Sub-linear Zero-Knowledge Argument
for Correctness of a Shuffle

Jens Groth!>* and Yuval Ishai®**

! University College London
j.groth@ucl.ac.uk
2 Technion and University of California Los Angeles
yuvali@cs.technion.ac.il

Abstract. A shuffle of a set of ciphertexts is a new set of ciphertexts with the
same plaintexts in permuted order. Shuffles of homomorphic encryptions are a
key component in mix-nets, which in turn are used in protocols for anonymization
and voting. Since the plaintexts are encrypted it is not directly verifiable whether
a shuffle is correct, and it is often necessary to prove the correctness of a shuffle
using a zero-knowledge proof or argument.

In previous zero-knowledge shuffle arguments from the literature the commu-
nication complexity grows linearly with the number of ciphertexts in the shuffle.
We suggest the first practical shuffle argument with sub-linear communication
complexity. Our result stems from combining previous work on shuffle arguments
with ideas taken from probabilistically checkable proofs.

Keywords: Shuffle, zero-knowledge argument, sub-linear communication, ho-
momorphic encryption, mix-net.

1 Introduction

A shuffle of ciphertexts ej,...,en is a new set of ciphertexts E, ..., Ey with the
same plaintexts in permuted order. Shuffles are used in many protocols for anony-
mous communication and voting. It is usually important to verify the correctness
of the shuffle. Take for instance a voting protocol where the ciphertexts are en-
crypted votes; it is important to avoid that some of the ciphertexts in the shuf-
fle are substituted with encryptions of other votes. There has therefore been much
research on designing zero-knowledge argumentsﬂ for the correctness of a shuffle
(371217303 T2 TIT6I33I34I32UTSI24138]).

When designing shuffle arguments, efficiency is a major concern. It is realistic to
have elections with millions of encrypted votes, in which case the statement to be proven
is very large. In this paper, our main goal is to get a practical shuffle argument with low

* Research done in part while visiting IPAM. Part of work done while at UCLA supported by
NSF ITR/Cybertrust grant 0456717.
** Research done in part while visiting IPAM. Supported by BSF grant 2004361, ISF grant
1310/06, and NSF grants 0205594, 0430254, 0456717, 0627781, 0716835, 0716389.
"By zero-knowledge arguments we refer to computationally-sound zero-knowledge

proofs [20].

N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 379 2008.
(© International Association for Cryptologic Research 2008

380 J. Groth and Y. Ishai

communication complexity. A theoretical solution to this problem would be to use Kil-
ian’s communication-efficient zero-knowledge argument [26] (see also Micali [29])).
This method, however, requires a reduction to Circuit Satisfiability, a subsequent appli-
cation of the PCP-theorem [4/3/12]], and using a collision-free hash-function to build a
hash-tree that includes the entire PCP. Even with the best PCP constructions known to
date (cf. [[7]), such an approach would be inefficient in practice.

OUR CONTRIBUTION. We present a sublinear-communication 7-move public coin per-
fect zero-knowledge argument of knowledge for the correctness of a shuffle of EIGamal
ciphertexts [13]. (The protocol is presented in the common random string model, but can
also be implemented in the plain model at the cost of a slightly higher constant number
of rounds.) All shuffle arguments previously suggested in the literature have communi-
cation complexity (2(N)r, where N is the number of ciphertexts in the shuffle and x
is a security parameter specifying the finite group over which the scheme works. Our
shuffle argument has communication complexity O(m? + n)x for m and n such that
N = mn. (The constant in the expression is low as well, see Section[§] for a more pre-
cise efficiency analysis.) With m = N/ this would give a size of O(N?/3)x bits, but
in practice a smaller choice of m will usually be better for computational reasons. Our
shuffle argument moderately increases the prover’s computational burden and reduces
the amount of communication and the verifier’s computational burden in comparison
with previous work.

For practical purposes it will be natural to use the Fiat-Shamir heuristic [14] (i.e.
compute the verifier’s public-coin challenges using a cryptographic hash-function) to
make our shuffle argument non-interactive. The Fiat-Shamir heuristic justifies reducing
the communication and verifier computation at the cost of increased prover computa-
tion, since the non-interactive shuffle argument needs to be computed only once by the
prover but may be distributed to and checked by many verifiers. Letting the prover do
some extra work in order to reduce the communication and the computational burden
of each verifier is therefore a good trade-off in practice. To the best of our knowledge,
our protocol is the first practical instance of a sublinear-communication argument for
any interesting nontrivial statement.

We have some further remarks on our result. Our technique also applies to other ho-
momorphic cryptosystems, for instance Paillier encryption [33]]; a more general treat-
ment of a wider class of homomorphic encryptions can be obtained along the lines of
[21]). For simplicity we focus just on EIGamal encryption in this paper. Similarly to pre-
vious shuffle arguments from the literature, we will present our protocol as an honest
verifier zero-knowledge argument. There are very efficient standard techniques for con-
verting honest verifier zero-knowledge arguments into fully zero-knowledge arguments

TECHNIQUES. Our starting point is the honest verifier zero-knowledge shuffle argu-
ment by Groth [21]], which builds on ideas by Neff [30]. Borrowing some of the ideas
underlying the PCP theorem, namely the use of Hadamard codes and batch-verification
techniques, we reduce the size of the shuffle argument. We note that unlike Kilian [26]
we do not reduce the shuffle statement to an NP-complete language such as SAT; in-
stead we work directly with the ciphertexts in the shuffle statement. Moreover, while
we use ideas behind the PCP theorem we do not make use of a full-blown PCP.

Sub-linear Zero-Knowledge Argument for Correctness of a Shuffle 381

In particular, our argument avoids any use of linearity testing, low-degree testing, or
other forms of code proximity testing that appear in all known PCPs.

RELATED WORK. Our work was inspired by the recent work of Ishai, Kushile-
vitz, and Ostrovsky [23]], which introduced an approach for constructing sublinear-
communication arguments using exponentially long but succinctly described PCPs.
Similarly to we use short homomorphic commitments as the main cryptographic
building block. There are, however, several important differences between our tech-
niques and those from [25]]. In particular, the arguments obtained in do not address
our zero-knowledge requirement (and are only concerned with soundness), they inher-
ently require the verifier to use private coins (which are undesirable in the context of
our application), and they employ linearity testing that subsequently requires soundness
amplification. Finally, the approach of [23] is generic and does not account for the spe-
cial structure of the shuffle problem; this structure is crucial for avoiding an expensive
reduction to SAT.

2 Preliminaries

2.1 Notation

We let X'y denote the symmetric group on {1,2,..., N}. Given two functions f, g :
N — [0,1] we write f(k) ~ g(k) when |f(k) — g(r)| = O(k~¢) for every constant
c. We say that the function f is negligible when f(r) ~ 0 and that it is overwhelming
when f (k) = 1.

Algorithms in our shuffle argument will get a security parameter « as input, which
specifies the size of the group we are working over. Sometimes we for notational sim-
plicity avoid writing this explicitly, assuming « can be deduced indirectly from other
inputs given to the algorithms.

All our algorithms will be probabilistic polynomial time algorithms. We will assume
that they can sample randomness from sets of the type Z,. We note that such random-
ness can be sampled from a source of uniform random bits in expected polynomial time
(in log q).

We write A(x;r) = y when A, on input = and randomness 7, outputs y. We write
y «— A(x) for the process of picking randomness 7 at random and setting y := A(x;r).
We also write y «— S for sampling y uniformly at random from the set S.

When defining security, we assume that there is an adversary attacking our scheme.
This adversary is modeled as a non-uniform polynomial time stateful algorithm. By
stateful, we mean that we do not need to give it the same input twice, it remembers
from the last invocation what its state was. This makes the notation a little simpler,
since we do not need to explicitly write out the transfer of state from one invocation to
the next.

2.2 Group Generation

We will work over a group G, of a prime order g. This could for instance be a subgroup
of Z,,, where p is a prime and ged(q?, p—1) = g; orit could be an elliptic curve group or

382 J. Groth and Y. Ishai

subgroup. We will assume the discrete logarithm problem is hard in G ;. More precisely,
let G be a generating algorithm that takes a security parameter s as input and outputs
gk := (¢, Gy, g), where by G, we denote a computationally efficient representation of
the group and ¢ is a random generator for G. The discrete logarithm assumption says
that for any non-uniform polynomial time adversary A:

Pr [(q,Gq,g) —G(1");x — Zg;h :=g" : A(q,Gq,9,h) = z| = 0.

(When the randomness of G is taken from a common random string, the above definition
needs to be strengthened so that A is given the randomness used by G.)

2.3 Generalized Pedersen Commitment

We will use a variant of the Pedersen commitment scheme [36]] that permits making a
commitment to a length-n vector in Z; rather than a single element of Z, as in Peder-
sen’s original commitment. A crucial feature of this generalization is that the amount
of communication it involves does not grow with n. The generalized scheme proceeds
as follows. The key generation algorithm K., takes (¢, G4, ¢) as input and outputs a
commitment key ck := (g1, ..., gn, h), where g1, ..., g,, h are randomly chosen gen-
erators of G,. The message space is My, := Zg, the randomizer space is Ry 1= Zq
and the commitment space is C.;, := (4. (The parameter n will be given as an addi-
tional input to all algorithms; however, we prefer to keep it implicit in the notation.)

To commit to an n-tuple (m1,...,m,) € Zy we pick randomness r « Z, and
compute the commitment C' := A" []', g/*". The commitment is perfectly hiding
since no matter what the messages are, the commitment is uniformly distributed in G,.
The commitment is computationally binding under the discrete logarithm assumption;
we will skip the simple proof.

The commitment key ck will be part of the common random string in our shuffle
argument. We remark that it can be sampled from a random string. We write C' :=

comey(my, ..., my;r) for making a commitment to my, . . ., m,, using randomness .
The commitment scheme is homomorphic, i.e., for all my, m},...,m,,m) r,r" € Z,
we have

. ’ A / /. /
comk (M1,. .., M3 7) comer, (M ,. . .,mi ;1) =comeg (Ma+my,. .., My +ml ;).

In some cases we will commit to less than n elements; this can be accomplished quite
easily by setting the remaining messages to 0.

We will always assume that parties check that commitments are valid, meaning they
check that €' € Gg. If G4 is a subgroup of Zj this can be done by checking that
CY? = 1, however, batch verification techniques can be used to lower this cost when
we have multiple commitments to check A I G, is an elliptic curve of order ¢, then the
validity check just consists of checking that C' is a point on the curve, which is very
inexpensive.

2 See also [21]] for a variant of the Pedersen commitment scheme over Z,, that makes it possible
to completely eliminate the cost of verifying validity.

Sub-linear Zero-Knowledge Argument for Correctness of a Shuffle 383

2.4 ElGamal Encryption

ElGamal encryption in the group GG, works as follows. The public key is pk :=
y = g with a random secret key sk := x « Z;. The message space is My 1= G,
the randomizer space is Ry, := Z, and the ciphertext space is Cpi, := G4 X G4. To
encrypt a message m € (G, using randomness R € Z, we compute the ciphertext
Epi(m; R) = (g%, yf'm). To decrypt a ciphertext (u, v) we compute m = vu 2.

The semantic security of ElIGamal encryption is equivalent to the DDH assumption.
Semantic security may be needed for the shuffle itself to be secure; however, the security
of our shuffle argument will rely on the discrete logarithm assumption only. In particu-
lar, our shuffle argument is still sound and zero-knowledge even if the cryptosystem is
insecure or the decryption key has been exposed.

ElGamal encryption is homomorphic with entry-wise multiplication in the ciphertext
space. For all (m, R), (m/, R') € Mk x Rpi we have

Epk(mm/;R+ R/) — (gR-‘rR/’yR'FR/mm/)

= (g% y"m) - (g% ,y"'m) = Epr(m; R) - Bpr(m/; R)).

We will always assume that the ciphertexts in the shuffle are valid, i.e., (u,v) €
G, x (. Batch verification techniques can reduce the cost of veritying validity when
we have multiple ciphertexts. To further reduce the cost of ciphertext verification, Groth
[21] suggests a variant of ElGamal encryption that makes batch-checking ciphertext
validity faster. Our shuffle argument works also for this variant of ElIGamal encryption.

Our shuffle argument works with many types of cryptosystems; the choice of El-
Gamal encryption is made mostly for notational convenience. Our technique can be
directly applied with any homomorphic cryptosystem that has a message space of order
q. We are neither restricted to using the same underlying group (¢, G, g) as the com-
mitment scheme nor restricted to using ElGamal encryption or variants thereof. Using
techniques from it is also possible to generalize the shuffle argument to work for
cryptosystems that do not have message spaces of order ¢. This latter application does
require a few changes to the shuffle argument though and does increase the complexity
of the shuffle argument, but the resulting protocol still has the same sub-linear asymp-
totic complexity.

2.5 Special Honest Verifier Zero-Knowledge Arguments of Knowledge

We will assume there is a setup algorithm G that generates some setup information
gk. This setup information could for instance be a description of a group that we will
be working in. Consider a pair of probabilistic polynomial time interactive algorithms
(P, V) called the prover and the verifier. They may have access to a common random
string o generated by a probabilistic polynomial time key generation algorithm K. We
consider a polynomial time decidable ternary relation R. For an element z we call w a
witness if (gk,z,w) € R. We define a corresponding group-dependent language L
consisting of elements x that have a witness w such that (gk, z, w) € R. We write tr «—
(P(x),V (y)) for the public transcript produced by P and V' when interacting on inputs
x and y together with the randomness used by V. This transcript ends with V' either

384 J. Groth and Y. Ishai

accepting or rejecting. We sometimes shorten the notation by saying (P(x),V (y)) = b
if V" ends by accepting, b = 1, or rejecting, b = 0.

Definition 1 (Argument). The triple (K, P, V') is called an argument for relation R
with setup G if for all non-uniform polynomial time interactive adversaries A we have

Completeness
Pr [gk = G(1%);0 — K(gk); (z,w) — A(gh,0) :
(gk,z,w) ¢ Ror (P(gk,o,z,w),V(gk,o,x)) = 1] ~ 1.
Computational soundness
Pr {gk —G(1%);0 — K(gk);x — A(gk, o) :
¢ Ly, and (A, V(gk, 0, 2)) = 1] ~ 0.

Definition 2 (Public coin argument). An argument (K, P, V') is public coin if the ver-
ifier’s messages are chosen uniformly at random independently of the messages sent by
the prover and the setup parameters gk, o.

We define special honest verifier zero-knowledge (SHVZK) [9] for a public coin argu-
ment as the ability to simulate the transcript for any set of challenges without access to
the witness.

Definition 3 (Perfect special honest verifier zero-knowledge). The public coin ar-
gument (K, P,V) is called a special honest verifier zero-knowledge argument for R
with setup G if there exists a probabilistic polynomial time simulator S such that for all
non-uniform polynomial time adversaries A we have

Pr |gh < G(1%)i0 — K(gk); (z,w, p) — Algk, o)
tr — (P(gk, 0,2, w),V(gk,o,2:p)) : (gk,z,w) € R and A(tr) = 1]
= Pr [gk — G(1%):0 — K(gk); (z,w, p) — Algk,0);
tr — S(gk, o, x,p) : (gk, 2, w) € R and A(tr) = 1].

We remark that there are efficient techniques to convert SHVZK arguments into zero-
knowledge arguments for arbitrary verifiers in the common random string model
[1O/T8I22].. In this paper, we will therefore for simplicity focus just on the special honest
verifier zero-knowledge case.

WITNESS-EXTENDED EMULATION. We shall define an argument of knowledgeﬁ

through witness-extended emulation, the name taken from Lindell [28]. Whereas Lin-
dell’s definition pertains to proofs of knowledge in the plain model, we will adapt his

3 The standard definition of proofs of knowledge by Bellare and Goldreich [3] does not apply in
our setting, since we work in the common random string model and are interested in arguments
of knowledge. See Damgérd and Fujisaki [[T1]] for a discussion of this issue.

Sub-linear Zero-Knowledge Argument for Correctness of a Shuffle 385

definition to the setting of public coin arguments in the common random string model.
Informally, our definition says: given an adversary that produces an acceptable argu-
ment with probability e, there exists an emulator that produces a similar argument with
probability €, but at the same time provides a witness.

Definition 4 (Witness-extended emulation). We say the public coin argument
(K, P,V) has witness-extended emulation if for all deterministic polynomial time P*
there exists an expected polynomial time emulator E such that for all non-uniform poly-
nomial time adversaries A we have

Pr |gh < G(1%)i0 — K(gk); (z,5) — Algh,);
tr — (P*(gk,o,2,5),V(gk,o,2)) : Altr) = 1}
~ Pr gk — G(1");i0 — K (gh): (z.5) — Algh.0)
(tr,w) - E(P"(gk,o,w,s),V(gk,o,:v))(gk’0_’ x) .

A(tr) = 1 and if tr is accepting then (gk, z,w) € R} ,

where E has access to a transcript oracle (P*(gk,o,x,s),V (gk,o,x)) that can be
rewound to a particular round and run again with the verifier using fresh randomness.

We think of s as being the state of P*, including the randomness. Then we have an
argument of knowledge in the sense that the emulator can extract a witness whenever P*
is able to make a convincing argument. This shows that the definition implies soundness.
We remark that the verifier’s randomness is part of the transcript and the prover is
deterministic. So combining the emulated transcript with gk, o, x, s gives us the view
of both the prover and the verifier and at the same time gives us the witness.

Damgard and Fujisaki [11]] have suggested an alternative definition of an argument
of knowledge in the presence of a common random string. Witness-extended emulation
as defined above implies knowledge soundness as defined by them [22].

THE FIAT-SHAMIR HEURISTIC. The Fiat-Shamir heuristic [14] can be used to make
public coin SHVZK arguments non-interactive. In the Fiat-Shamir heuristic the veri-
fier’s challenges are computed by applying a cryptographic hash-function to the tran-
script of the protocol. Security can be formally argued in the random oracle model [6]],
in which the hash-function is modeled as a completely random function that returns
a random string on each input it has not been queried before. While the Fiat-Shamir
heuristic is not sound in general [[19], it is still commonly believed to be a safe practice
when applied to “natural” protocols.

2.6 Problem Specification and Setup
We will construct a 7-move public coin perfect SHVZK argument for the relation
R={(9h = (.Gq0), 0k = y,e1,....,en, Br, .., Bn), (7, R, .., Ry) \

S Gq AreXNARy,...,Ry € Rpk AVYi: E; = eﬂfl(i)Epk(IJRi)}-

386 J. Groth and Y. Ishai

In our SHVZK argument, the common random string o will be generated as a pub-
lic key (g1, --,9gn,h) for the n-element Pedersen commitment scheme described in
Section 2.3l Depending on the applications, there are many possible choices for who
generates the commitment key and how this generation is done. For use in a mix-net,
we could for instance imagine that there is a setup phase, where the mix-servers run a
multi-party computation protocol to generate the setup and the commitment key. An-
other option is to let the verifier generate the common random string, since it is easy to
verify whether a commitment key is valid or not. This option yields an 8-move (honest-
verifier zero-knowledge) argument in the plain modelfi

2.7 Polynomial Identity Testing

For completeness we state a variation of the well-known Schwartz-Zippel lemma that
we use several times in the paper.

Lemma 1 (Schwartz-Zippel). Let p be a non-zero multivariate polynomial of degree d
over ZLg, then the probability of p(x1, ..., x,) = 0 for randomly chosen x1, . ..,x, «—
Zg is at most d/q.

The Schwartz-Zippel lemma is frequently used in polynomial identity testing. Given
two multi-variate polynomials p; and po we can test whether pi(x1,...,2,) —
p2(z1,...,2,) = 0 for random x1,...,x, < Z,. If the two polynomials are iden-
tical this will always be true, whereas if the two polynomials are different then there is
only probability max(ds, d2)/q for the equality to hold.

3 Product of Committed Elements

Consider a sequence of commitments Ay, ..., A,, and a value a € Z,. We will give an
SHVZK argument of knowledge of {a;; };}';_; and {r;}*, such that
Ay = comeg(arr ,a12 ... ,a1p 571)

and a = ﬁﬁazj mod gq.

— . i—=1 j=1
Am —Comck(aml yAm2 5 -+« 5, Gmn ,Tm) =

The argument is of sub-linear size; the prover will send m? commitments and 2n el-
ements from Z,, where N = mn is the total number of committed elements a;;. For
m = N'/3 this gives a size of O(N?/3)k bits.

The argument is quite complex so let us first describe some of the ideas that go into it.
In our argument, the prover will prove knowledge of the contents of the commitments.

* We can also get full zero-knowledge in the plain model. The verifier picks the common random
string as above and also picks an additional key for a trapdoor commitment scheme. The
verifier then makes engages in a zero-knowledge proof of knowledge of the trapdoor. We
can now use the standard techniques for converting honest verifier zero-knowledge arguments
to full zero-knowledge arguments [T0/T8I22]]. By running the two proofs in parallel, the round
complexity is only 8. Note, however, that since the verifier must know the secret trapdoor of
the additional commitment scheme, the protocol is no longer public coin.

Sub-linear Zero-Knowledge Argument for Correctness of a Shuffle 387

For the sake of simplicity we will first describe the argument assuming the prover knows
the contents of the commitments and by the computational binding property of the
commitment scheme is bound to these values. We will also for the sake of simplicity
just focus on soundness and later when giving the full protocol add extra parts that will
give us honest verifier zero-knowledge and witness-extended emulation. (Note that even
completeness and soundness alone are nontrivial to achieve when considering sublinear
communication arguments.)

Consider first commitments Ay, ..., A,, as described above. The verifier will pick a
random challenge s1, . . ., Sy,. By the homomorphic property
m m m m
H Al = comck(z Silily .-, Z $iQin; Z 8iTi)-
i=1 i=1 i=1 i=1

In our argument the prover will open this commitment multi-exponentiation as f; :=
Z;il Siily - -y f’n = Zz 1 Silin, 2 1= Z?il SiT.

Consider now the case where we have three sets of commitments
{A} 2 ABe L, {Cie} 2~ containing respectively m X n matrices
A,B and m? x n matrix C. The verifier will choose random challenges
S1y.-s8mst1,...,t;m < Zg. The prover can open the commitment products
T, A TS, By, TI, Hz L Ot as described above. This gives us for each of
thencolumns

m m m m
fi= E sia;; , Fji= E tebe; , @5 = E E Sitecip;.
i=1 =1 =1 /=1

In our proofs the verifier will check for each column that ¢; = f; F;. These checks can

be seen as quadratic equations in variables S1, ..., Sy, t1, ..., I, of the form
m m m m
(Z Siaij)(z tgbg; ZZS'tgcigj.
i=1 (=1 i=1 =1

If cioj = a;5be; for all ¢, £, 5 the check will always pass, whereas if this is not the case,
then by the Schwartz-Zippel lemma there is overwhelming probability over the choice
of s1,...,Sm,t1,...,ty, that the check will fail. (This type of checking is also used in
the Hadamard-based PCP of Arora et al. [3]].) We therefore have an argument for Cj;
being a commitment to {a;;b;; };?:1. The commitments Cyy for i # £ are just fillers that
make the argument work, we will not need them for anything else. In the argument we
only reveal O(n) elements in Z, to simultaneously prove N = mn equalities ¢;;; =
a;;b;;; this is what will give us sub-linear communication complexity.

Let us now explain how we choose the matrix B. For1 < T < m,1 < J <n
we set bry = H H L ai - H‘le ar;. This means that B is a matrix chosen
such that b;; is the prev10us element in the matrix B multiplied with a;;. In particular,
we have by, = [, H?:l a;; = a. In addition, we will have an extra column with
bip := land for 1 < i < m : bjg := bj—1 . In other words, the Oth column vector
is the nth column vector of B shifted one step down. The prover will make a separate
set of m commitments B, ..., B,, to this column. Choosing B} := com,(1;0) it

388 J. Groth and Y. Ishai

is straightforward to verify that b1p = 1. To show that the rest of the Oth column is
correctly constructed the prover will open Hzn:_; (Bj)t=* to the message F}, —t,,a. The
linear equations give us ZZ:QI to—1beo + tma = > ;- tebey, which by the Schwartz-
Zippel lemma has negligible probability of being true unless b, = a and by41,0 = ber,
forl </ <m. _

We have now described B extended with a Oth column vector. Write B for the matrix
with the Oth column and the first n — 1 columns of B. We will apply the A, B, C' matrix
argument we described before to the matrices A, B, C', where we use commitments
Ci; := B;. This argument demonstrates for each 1 < j < n that b;; = a;;b; 1.
Putting everything together we now have: b1g = 1,b;; = a;;0;;—1,bi0 = bi—1,, and
bimn = a, which is sufficient to conclude that a = []}", H;L:1 aij.

We will now describe the full protocol. The most significant change from the descrip-
tion given above is that we now add also elements aoj, bo; that are chosen at random to
the matrices. The role of these elements is to give honest verifier zero-knowledge. The
prover reveals elements of the form f; := agj+ .-, sia;j and Fj := boj+>_,~ tebe;,
which reveal nothing about Y. | s;a;; and Y, , tbs; when ag; and by are random.

Initial message

ag1, ..., Qon < Lg ; 10 + Rek ;5 Ao 1= comer(ao1, ao2, - - ., on;T0)
I—1 n J
For1<I<m,1<J<n:by:=][- Il ay - [Tj=ar
b01,...,b0n<—Zq; 7’1,0,7"1,1...77’bm<—7?,ck
Bo = COmck(b(n ,bog, go e ,bon ;Tbo)
By :=comeg(bi1 ,b12,... ,bin ;7p1)
By, i=comek (b1 s0m2 5+ 5 bimn ; Tom)

Define blO = 1, b20 = blna ey me = bm—l,n

rhy o vt — Rep ; By = comeg(bag;rh), ..., B, := comeg (bmo; 70,)
boo «— Zyg ; 16 — Rek ; Bl := comey (boo; ()

7 Rek 3 B := comeg(bon; 7)

ForO0<i,/<m : ry«— Repandforl <i<m : ry = ry.
For0<i,/<m:

Ci¢ = come(@i1beo, - - -, Qinben—1;7ic)

Since bij = aijbi,j,1 and r;; = rp; we have for 1 < i < m that C;; = B;.
Send (Ao, Bo, By, By, ..., B.,,, B, Cop, - .., Crm) to the verifier
Challenge: si,...,8m,t1,...,tm — Z4
Answer
Forl1 <j3<n : fj = agp; + Z:il SiQij ; Fj = boj + z;n:l t@bgj s Fy =
boo + Y-y tebeo
2= 10+ Yo STy 26 = Tho + Dopeq tethe 5 2=y A+ Y Lo ter) s 2=
P4+ g te-17y
Zab 1= T00 + iy SiTio + Dopey teTor + Doty Dopey SiteTic
Send (f1,..., fn, Fo, -, Fn, 2, 2b, 2", 2, 2ap) to the verifier

Sub-linear Zero-Knowledge Argument for Correctness of a Shuffle 389

Verification
Check Ao [Ti2, AY = comer(f1,- .-, [2)
For 1 < ¢ < mset By := cg. Check By [[)~, B}® = comey(Fh,. .., Foizp)
Set B} := comc(1;0). Check B [T~ (B})" = comi(Fp; 2').
Check B[, (B))t—* = comex(F, — ta;2)
Check

COO : HC:(; : H C(% : H Hcféte = Comck(leOa .- -7ann—1;Zab)
i=1

(=1 i=1/4=1

Theorem 1. The protocol described above is a 3-move public-coin perfect SHVZK ar-
gument of knowledge of a;; and r; such that a = T[], H;l:l ai; and for all i we have
Ai = comck(aﬂ, ceey Qgms TZ‘).

The proof can be found in the full paper [23].

4 Committed Permutation of Known Elements

Consider a vector of commitments By, ..., By, and a set of values {a;;};1" ;_; . In this
section we will give an argument of knowledge of m € X' and {r; }/, such that:

By = Com(:k(aﬂfl(ll) y Ar=1(12) 5+ -+, Ax—1(1n) ;Tl)

B, = Comck(aﬂ*1(7n1) y Ar=1(m2) 5+ -+ s Ax—1(mn) ;Tm)

(Here we identify [N] with [m] x [n].)

Our argument uses Neff’s idea [30]], which is to let the verifier pick a value = at
random and let the prover argue that the committed values b;; satisfy [[, []}_, (z —
bij) = I[;~, [1j=, (x — aij). If the committed b;; are a permutation of a;; this equation
holds, since polynomials are invariant under permutation of their roots. On the other
hand, if b;; are not a permutation of a;;, then by the Schwartz-Zippel lemma there is
negligible chance over the choice of x for the equality to hold.

Initial challenge: x < Z,

Answer: Define B} := com(z,...,z;0)By Y, ..., B, = come(z,...,2;0)B;"
and a := [[", H;‘L:l(x — aij)-
Make a 3-move argument of knowledge of openings of Bf,..., B/ such that the

product of all the entries is a.

Theorem 2. The protocol is a 4-move public coin perfect SHVZK argument of knowl-
edge of a;j, i, ™ such that B; := comcg(Ar—1(i1)s - -+ » Qr—1(in); Ti)-

We refer to the full paper for a proof.

390 J. Groth and Y. Ishai

5 Multi-exponentiation to Committed Exponents

Consider a set of commitments A, ..., A,,, a matrix of ciphertexts 11, ... Emn and
a ciphertext I. In this section we will give an argument of knowledge of {aw Fiet =1
{r;}, and R such that:

Ay =come(air a2, ... 01, i71)

and E = E,;(1;R) ﬁﬁ i

Am = Comck(aml s Am2 5+ ooy Amn ;rm)
The argument will contain m?2 commitments, m?2 ciphertexts and n elements in Z,,
where N = mn. Choosing m = N''/3 gives acommunication complexity of O(N?/3)x
bits.

When describing the idea, let us first just consider how to get soundness and ig-
nore the issue of zero-knowledge for a moment. In the argument, the prover will prove
knowledge of the committed exponents, so let us from now on assume the committed
values are well-defined. The prover can compute m? ciphertexts

Dy - HE“”~

We have E = Ep.(1; R)[[}2, Dis = Epi(1; R)TTZ, [T)—, E;;”. Ignoring R that
can be dealt with using standard zero-knowledge techniques all that remains is for the
verifier to be convinced D;; have been correctly computed. For this purpose the verifier
will select challenges t1, . . ., t,, < Z, atrandom. The prover will open HZL Af” to the
values f1 := > " tiait, ..., fo i= > v, tiai,. The verifier now checks for each 1 <
¢ < mthat [T, Eg; = [Ii~, D} Writing this out we have [T}, ([T}, E;;’)" =
[1;", D%. Since t; are chosen at random, there is overwhelming probability for one of
these checks to fail unless for all , £ we have Dy, = [[}_, Ey;’.

In the argument, we wish to have honest verifier zero-knowledge. We will there-
fore multiply the D;, ciphertexts with random encryptions to avoid leaking information
about the exponents. This, however, makes it possible to encrypt anything in D,y, so
to avoid cheating we commit to the plaintexts of those random encryptions and use the
commitments to prove that they all cancel out against each other.

Initial message
a1, - -5 Qon < ZLg ; To < Rek 5 Ao = comer(ao1, aoz, - - CLOn;?“o)

b017~'~ bmmHZq;rOhnwrmm‘_Rcka mm ::_Z na "mm ‘=

~ X T

Co1 = come(bo1;701) Com = comg (bom; Tom)

le = Comck(bml; Tml) cee C(mm = COIMgck (bmma Tmm)

Sub-linear Zero-Knowledge Argument for Correctness of a Shuffle 391

Rots-- s Ry — Rk ; Rnm == R— 377" Ry

Doy = Epi(9**; Ror) [T}y EYj” - Dom = Epi(9”™; Rom) [17-, Er}

-Dml = Epk(gbml;le)H;’:l Ef‘]’”” e -Dmm = pk(gb"””; Rmm)H?:l E:ln?j

Send (Ao7 Coty-o s Copm, Doty oo oy Dmm) to the verifier
Challenge: t1,...,t,, «— Z,
Answer
Forl<j<mn : fj:=agj+ Y ioqtiqij; 2: =10+ Y i tirs
Forl < /¢ <m :F;, := by + Z:il tibie 3 zo = Tor + Z:il tirie 3 2o =
Roe+ Y0t tiRie
Send (f1,..y fus Py ooy Finy 2,215« ooy Zmy Z1, - -+, Zi) to the verifier
Verification
Check Ag %, AV = comer(f1,-- -, fn; 2)
For 1 < ¢ < m check

Cor [[Cli = come(Fisze) and En(g™; Zo) [] B = Doc [] DY
i=1 j=1 i=1

Check [~ Cyi = come(0;0)
Check F = H?il Dii

Theorem 3. The protocol above is a 3-move public coin perfect SHVZK argument of
knowledge of ai1,...,Qmn,T1,...,Tm, R so E = Eu(1;R)[[i~, H;L:l EZ»“ and
A; = comep (@i, .oy Qin; Ti)-

We refer to the full paper for the proof.

6 Shuffle Argument

Given ciphertexts {e;; };=1,—, and {E;};"7,_; we will give an argument of
knowledge of 7 € Xy and {R;;};2),_, such that for all i,j we have E;; =
ex—1(ij) Epk (1; Rij). The most expensive components of the argument will be a prod-
uct of committed elements argument and a multi-exponentiation to committed elements
argument described in the previous sections. The total size of the argument is therefore
O(m? + n)r bits, where N = mn. With m = N'/3 this gives an argument of size
O(N?/3)x bits.

The argument proceeds in seven steps. First the prover commits to the permutation
7, by making a commitment to 1, ..., /N in permuted order. Then the verifier picks
challenges s1, ..., s, t1,...,t, atrandom. The prover commits to the challenges s;t
in permuted order. The prover now proves that she has committed to s;Z; permuted in
the same order as the permutation committed to in the initial commitment. The point of
the argument is that since the permutation is committed before seeing the challenges, the
prover has no choice in creating the commitment, the random challenges have already
been assigned unique slots in the commitment.

392 J. Groth and Y. Ishai

The other part of the argument is to use the committed exponentiation technique to

show that [T, T}, s’ = Ep(LR) [T, J ETS:(Z;) for some known R. If we

look at the plaintext, this implies [[;”, [[}_, m Slt] =115, 1T MTS{,“;; With the
permutation fixed before the challenges are chosen at random there is overwhelming

probability that the argument fails unless for all 4, j we have M;; = m—1(;5).

Initial message: The prover sets a.(;;y := m(i — 1) + j. The prover picks
Tals- .-y Tam < Rek and sets
Ay = Comck(an y @12 5.+ 5 Aln ;Tal)
Am = Comck(aml ;Am2 5+ -+ 5 Amn ;Tam)
First challenge: si,...,5,,,t1,...,t, «— Zq4
First answer: We define b, ;) := s;t;. The prover picks rp1, ..., 7pn < Rex and sets
By = comeg(bi1 ,b12 5. .. b1y 5701)
Bm = Comck(bml 7bm2 PR 7bmn ;rbm)

Second challenge: \ — 7Z,

Answer: Make a 4-move argument of knowledge of @ € X and openings of
A} By, ..., A} B, so they contain a permutation of the N values A\(m(i — 1) +
J) + s;t;. Observe, the first move of this argument can be made in parallel with the
second challenge so we only use three additional moves.
Make a 3-move argument of knowledge of b;;, 74, 12 50

By = comeg(b11 ,b12, ... ,b1n ;761)

Bm - Comck(bml 7bm2 PR abmn ;Tbm)

m n m n

and [[]]e" =EaR)]I B

i=1j=1 i=1j=1

Theorem 4. The protocol is a 7-move public coin perfect SHVZK argument of knowl-
edge of m € X and R;j € Ry, 50 Eij = €15 Epr(1; Rij).

We refer to the full paper for the proof.

7 Efficient Verification

The small size of the argument gives a corresponding low cost of verification. There are,
however, 2N ciphertexts that we must exponentiate in the verification. In this section
we show that the verifier computation can be reduced to making multi-exponentiations
of the ciphertexts to small exponents.

Sub-linear Zero-Knowledge Argument for Correctness of a Shuffle 393

7.1 Prover-Assisted Multi-exponentiation

In our shuffle argument, the verifier has to compute

m n

[T11<"

i=1j=1

The prover can assist this computation by computing D1, ..., D,, as D; := [[\", CH
The verifier can then compute

What remains is for the verifier to check that the ciphertexts are correct, which can be

done by verifying
n
.

[1 =TI

j=1 i=1 j=1
for randomly chosen «;. Since the check is done off-line, the verifier can use small ex-
ponents «;, say, 32-bit exponents. This trick reduces the amount of verifier computation
that is needed for computing [, [T\, efj % to one m-exponentiation to exponents
from Z, and m + 1 n-exponentiations to small exponents.

When m is small, this strategy may actually end up increasing the communication
complexity of the shuffle. However, the exact same method can be employed when we
let the verifier compute the t;-values as products the n products of ¥y, ...,%,, and
Tiy...,Tn, Where n = ning. If we choose ny = V/N for instance, we get that the
prover only sends /N ciphertexts to the verifier. The verifier then makes v/N-multi-
exponentiations to small exponents o, ..., « /.

7.2 Randomized Verification

In the argument for multi-exponentiation to committed exponents, the verifier must
check m equalities of the form

(9™ z0) [1 Bl = Doe T DY
=1 i=1

This can be done off-line in a randomized way by picking o, ..., a,, at random and
testing whether

m n m fi m n
Epk(gZL’;l“fF‘;Zan/ H(HEZZ> :H Epk(gF‘];Zf)HEZ;

=1 j=1

(=1

m m ti
:HD(?;H(HD%) |

(=1

Qg

(=1

This way, we make n m-multi-exponentiations to small exponents oy and one n-multi-
exponentiation to larger exponents f;.

394 J. Groth and Y. Ishai
8 Comparison

Let us compare our shuffle argument with the most efficient arguments for correctness
of a shuffle of ElGamal ciphertexts in the literature. Furukawa and Sako suggested
an efficient argument for correctness of a shuffle based on committing to a permutation
matrix. This scheme was further refined by Furukawa [15]. We will use Groth and
Lu’s [24] estimates for the complexity of Furukawa’s scheme. Neff gave an
efficient interactive proof for correctness of a shuffle. Building on those ideas Groth
suggested a perfect SHVZK argument for correctness of a shuffle. Our shuffle
argument builds on Neff’s and Groth’s schemes.

We will compare the schemes using an elliptic curve of prime order q. We use
|g] = 256 so SHA256 can be used to choose the public coin challenges. We measure
the communication complexity in bits and measure the prover and verifier computation
in single exponentiations. By this we mean that in all schemes, we count the cost of a
multi-exponentiation to n exponents as n single exponentiations. We compare the most
efficient shuffle arguments in Table [l Section [7] offer a couple of speedup techniques.

Table 1. Comparison of shuffle arguments for N = mn ElGamal ciphertexts

Elliptic curve Furukawa-Sako Groth Furukawa proposed
Group order: |g| = 256 117] 210 [13124]

Prover (single expo.) 8N 6N TN 3mN + 5N
Verifier (single expo.) 10N 6N 8N 4N + 3n
Prover’s communication (bits) 1280 N T68N T68N 768m?2 + 768n
Rounds 3 7 3 7

If we employ the randomization techniques from Section [7] then the prover’s cost in-
creases by 2NV exponentiations, whereas the verifier’s complexity reduces to 4N small
exponentiations and m? + 3n exponentiations to full size exponents from Z,.

For all schemes it holds that multi-exponentiation techniques can reduce their cost,
see e.g. Lim [27]]. We refer to the full paper of Groth [21]] for a discussion of random-
ization techniques and other tricks that can be used to reduce the computational com-
plexity of all the shuffle arguments. An additional improvement of our scheme is to let
the prover assist the verifier in computing the multi-exponentiation [T;*, []}_, € b
see Section [71 Table 2] has back-of-the-envelope estimates when we compare an op-
timized version of our scheme to that of Groth [21]]. We assume that we are shuffling
N = 100, 000 ElGamal ciphertexts with parameters m = 10, n = 10,000 so N = mn.

Table 2. Comparison of shuffle arguments for 100, 000 ElGamal ciphertexts

Groth [21]) proposed
Prover’s computation 18 - 10° mults (18 sec.) 143 - 10° mults (143 sec.)
Verifier’s computation 14 - 10° mults (14 sec.) 5 - 10° mults (5 sec.)
Prover’s communication 77 Mbits 8 Mbits

Sub-linear Zero-Knowledge Argument for Correctness of a Shuffle 395

We count the computational cost in the number of multiplications. In parenthesis we
are giving timing estimates assuming the use of equipment where a multiplication takes
1us, which is conservative given today’s equipment. We only count the cost of the shuf-
fle argument in Table 2] not the cost of computing the shuffle or the size of the shuffle
(51 Mbits).

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Abe, M.: Universally verifiable mix-net with verification work independent of the number

of mix-servers. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 437-447.
Springer, Heidelberg (1998)

. Abe, M., Hoshino, F.: Remarks on mix-network based on permutation networks. In: Kim,

K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317-324. Springer, Heidelberg (2001)

. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hard-

ness of approximation problems. Journal of the ACM 45(3), 501-555 (1998)

. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP. Journal

of the ACM 45(1), 70-122 (1998)

. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)

CRYPTO 1992. LNCS, vol. 740, pp. 390-420. Springer, Heidelberg (1993)

. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient

protocols. In: ACM CCS, pp. 62-73 (1993)

. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Short PCPs verifiable

in polylogarithmic time. In: IEEE Conference on Computational Complexity, pp. 120-134
(2005)

. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. Journal of

Computer and System Sciences 37(2), 156—189 (1988)

. Cramer, R., Damgérd, 1., Schoenmakers, B.: Proofs of partial knowledge and simplified de-

sign of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839,
pp. 174-187. Springer, Heidelberg (1994)

Damgérd, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Preneel,
B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418—430. Springer, Heidelberg (2000)
Damgérd, I, Fujisaki, E.: A statistically-hiding integer commitment scheme based on groups
with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125-142.
Springer, Heidelberg (2002)

Dinur, I.: The PCP theorem by gap amplification. Journal of the ACM 54(3) (2007)
ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory 31(4), 469-472 (1985)

Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature
problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186—194. Springer,
Heidelberg (1986)

Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. 88-A(1), 172-188 (2005)

Furukawa, J., Miyauchi, H., Mori, K., Obana, S., Sako, K.: An implementation of a univer-
sally verifiable electronic voting scheme based on shuffling. In: Blaze, M. (ed.) FC 2002.
LNCS, vol. 2357, pp. 16-30. Springer, Heidelberg (2002)

Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 368-387. Springer, Heidelberg (2001)

Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge protocols using sig-
natures. Journal of Cryptology 19(2), 169-209 (2006)

396

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

J. Groth and Y. Ishai

Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: FOCS, pp.
102-113 (2003), http://eprint.iacr.org/2003/034

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proofs.
SIAM Journal of Computing 18(1), 186-208 (1989)

Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145-160. Springer, Heidelberg (2002),
http://eprint.iacr.org/2005/246

Groth, J.: Honest verifier zero-knowledge arguments applied. Dissertation Series DS-04-3,
BRICS, PhD thesis. pp. xii+119 (2004)

Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle (2008),
http://www.brics.dk/~jg/PCPShuffle.pdf

Groth, J., Lu, S.: Verifiable shuffle of large size ciphertexts. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 377-392. Springer, Heidelberg (2007)

Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs. In: CCC,
pp- 278-291 (2007)

Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: STOC, pp. 723-732
(1992)

Lim, C.H.: Efficient multi-exponentiation and application to batch verification of digital sig-
natures (2000),

http://dasan.sejong.ac.kr/~chlim/pub/multi exp.ps

Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation. Journal
of Cryptology 16(3), 143-184 (2003)

Micali, S.: Computationally sound proofs. SIAM Journal of Computing 30(4), 1253-1298
(2000)

Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: ACM CCS, pp.
116-125 (2001)

Neft, C.A.: Verifiable mixing (shuffling) of EIGamal pairs (2003),
http://www.votehere.net/vhti/documentation/egshuf.pdf

Nguyen, L., Safavi-Naini, R., Kurosawa, K.: A provably secure and effcient verifiable shuffle
based on a variant of the Paillier cryptosystem. Journal of Universal Computer Science 11(6),
986-1010 (2005)

Nguyen, L., Safavi-Naini, R., Kurosawa, K.: Verifiable shuffles: a formal model and a
Paillier-based three-round construction with provable security. International Journal of In-
formation Security 5(4), 241-255 (2006)

Onodera, T., Tanaka, K.: Shufle for Paillier’s encryption scheme. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. E§8-A(5), 1241-1248 (2005)

Paillier, P.: Public-key cryptosystems based on composite residuosity classes. In: Stern, J.
(ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-239. Springer, Heidelberg (1999)
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129-140. Springer, Heidelberg
(1992)

Sako, K., Kilian, J.: Receipt-free mix-type voting scheme - a practical solution to the imple-
mentation of a voting booth. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995.
LNCS, vol. 921, pp. 393—403. Springer, Heidelberg (1995)

Wikstrom, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 273-292. Springer, Heidelberg (2005)

http://eprint.iacr.org/2003/034
http://eprint.iacr.org/2005/246
http://www.brics.dk/~jg/PCPShuffle.pdf
http://dasan.sejong.ac.kr/~chlim/pub/multi_exp.ps
http://www.votehere.net/vhti/documentation/egshuf.pdf

	Sub-linear Zero-Knowledge Argument for Correctness of a Shuffle
	Introduction
	Preliminaries
	Notation
	Group Generation
	Generalized Pedersen Commitment
	ElGamal Encryption
	Special Honest Verifier Zero-Knowledge Arguments of Knowledge
	Problem Specification and Setup
	Polynomial Identity Testing

	Product of Committed Elements
	Committed Permutation of Known Elements
	Multi-exponentiation to Committed Exponents
	Shuffle Argument
	Efficient Verification
	Prover-Assisted Multi-exponentiation
	Randomized Verification

	Comparison

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

