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Abstract. In this article, we propose to investigate the extension of the
E?DT (squared Euclidean Distance Transformation) on irregular isothetic
grids. We give two algorithms to handle different structurations of grids.
We first describe a simple approach based on the complete Voronoi dia-
gram of the background irregular cells. Naturally, this is a fast approach
on sparse and chaotic grids. Then, we extend the separable algorithm de-
fined on square regular grids proposed in [22], more convenient for dense
grids. Those two methodologies permit to process efficiently EDT on ev-
ery irregular isothetic grids.

1 Introduction

The definition of discrete distances is a very important concept in image anal-
ysis and shape description [20/21]. Here, we are interested in the definition of a
distance and its application on Irregular Isothetic Grids (I-grids for short) [5],
where the cells are rectangles defined by variable positions and sizes, and may
be determined by subdivision rules. Those grids are very common, and permit
to represent an image in a more compact and adapted manner. Here, we will use
two classical T-grids: the Quadtree decomposition [23] and the Run-Length En-
coding (or RLE) [I1]. In our study, we have chosen to consider that the distance
between two cells in a two dimensional (2-D) I-grid is the distance between their
centers (which is the same as the regular square grid, where we compute the dis-
tance between points of Z2). The squared Euclidean Distance Transformation
(E2DT) of a binary image is a tool that has been largely investigated for decades,
and represents a very common way to analyze the shape of graphical objects,
for various applications (see [18] and references of [I6] for more details). The
purpose of this process is to label each (foreground) cell of an object with the
distance to the closest cell of its complement (or background). Since we consider
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the distance between the center of grid cells, this process can be naturally linked
with the computation of the Voronoi Diagram (VD) [6II9]. Moreover, we can
notice that the VD may also be extracted from the distance map [I3122].

The E?DT of a binary image generally considers it as a regular square grid.
Many studies have aimed to develop a special Distance Transformation (DT)
for non-square grids, but these approaches can not be extended to every I-grids.
In fact, we want to propose a global model which could be then applied to
each sort of I-grid. The DT of Quadtree or Octree based grids [I42326] are
dependent on the specific structure of the concerned trees. Those approaches
compute the DT by propagating distance values from parent nodes to their
children nodes. To handle medical images digitized on elongated grids, where the
cells are longer along an axis, a lot of methodologies that perform the chamfer
distance have been adapted [A79I25]. To use the same technique on an I-grid I,
we would have to extend chamfer masks and change them for each cell of T (non-
stationary computation of the DT). In the same way, the algorithms designed
on other non-standard grids [10/27], e.g. Face-Centered Cubic (FCC) or Body-
Centered Cubic (BCC) grids, suppose the regularity of the neighbors of a cell,
and may not be adapted to every I-grids. Indeed, we make no hypothesis about
the configuration (number, position, size, etc.) of the neighbors of a cell in I. In
the regular square grid case, most VD-based algorithms [2/T624] build a partial
VD to compute the E2DT and lead to an optimal linear time complexity for the
E2DT computation, in the number of cells of the grid. Since these methods are
separable, i.e. they perform operations independently along the two axis, they
propose a natural extension to handle d-dimensional images. Here, we propose to
extend the separable and linear-time algorithm presented in [22] to compute the
squared Euclidean distance transform on I-grids (or I-DT'). Thus, we propose an
original and efficient approach to perform the I-DT, which can be used for every
I-grids we have cited before.

In this article, we first introduce discrete distances on I-grids, and we present
the algorithm to compute the I-DT by implementing the complete VD. For
some sparse irregular grids, the complete VD based approach seems to be the
best way to compute the I-DT. In Section 3, we give details about our extension
of [22] on I-grids. Indeed, thanks to a data structure to represent every I-grids,
we insure that the I-DT is then error-free, and this allows us to fix an upper
bound for the complexity of this method. Then, we propose to compare the
speed and the complexity of our method with respect to the direct approach
based on the complete VD. We thus propose to measure the performance of the
two algorithms, to study what kind of grids they efficiently handle. We finally
discuss the applications and possible extensions of our approach.

2 A Simple Approach Based on the Complete Voronoi
Diagram Implementation

We first define an I-grid as a tiling of the plane with isothetic rectangles. We
shortly recall that each rectangle R (also called cell) of I is defined by its center
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(zr,yr) € R? and a size (I%,1%) € R% The position and the size of R may
be controlled by different level of constraints [5]. Each cell of the grid is also
associated with a foreground label (1) or a background label (0). Here, we denote
I the set of foreground cells in the grid, and Iz the set of background ones. The
sizes of those sets are denoted npr and np respectively. The distance between two
cells R and R’ is the distance between their centers. If we denote p (respectively
p’) the center of a cell R (respectively R’), we have

dQ(Rv R') = dQ(Pvpl) = (zp — l"R’)Q +(yr — yR’)2 (1)

for the square of the Euclidean distance. For a cell R € I, the squared Euclidean
distance transformation on I-grids (I-DT) is given by:

I-DT(R) = min {&*(R,R); R €lp} (2)

and is exactely the E2DT if we consider a regular square grid I. This irregular
discrete distance computed between cell centers can be applied in Geographical
Information Systems (GIS), where an irregular spatial structure [1123] permits to
quickly locate points and to compute the distance between them. We could also
choose to extend the distance proposed by H. Samet [23] (used in the framework
of a chessboard distance transformation, that refers to the underlying regular
square grid) on every I-grids . In this case, we would have to compute the distance
between a foreground cell center p and the frontier between the object containing
it and the background. Let S be the set of segments so that the intersection
between a cell R € Ir and a cell R’ € Ip adjacent with R belongs to S. In this
case, the I-DT should be defined as follows:

I—DT(R) = min {d®(p,a); a €S} (3)

Contrary to the I-DT given in Equation[2 this process does not take into account
the representation of the background. More precisely, we do not consider the
centers of the backgound cells of 1.

In this article, we propose a VD-based algorithm to compute the I-DT defined
in Equation 2l The first step of this algorithm is to compute the VD where the
sites are the centers of the background cells in Ig. Then, we perform the I-
DT of each foreground cell R by locating its center p in the VD. We search
for one of the nearest Voronoi site s to finally compute the I-DT of R (see
Algorithm 1 for more details). We show in Figure [l examples of results obtained
with a small binary image digitized with a regular square grid, a Quadtree grid,
and a RLE along X grid. We have chosen those two I-grids because they are
common in image analysis applications, but we could also consider Kd-tree based
grids [I] for example. The Voronoi Diagram V is computed thanks to the CGAL
library [3I15], and has an optimal time complexity O(nplogng) and fill O(np)
space [§]. Then, the main loop of Algorithm 1 consists in locating each foreground
cell P in V (with its center p), and in searching for its nearest Voronoi site s in
V. The location query is proved to have a O(lognpg) complexity [§]. Thus, we
perform this loop in O(nplognpg) time. Indeed, searching for the nearest site
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Algorithm 1. I-DT based on the complete Voronoi diagram

input : A labelled I-grid I.
output: The [-DT of I.

1 Compute the Voronoi Diagram V of the points {p; R € [g5};
2 foreach cell R € Ig do
Locate p in V;

if p belongs to a Voronoi vertex v of V then
s := Voronoi site of an adjacent cell of v;
else if p belongs to a Voronoi edge e in V then
s := Voronoi site of an adjacent cell of e;

else

// p belongs to a Voronoi cell ¢ of V

s := Voronoi site of ¢;

I-DT(R) := d*(s, p);

foreach cell R € Ig do
I-DT(R) := 0;
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Fig. 1. Examples of results of Algorithm 1 with a small binary image of size 16 x 16.
The image cursor is digitized with a regular square grid, a Quadtree decomposition, and
a RLE along the X axis (a). Background points are illustrated in black, and foreground
ones in white. We present the Voronoi diagram for each case in dotted lines (b), and

the final distance map for the d? distance (c).
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s is processed in constant time, in the three cases: p is inside a Voronoi cell, p
stands on a Voronoi edge, and p is on a Voronoi vertex. When p stands on a
vertex or on an edge of V, the choice of the Voronoi cell containing s is arbitrary.
Thus, Algorithm 1 is performed in O(N logng) time and O(N) space, where
N = np + ng is the total number of cells in I.

3 A d-Dimensional Algorithm for [-DT

We first propose a data structure to represent any I-grids, and to simplify the
cell scanning. An drreqular matriz A associated to the labelled I-grid I is built
by organizing aligned cells along X and Y axis. The value of a node in A is
fixed according to two cases: (1) A(i,7) is the center of a cell in I, this node
is a foreground node (A(i,j) = 1) or a background node (A(i,5) = 0); (2) it
does not correspond to a cell center in I, and we set it as a foreground extra
node (A(i,j) = 1). Those extra nodes permit to compute the I-DT between the
centers of the cells (see Figure [2] for more details). More precisely, we create as
many columns as the different X-coordinates of the cell centers of I. We make
the same with the columns of A, when we consider the Y-coordinate of the cell
centers. We store the X-coordinates and Y -coordinates in two tables T'x and Ty,
and we denote nx = |Tx| and ny = |Ty| the number of columns and rows of
A. So, the X-coordinate of A(i, ) is T'x (). We propose to extend the separable
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Fig.2. The irregular matrix A associated with the image cursor, digitized on a
Quadtree grid. A node A(i,7) is depicted as the intersection of the dotted lines, and
extra nodes are filled in light grey.

algorithm described in [22] and we adapt it on the irregular matrix. The I-DT
of an I-grid T given in Equation [ is represented by the irregular matrix:

C(i,j) = min {(Tx(i) — Tx(z))* + (Ty (j) — Ty (v))*

aj)y
z€{0,...,nx — 1}, y € {0,....,ny — 1}, C(z,y) =0}. (4)
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This min operation is processed over all the elements of C (nodes and extra
nodes). To compute this I-DT, our algorithm may be decomposed into two steps:

1. Let A be the irregular matrix built from the I-grid I. We perform here a
one-dimensional I-DT along X axis, stored in the irregular matrix B such
that:

B(i,j) = min {|Tx (i) - Tx (z)]; = € {0,...,nx — 1}, A(z,j) =0}. (5)
2. We perform then a Y axis process to build the final irregular matrix C:

C(i.j) = min {B(i.y)* + (Ty (j) = Ty (9))*; y € {0, ny =13} (6)

We also present in Algorithm 2 the two steps of our approach. In the first
step, we can notice that the only difference with the regular square case [622)
is the computation of the distance, lines [2 and 2l Indeed, we have to consider
in those operations the distance between the point B(7, j) and its neighbor (e.g.
|Tx (i) — Tx (i — 1)| in line 2l). The second step of our algorithm is in fact the
computation of the lower envelope of a set of parabolas [6]. After Step 1, we
can consider the set of parabolas F,(j) = B(i,y)* + (Ty (j) — Ty (y))? on the
column {B(%,y) }o<y<n, - With Step 2, the column {C(7, y) }o<y<n, is the lower
envelope of the set {7} }o<y<n, . The function Sep’(u,v) is the exact coordinate
of the intersection point between two parabolas [6/I7] (we will simply denote
Fy(j) = f;(j) and Sep(u,v) = Sep(u,v) when the parameter i is fixed):

Sep'(u,v) = (Ty (v)* = Ty (u)* + B(i,v)* = B(i,u)?) / (2(Ty (v) = Ty (w))). (7)

Algorithm 2. I-DT by a separable approach

input : A labelled I-grid L. L / f/ Step 2 along Y axis
output: The I-DT of I, stored in an irregu- 9 fori=0tonx— °

lar matrix C. 20 q := 0; s[0] := 0; t[0] := 0;
21 for j=1tony —1do
2 Build the irregular matrix A associated to I; 22 while g > 0N Fq(tlq]) > F;(t[q])
// Step 1 along X-axis do
3 for j =0tony —1do 23 g —1:
4 if A(0,7) =0 then =g
5 B(0,j) := 0; 24 if ¢ < 0 then
6 else 25 q:=0; s[q] :=j;
v B(0,7) := 005 26 else
8 fori=1tonx —1do 27 w := Sep(s[q], j);
9 if A(i,j) =0 then 28 if w < Ty (ny — 1) then
10 B(i,j) := 0; 29 Find the node
11 else B(i, k), k c
12 B(i,j) := |Tx (i) —Tx (i—1)|+ {slqg],...,ny — 1} such
B(i—1,3); that Ty (k) > w;
30 = 1; - = k; tlq] := w;
13 fori=nx —2 to 0 do q 7+1; slq] i tla] w;
14 if B(i +1,5) < B(i,5) then 4
15 B(i,j) := |Tx (i) —Tx (i+1)|+ 31 for j =ny —1to O‘do
B(i+ 1,4); 32 C(i, 5) = Fs[q)(3);
33 if Ty (j) = t[q] then

1T 34 q:=q—1;
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Fig. 3. We present the temporary distance map obtained with Step 1 (b) on the image
cursor digitized with different I-grids (a). We can notice that the inf node means that
no background node exists on the row containing this point. So, the last for loop in
Algorithm 2 line [ does not change B(i,7) = co. The final distance transformation is
depicted as Figure [ (c).

In comparison with the regular grid case, we can see that the operator div has
been replaced by the floating-point operator / in this equation to compute the
exact intersection point. For I-grids computed from a cell subdivision or a cell
grouping process, we still have an exact arithmetic division. In those cases, coor-
dinates may be half-integers, and we just have to multiply grid cells coordinates
by four to compute the integer intersection point with Sep(). The computation
of w (line B) only depends on the function Sep(u,v) and then permits to find
the intersection point in B (line[2). Here, this find command is performed with a
dichotomous search through the ordered set of nodes {B(i, k) }s[gj<k<n, —1, and
has a O(logny) time complexity in the worst case. But in our experiments, we
have observed that this is a fast operation, since we begin the search from the last
intersection point (with index s[q]). In Figure Bl we present some results of Al-
gorithm 2 on the small binary image cursor used in Figure[Il To apply the I-DT
given in Equation [3] (between a foreground cell and the foreground/background
frontier), we would have to link each node and each extra node in the irregular
matrix to the cell in I that contains it. This permits to change equations [, [,
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and [6] to take into account the size of the cells. For example, if we denote R; ;
the cell in T associated with the node A(%, j), Equation B becomes:

%
B(i,j) = mxin{TX(i) —Tx(z)| — R“; x€{0,...,nx — 1}, Az, j) = O}

2

(8)
We have presented here a separable algorithm on I-grids. The first operation
(build the irregular matrix) is performed in O(nxny) time. More precisely, we
first scan all the cells of I to get the ny rows and nx columns of A. Then, we
consider each node of A and assign its value by checking if it coincides with a cell
center in I. This algorithm has a global time complexity in O(nxny logny). It
can be easily extended to higher dimensions: the Step 1 stands as an initialization
step, and for each greater dimension, a mixing process, as Step 2, permits to
combine results obtained in the lower dimensions. If we consider a d-dimensional
labelled I-grid, the cost of the consecutive steps is in O(n%log? ! n), where the
dimension of the irregular matrix A associated to I is n?. The size of A clearly
depends on the organization of the cells of [; a matrix A built with a regular grid
I would have the same size as [. The more an I-grid has an irregular structure, the
more the difference between nxny and N, the number of cells of I, is important.
The space required, in O(nxny ), is principally occupied by the irregular matrix
A, B and C. Furthermore, when we have implemented this algorithm, we have
used only one matrix that stores initial and temporary distance values. Those
two elements about the complexity of our contribution will be discussed in the

conclusion.

4 Experiments

We first illustrate in Figure Hl the irregular grids we have generated with the
sample binary images we have chosen: canon which is a big image containing a
single binary object, lena, a more complex binary image, and finally an image
generated with gaussian noise, named noise. In Figure Bl we depict the distance
maps obtained by our two algorithms processed on those grids and the regular
grids. The grey level gl of a cell corresponds to the value of the distance d
with a simple modulo operator (g/ = d mod 255). We present in Table [2] the
time of execution for each algorithm, and in Table [I the important features
for each I-grid (e.g. number of background and foreground cells, size of the
irregular matrix). We have performed those experiments on a mobile workstation
with a 1.5 Ghz Intel Pentium M processor, and 1 Gb RAM. Algorithm 1 is
a fast way to compute the I-DT on irregular sparse grids (in our tests, the
Quadtree and RLE grids) and is faster than Algorithm 2 on those grids. But,
our separable approach is very competitive and fast for the regular grid and the
irregular dense grids (Quadtree and RLE grids for the image noise). The time
of execution of Algorithm 2 is slighlty the same as the original version of [22]
in the regular square grid case. Indeed, the irregular matrix and the image that
generates the grid have the same size (nx x ny = N), and the only difference
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between the two versions of this algorithm is the find operation in the last scan,
which is fastly processed (for the image canon, the original algorithm takes
0.90 seconds). Thanks to Table [[l we can see that the numbers of background
and foreground cells do not significally modify the behaviour of our algorithms.
The structure of the considered grid seems to be the only factor that slows
down them. Algorithm 1 hardly handles regular grids, and returns the I-DT in
more than 1 minute for the image canon. On the contrary, irregular sparse grids
make the irregular matrix more complex than the initial image structuration for
Algorithm 2.

In conclusion, to anticipate the speed of our algorithm, we should consider the
size and the density of the irregular grid. If we compare the complexity of our
algorithms, it is clear that Algorithm 2 has generally a worse time complexity in
O(nxny logny), where nx and ny are the size of the irregular matrix. However,
in practice, this approach is faster than Algorithm 1 which time complexity
is O((ng + nr)logng), where np and np are the number of foreground and
background cells. This could be explained by the simplicity of our separable
algorithm, more precisely two independent scans along the X and Y axis. In
Algorithm 1, we have to search for each foreground point p the Voronoi cell where
p stands. Even if this operation is bounded at O(logng), the global execution
time suffers from the data structure implemented.

Fig. 4. We depict here the input irregular grids - (top): Quadtree, (bottom): RLE along
X axis- we consider for each sample image (a): noise, (b): lena, (c): canon
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(a)

Fig. 5. Distance maps for our sample images, for the square grid (top), the Quadtree
grid (middle), and the RLE grid along X axis (bottom)

Table 1. For each [-grid, we illustrate the image size, the number of cells, the number
of background and foreground cells, and the size of the associated irregular matrix

Image Image size I-grid N ng ng nx Xny ”)(J>\<j’”y
Square 10 000 7414 2586 100x100 1.000
noise 100x100 Quadtree 7 457 5003 2454 138x138 0.390
RLE 3903 1973 1930 199x100 0.200
Square 46 176 18 789 27 387 208x222 1.000
lena 208x222 Quadtree 8 171 4143 4 028 308x365 0.070
RLE 3462 1695 1767 392x222 0.040
Square 262 144 234 302 27 842 512x512 1.000
canon 512x512 Quadtree 4 177 2162 2015 920x527 0.010
RLE 1432 972 460 577x512 0.005

Table 2. The execution time in seconds for every I-grids

Algorithm 1 Algorithm 2

Image (complete VD algorithm) Image (proposed approach)

Square Quadtree RLE Square Quadtree RLE
noise 0.77 0.34 0.22 noise 0.15 0.21 0.15
lena 2.8 0.36 0.22 lena 0.26 0.40 0.32

canon 104.4 0.38 0.27 canon 1.0 1.2 1.3
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5 Conclusion and Future Works

In this article, we have proposed two completing algorithms to compute the I-
DT on I-grids. The execution time of our approaches mainly depends on the
structure of the grid and on the size of the image treated. The sparser the grid
is, the slower the I-DT will be performed thanks to our separable approach
(Algorithm 2), and inversely, Algorithm 1 (based on the Voronoi diagram of the
background cells) hardly handles dense grids.

In future works, we would like to study the optimization of Algorithm 2
and propose an optimal time process in O(N) time complexity (instead of
O(nxny logny)). Indeed, we compute the distance in every nodes of the matrix to
propagate the distance values in the rest of the matrix. Since the size of this structure
increases with the complexity of the I-grid (see Table[I] last column), we propose
to use a list-based data structure to reduce the computational time and memory
space of the I-DT [2IT2]. We have also depicted applications of our algorithms in
GIS, since we compute distance between grid cell centers. We would like to develop
the I-DT given in Equation[3l In this case, the representation of the background
does not impact the result obtained with the I-DT. We are interested in investi-
gating three dimensions (3-D) I-DT, since we can easily extend our approaches to
higher dimensions. To build the medial axis of binary irregular objects, we should
make the [-DT reversible and compute the REDT (Reversible Euclidean Distance
Transformation) on I-grids, as it was proposed in [6] for the regular square grid. This
REDT algorithm is separable and is naturally adapted to handle 3-D objects. Fi-
nally, since the irregular matrix permits to conserve a constant number of neighbors
for each node, a chamfer mask-based approach (like in [I0]) may be adapted to this
structure. The main problem is to change the mask and consider the configuration
of each node of the matrix during the scan (non-stationary distance computation).
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