and center (x,,y,) in the topright quadrant,
we have

vp = tp
vp = (L=—mp)(1 —yp)ts + 2p(1 — yp)ta + (1 — zp)ypts + 2pypts
vp — p(1 —yp)ta — (1 — 2p)Ypts — Tpypta > 4. (7)
(1 —ap)(1 —yp)
_ vp—zp(l-yp)ta—(1—zp)ypts—zpypta - ;
The term g(p) = (i—2) (1—p) is called the relative grey level

of p with respect to t;. The equation defining the relative grey level of pixels
w.r.t. ¢t1 is different for each of the quadrants surrounding the coarse grid point.
Eq. (@) shows that the problem of finding a solution of Problem ] in case only
one entry of 7’ is allowed to vary, can be considered as a variant of the global
thresholding problem from [§]. In this global thresholding problem, only pixels
in the four quadrants surrounding the variable entry of 7/ have to be considered
(as the remaining pixels are unaffected by a change of this threshold) and the
relative grey level of each surrounding pixel is used instead of the grey levels
from w.
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For any fixed 7, every entry of the vector Wr, (v) reduces to a linear ex-
pression in p; and py. Consequently, for fixed 7, the projection difference d(p, T)
reduces to a second-degree polynomial in p; and ps. In fact, this property holds
for any segmentation of v (not just those obtained by thresholding). In [§], it is
shown that for any fixed segmentation of the image v, the projection difference
d(p) can be written in the form

d(p)* = Ipl*+&"p+p" Qp. (8)

(i.e., a second-degree polynomial in p; and p), where @ € R*** matrix and
¢ € R2. Explicit expressions for the matrix Q and vector € are also described.
Once Q and & are known, the vector p for which the projection distance is
minimal can be computed by minimizing the quadratic polyomial in Eq. (8). It is
also shown in [8] how @ and € can be updated efficiently if the segmentation class
for a single pixel is changed. This update step is independent of the algorithm
that is used to compute the segmentation, so it can be used in our new local
threshold method without much modification. Figure 2l shows the basic steps for
solving the variant of Problem [2l where only one of the entries of 7/ is allowed
to vary.

Computing a global minimum of d(p, I(7')) as stated in Problem [ appears
to be computationally very hard. In fact, if the coarse grid is taken to have the
same resolution as the pixel grid of the reconstructed image, solving Problem [2]
is equivalent to solving a variant of the discrete tomography problem. For certain
weight matrices W, this problem is known to be NP-hard [I7].

Instead, we propose an iterative algorithm that is guaranteed to converge to
a local minimum of the projection distance. The basic steps of this algorithm
are shown in Figure[3l In each iteration, a random grid point on the coarse grid
is selected. The optimal threshold for this grid point is computed, while keeping
the thresholds in all other coarse grid points fixed. The algorithm terminates
if no improvement has been found after K iteration, where K is a constant
integer. Although this algorithm may not find a global minimum of the projection
distance, the projection distance of the resulting segmentation can never be worse
than the projection distance found using global thresholding. The best global
threshold is used to initialize the local thresholds in the coarse grid points and
in each iteration the projection distance does not increase.

3 Results

Simulation experiments have been performed, starting from two phantom im-
ages: a vascular structure (referred to as 'vessel image’) and a femur image, shown
in Fig. and Fig respectively. For each experiment, simulated parallel
beam projections have been computed using equally spaced projection angles.
Based on the projection data, a reconstruction was computed using the SART
algorithm (cfr. [I5]). The resulting SART reconstructions are shown in Fig.

Fig. and Fig. Were generated from 180 projections, while Fig5(c)
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Let 7' € R¥ be a given vector of thresholds for the coarse grid points and
assume that @ and € have already been computed (cfr. []);

Make a list L containing the index j of all pixels in the four quadrants
surrounding the coarse grid point 4, sorted in ascending order of the relative
grey level g(j) w.r.t. 4; Denote the size of this list by |L|;
Let u be the largest number with «w < |L| such that g(L,) < 7/;
Set v :=u; Q' :=Q; ¢ :=¢
while u > 1 do
begin
ui=u—1; 7/ = g(Ly);
Move pixel L, _from the background class to the foreground class and
update ¢ and @Q accordingly;
Compute the minimizer p of d(p) for the current segmentation;
if a new minimum of the projection distance has been found
save the optimal threshold 7/;
end Set u:=u'; Q:=Q’; € :=¢;
while u < |L| do
begin
ui=u+1; 7/ = g(Ly);
Move pixel Ly from the foreground class to the background class and
update ¢ and Q accordingly;
Compute the minimizer p of d(p) for the current segmentation;

if a new minimum of the projection distance has been found
save the optimal threshold 7/;

end

Fig. 2. Basic steps for finding the optimal threshold in a given coarse grid point ¢,
while keeping the thresholds in all remaining coarse grid points fixed

shows the SART reconstruction from 180 truncated projections (i.e., the simu-
lated beam is more narrow than the object). The truncated projections cause
artifacts in the reconstruction, which are particularly difficult to segment using
a single global threshold, as they result in significant grey value variations. For
all local threshold experiments in this section, a spacing of 16 pixels between
consecutive coarse grid points was used.

In a first phase, the results of our proposed local thresholding approach are
compared with global thresholding. For global thresholding, we used the PDM
algorithm from [§], which computes a global minimum of the projection distance
and which was proved to yield significantly better results than conventional
global thresholding techniques. The global PDM thresholding results are shown

in Fig. [6(g)H5(1)
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compute the optimal global threshold 7, using the algorithm described in [§];
Set 7/ = 7 for each point i = 1,...,k on the coarse grid;

repeat
select a random threshold 7/ on the coarse grid;

compute the optimal projection difference d(p, I(7’)) that can be obtained by
changing 7/, while keeping the values of the other thresholds fixed;

set the threshold 7/ to its new optimal value (changing the local threshold field);

until (no improvement was made during the last K iterations;

Fig. 3. Basic steps of the threshold selection algorithm. The variable K in the outer
loop condition refers to a constant integer.

Table 1. Comparison of the local thresholding performance of the Niblack and PDM
method. The numbers represent the number of different pixels between the thresholded
image and the original phantom image.

Vessel Femur Femur (trunc)
Niblack 9977 3142 10694
PDM (global) 3374 1365 10743
PDM (local) 2967 1182 7584

(a) Vessel image (b) Femur image

Fig. 4. Phantom images used in our simulation experiments: (a) vessel image and (b)
femur image

Next, the SART reconstructions were segmented using the local thresholding
method of Niblack [I4], which is commonly used as a reference for performance
evaluation. The Niblack method adapts the local threshold according to the lo-
cal mean and standard deviation of a sliding window. The method depends on
two parameters: the width of the sliding window and the threshold weight of the



Selection of Local Thresholds for Tomogram Segmentation 389

(m) (n) (0)

Fig.5. (a-c) SART reconstructions from (a-b) 180 projections and (c) 180 truncated
projections; (d-f) Niblack local thresholding results; (g-i) global PDM thresholding
result; (j-1) local PDM thresholding result; (m-o) PDM threshold fields
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standard deviation. In practice, these Niblack parameters cannot be optimized
because of the lack of ground truth. In our simulation experiments, in which the
ground truth was available, we selected the window width and the weight pa-
rameter such that the difference between the thresholded result and the original
was minimal.

Finally, the SART reconstructions shown in Fig. [5(a)ib(c)| were segmented
using the local PDM thresholding scheme as proposed in this paper. In all three
cases, our local thresholding algorithm results in a significant reduction of the
number of pixel errors. The running time of each test was around 30s, on a
Pentium IV PC running at 3GHz. The thresholding results of the local PDM
method are shown in Fig. [5(j)H5(1)} respectively. The corresponding threshold
fields generated from the local PDM method are shown in Figls(m)H5(o)| re-
spectively. These fields were formed by bilinear interpolation from the threshold
values 7’ on the coarse grid.

To quantify the performance of each segmentation method, for each method
the total number of pixel errors was determined, which was computed from the
original phantom. The quantitative thresholding results are shown in Table [l
From this table, it is clear that the proposed local PDM thresholding method
outperforms the other methods with respect to the pixel error.

4 Conclusion

Local grey value thresholding is a common segmentation procedure. However,
finding the optimal grey level thresholds is far from trivial. Many procedures
have been proposed to select the thresholds based on various image features.
Unfortunately, these methods suffer from a clear objective threshold selection
criterion.

In our paper, we have presented an innovative approach, called local PDM
(Projection Distance Minimization), to find the optimal threshold grey levels by
exploiting the available projection data. Reprojection of the segmented image
and subsequent comparison with the measured projection data, yields an objec-
tive criterion for the quality of a segmentation. Our approach aims at minimizing
the projection distance.

The experimental results show that the proposed local PDM method results in
a small difference between the original object and the reconstruction. Simulation
experiments were performed for three SART reconstructions of phantom images.
In all test cases, PDM clearly leads to significantly better segmentation results
than both the Niblack method for local segmentation and global thresholding
based on PDM.
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