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Abstract. Interpolating provers have a variety of applications in verifi-
cation, including invariant generation and abstraction refinement. Here,
we extended these methods to produce universally quantified interpolants
and invariants, allowing the verification of programs manipulating arrays
and heap data structures. We show how a paramodulation-based satura-
tion prover, such as SPASS, can be modified in a simple way to produce
a first-order interpolating prover that is complete for universally quanti-
fied interpolants. Using a partial axiomatization of the theory of arrays
with transitive closure, we show that the method can verify properties
of simple programs manipulating arrays and linked lists.

1 Introduction

An interpolating prover derives an interpolant for a pair (or in general a se-
quence) of logical formulas from a proof of unsatisfiability of those formulas. An
interpolant for a pair of formulas (A, B) is a formula over their common vocab-
ulary that is implied by A and inconsistent with B. Interpolating provers have
been used to generate inductive invariants for proving properties of sequential
circuits [7] and sequential programs [9], as well as abstraction refinement [4].
However, their use so far has been limited to propositional logic (with a Boolean
satisfiability solver) or quantifier-free first-order logic for fixed theories (with
a ground decision procedure) [8]. While effective, these methods are strongly
limited in their ability to handle programs manipulating arrays and heap data
structures because these generally require quantified invariants.

In this paper, we show how to modify a paramodulation-based prover for first
order logic (FOL) with equality to produce an interpolating prover. This prover is
complete for generation of universally quantified interpolants (though the input
formulas may be in full FOL). Because it is a full first order prover, it allows
us to introduce various theories that may be useful for expressing invariants by
axiomatizing them. For example, we show that an incomplete axiomatization of
FO(TC), the first-order theory of transitive closure, allows us to verify properties
of simple heap-manipulating programs.

The primary problem that we must solve in making a practical interpolating
prover is divergence of the interpolants. That is, we generate inductive invariants
from the interpolants obtained by refuting unwindings of the program of increas-
ing length. If these interpolants diverge with increasing unwinding length (for
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example by exhibiting increasing numeric constants or function nesting depth
or number of quantifiers) then this approach fails. This problem was solved for
quantifier-free case (for certain theories) in [5]. Here, we solve the problem in a
different way, by bounding the clause language of the saturation prover. We show
that the method is complete for universally quantified invariant generation, that
is, if there is an inductive invariant proving a given property, we are guaranteed
to find one eventually.

We also show experimentally, by modifying the SPASs prover [I4] that the
method does in fact converge for some simple example programs manipulating
arrays and linked lists.

Related work. Indexed predicate abstraction [6] is a method that can generate
the strongest universally quantified inductive invariant of a program over a fixed
set of atomic predicates. However, some of these atomic predicates typically must
be provided manually, as effective selection algorithms are lacking. Moreover,
the forward image operator in this method is problematic, requiring in the worst
case an exponential number of calls to a decision oracle for first-order logic. The
method presented here does not require an image operator or a decision oracle.
It may, however, provide a useful heuristic for indexed predicate refinement.

Since the method presented here can handle FO(TC), it is comparable in
power to canonical heap abstraction [I2]. The abstract states in this method
(with reachability predicates) can be expressed as formulas in FO(TC). The
difference between the methods is therefore mainly a matter of efficiency, which
remains to be determined. However, the interpolation method has the advantage
that it does not require the user to provide instrumentation predicates manually.
It could be that interpolation in FO(TC) will be a useful approach for automated
refinement in the canonical abstraction method.

Finally, the method can also be compared to parameterized invariant gener-
ation methods such as [I3]. The main advantage of interpolation is that it can
synthesize the Boolean structure of the invariant, and it can handle heap proper-
ties using transitive closure that cannot be handled by parameterized methods.
On the other hand, the arithmetic reasoning ability of the present approach is
limited compared to these methods.

2 Background: Paramodulation Calculus

Paramodulation [I1] is the method of choice for proving first order formulas
with equality. We begin by describing the basic principles of saturation provers
based on paramodulation. This is necessarily a quick review. The material in
this section is derived from an excellent article by Niewenhuis and Rubio [10],
to which the reader is referred for greater depth.

Preliminaries. Let Y be a countable vocabulary of function and predicate
symbols, with associated arities. Function symbols with arity zero will be called
constants. We assume that X' contains at least one constant. We will use meta-
variables f, g, h to represent function symbols, a, b, ¢ to represent constants, and
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P, @ to represent predicate symbols. We will also distinguish a finite subset X
of X as interpreted symbols. In particular, we assume that Y'; contains the binary
predicate symbol >~ representing equality. Let V be a countable set of variables,
distinct from Y. We will use U,V to represent variables. The set of terms 7 is
the least set such that ¥V C 7 and for every function symbol f of arity k, and
terms t1 ...t € T*, we have f(t1,...,tx) € 7. We will use s, (and sometimes
I,7) to represent terms. The vocabulary of a term or formula ¢, denoted L(¢)
is the set of uninterpreted symbols occurring in ¢. If S is a vocabulary, we let
7 (S) denote the set of terms ¢ such that L(t) C S. Similarly, £(.5) is the set of
first-order formulas ¢ such that L(¢) C S. We will also write £(¢) for L(L(¢)).

An atom is P(t1,...,tx), where P is a k-ary predicate symbol and 1, ...,
are terms. A literal is an atom or its negation. A clause is a disjunction of literals
in which the variables are implicitly universally quantified. Following tradition,
we will write clauses in the form I — A, where I is the multiset of negative
literals in the clause, and A is the multiset of positive literals. Also following
tradition, we will write a formula multiset as list of formulas and formula mul-
tisets. Thus, if I" is a multiset of formulas and ¢ a formula, then I, ¢ represents
ru{s}.

A substitution ¢ is a map from variables to terms. For any term of formula
¢, we write ¢o to indicate the simultaneous substitution in ¢ of o(U) for all
free occurrences of U, for all variables U in the domain of ¢. A formula or term
is said to be ground if it contains no variables. A substitution is ground if all
terms in its range are ground. The ground instances of a clause C' are all the
clauses C'o, where o is a ground substitution over the variables in C. A position
p is a finite sequence of natural numbers, representing a syntactic position in a
term or formula. If ¢ is a formula or term, then ¢|, represents the subformula
or subterm of ¢ at position p. Thus, ¢|. is ¢ itself, ¢|; is the i-th argument of ¢,
¢li; is the j-th argument of the i-th argument, and so on. The notation @[],
means ¢ with 1 substituted in position p.

Paramodulation with constrained clauses. Paramodulation provers use
the concept of a reduction order to reduce that amount of deduction that is
required for completeness. For our purposes, a reduction order > is a total, well-
founded order on ground terms that is monotonic and has the subterm property.
Monotonicity means that whenever ¢ > 12, we have @[¢1], > P[¢2],. The
subterm property says that ¢ = ¢|, for all p # €. A reduction order can be
extended to finite multisets of formulas. Given two multisets S and S/, we say
S = 8" if S(¢) > S'(¢), where ¢ is the maximal formula such that S(¢) # S’(¢).
This allows us to totally order the ground clauses with respect to >.

We will be concerned here with refutation systems that take a set of clauses,
and try to prove that the set is unsatisfiable by deriving the empty clause (equiv-
alent to false). For purposes of refutation, a clause with variables is logically
equivalent to the set of its ground instances (this is a consequence of Herbrand’s
theorem). Thus, it is useful to think of a clause with variables as simply a pat-
tern abbreviating a countable set of ground clauses. To describe the operation
of a paramodulation prover, it is useful to introduce the notion of a constrained
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clause. This is written in form C' | T where C' is a clause, and T is a constraint.
The constraint is usually a conjunction of constraints of the form s =t or s > ¢,
where s and ¢ are terms or atoms. For a given ground substitution o, s = ¢ means
so and to are the syntactically equal, and s > t means so > to. The interpre-
tation of C' | T is the set of all ground instances Co of C such that To is true.
For example, P(U,V) | U > a means that P holds of all pairs of ground terms
U,V , such that U > a. Note that a clause with an unsatisfiable constraint is by
definition equivalent to true and an empty clause with a satisfiable constraint is
equivalent to false.

An inference is the derivation of a constrained clause (the conclusion) from a
multiset of constrained clauses (the premises) and is written in this form:

Cy|Ty...Co| T
D|T

An inference rule is a pattern that finitely describes a set of valid inferences. For
example, here is the rule for resolution:

F—>A,¢|T1 F/,d)/—>A/|T2
NI —AAN | ¢=¢ NTLAT,

Note that because of the constraint ¢ = ¢’ in the conclusion, every ground in-
stance of this inference is valid. Most resolution provers eliminate the constraint
¢ = ¢’ by substituting with o, the most general unifier of ¢ and ¢’, yielding
(I — A Ao | (Th ATz)o. If ¢ and ¢ cannot be unified, the conclusion’s
constraint is unsatisfiable, and the inference is discarded. In the sequel, we will
omit the constraints on the premises and take it as implied that these constraints
are inherited by the conclusion.

For refutation in the theory of equality, most modern provers use a super-
position calculus (since resolution, though complete, is very inefficient for this
purpose). This is based on substitution of equals for equals. Here is an example
of a superposition inference:

P—fl)=y Q—-z=2
P.Q— f(z)=y

We say we have performed superposition with * = z, into f(z) = y. This ap-
proach can generate an enormous number of inferences. However, we can reduce
this chaos by using ordered superposition. That is, we only need to perform the
above inference if x and f(x) are mazimal terms in their respective clauses, with
respect to >. Intuitively, we are always rewriting downward in the order. The
inference rules for ordered superposition are as follows:

S rposition right: [—aset "= A lr
SUPCIPOSIHON TN 1 v A A slrly >t | sl = 1A OC
Msct—A ' A~y

superposition left: [T, s[r], ~t— AA | s|,=1A0C



Quantified Invariant Generation Using an Interpolating Saturation Prover 417

Is~t— A
I'—-A|s=tNOC

' - s~t s ~t A
tV—s=t',Als=5AN0C

The equality resolution rule enforces reflexivity of equality, while the equality
factoring rule eliminates redundant equalities. In each rule, OC is an ordering
constraint. These constraints are not necessary, but they reduce the number
of possible inferences greatly without sacrificing completeness. From our point
of view, the only thing we need to know about OC is that it implies in the
superposition rules that s and [ are maximal terms in their respective clauses.
Details can be found in [10].

We will call this system of inference rules Z,, where > is the reduction ordering
used in the ordering constraints. Given any unsatisfiable set of “well-constrained
clauses”, Z.. can derive false. The notion of “well-constrained” is too technical
to present here (see [10]). We note only that clauses with constraints of the form
a < U are well-constrained, which is all the we require for present purposes. To
be more precise, we have:

equality resolution:

equality factoring: It~

Theorem 1 ([10]). For any reduction order =, system T, is complete for refu-
tation of well-constrained clause sets with equality.

Note that this system handles only equality predicates. However, we can in
principle translate any other predicate symbol P into a function symbol, such
that P(z,y,...) is equivalent to P(x,y,...) = t, where ¢ is a symbol representing
“true”. Thus in principle, equality predicates are sufficient. In practice, provers
typically retain arbitrary predicate symbols and also implement resolution.

Redundancy and saturation. A saturation prover has inference rules that
deduce new clauses, and also reduction rules that delete redundant clauses. The
prover is said to reach saturation when any new inference from existing clauses
can be deleted by the reduction rules.

Relative to a set .S of derived clauses and a reduction order >, a clause C'is said
to be redundant when it is entailed by clauses in S that are less than C'. A more
general notion is redundancy of inferences. An inference I is said to be redundant
when its conclusion is entailed by clauses in S less than the maximal clause in
its premises (for all ground instances satisfying its constraint). Intuitively, by
deleting a redundant inference, we “postpone” the deduction of its conclusion
(or lesser clauses entailing it). However cannot postpone its derivation infinitely,
since the reduction order is well-founded.

A saturation prover starts with a set of “usable” clauses U, and an empty set
of “worked off” clauses W. At each iteration of its main loop, it removes a clause
G from U, called the given clause. Reduction rules are applied to G (possibly
adding derived clauses to U). If G is not deleted, all possible inferences using G
and some set of clauses from W are then generated, and G is added to W. If U
becomes empty, then W is saturated.

The main results about saturation provers that are of interest here are the
following:
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1. If the set of inference rules is complete, and if only redundant inferences
are deleted, and if the selection of given clauses is fair, then the saturation
prover is complete for refutation.

2. Moreover, if any clause C' is entailed by the original clauses, then eventually
it is entailed by clauses in W that are less than C' in the reduction order.

To express rules for deleting redundant inferences, we will introduce a notation

for replacement rules. These have the form [ E , where I is an inference,
S is a clause set and J is a set of (sound) inferences. The intuitive meaning
of a replacement is that, if clauses S are proved, adding inferences J makes
inference I redundant. As an example, if Q > a = b > P, the following is a valid
replacement:
P P —Q(a) a=b P—Q(a) a=b
Q(a) P —Q()

That is, since P — @Q(a) is greater than P, P — Q(b) and a = b, and these
imply Q(a), we have a valid replacement. For each given clause G, the prover
checks whether I, the inference that produced G, can be deleted and replaced by
other inferences J, using a replacement rule. Since this adds only valid inferences
and deletes only redundant ones, both soundness and completeness are preserved.

3 Interpolants from Superposition Proofs

Given a pair of formulas (4, B), such that A A B is inconsistent, an interpolant
for (A, B) is a formula A with the following properties:

— A implies A,
— 4 A B is unsatisfiable, and
— AC L(A)NL(B).

The Craig interpolation lemma [3] states that an interpolant always exists for
inconsistent formulas in FOL.

We now show how to use a saturation prover to generate universally quan-
tified interpolants from arbitrary formulas in FOL. The approach is based on
generating local proofs:

Definition 1. An inference is local for a pair of formulas (A, B) when its
premises and conclusions are either all in L(A) or all in L(B). A proof is local
for (A, B) when all its inferences are local.

From a local refutation proof of A, B, we can derive an interpolant for the pair
in linear time [B]. This interpolant is a Boolean combination of the formulas in
the proof.

Unfortunately, it is easily shown that the superposition calculus described
above is not complete if we restrict it to local proofs. Consider the case where A
consist of the clauses Q(f(a)) and =Q(f (b)), while B contains f(V) = cand b, c €
L(B). An interpolant for (A, B) is f(a) % f(b). However, no local superposition
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inferences are possible for these clauses. To solve this problem, we show that
by choosing the precedence order appropriately and adding a replacement rule,
we can force all the inferences to be local without sacrificing completeness, so
long as A and B have an interpolant in Ly. This yields a complete procedure
for generating universally quantified interpolants.

Definition 2. A reduction order = is oriented for a pair of formula sets (A, B)
when, for all terms or formulas ¢1,d2 over L(A,B), if &1 ¢ L(B) and ¢2 €
[,(B), then (bl - ¢2.

Intuitively, as we descend the order, we eliminate the symbols that occur only
in A. One way to construct an oriented reduction order is to use the standard
RPOS (recursive path ordering with status), setting the precedence order so that
the symbols in L(A) \ L(B) precede all the symbols in L(B).

Now let us consider again our example of of incompleteness of local superpo-
sition. In this example, although no local superposition inferences are possible,
we can make the non-local inference Q(f(a)), f(V) =~ ¢ - Q(c). We can then
make the following replacement:

QUf(a) f(V)=c Q(f(a))
Qo) fla)~U —=QU) | fla) >U

where U is a fresh variable. This replacement is valid for the following reasons.
First, the right-hand inference is sound (that is, if ¢ holds of f(a), then @
holds of any U equal to f(a)). Second, the conclusion on the right, f(a) ~
U— QW) | f(a) > U, when resolved with f(V) =~ ¢, gives us Q(c). Thus, the
conclusion on the left is implied by proved clauses. Moreover, those clauses are
both less than Q(f(a)) in the reduction order, given the constraint f(a) > U.
That is, the conclusion on the left is implied by derived clauses less than its
maximal premise. This means that adding the right inference makes the left one
redundant.

We can now continue to construct a fully local refutation for our example
problem, using replacements of this type:

1. = Q(f(a)) (hypothesis from A)
2. = f(V)~c¢ (hypothesis from B)
3. fla)=U — QU) (superposition in 1 with 2, with replacement)
4. Q(f (b)) — (hypothesis from A)
5. f(b) ~U, QUU) — (superposition in 4 with 2, with replacement)
6. fla)=U, f(b)~U — (resolution of 3 and 5)
7. f(b) 2c— (resolution of 6 and 2)
8. — (resolution of 7 and 2)

Notice that the replacement allowed us to postpone the superposition steps
until only symbols from B remained. For this reason, we will refer to this type
of replacement as “procrastination”. The procrastination rule for deletion of
superposition right inferences can be stated as follows:

I'—As~t I'"—> A l~r * I' - As~t
' — A A s[rl,~t]sl,=1A0C slp U, I — A s[Ul,~t|sl,>U
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where OC'is the ordering constraint of the superposition right rule. The asterisk
is to indicate that this rule is to be applied when p is not €, the top position.
This means that [ is a strict subterm of s, and thus s > [.

Now we argue that this rule is valid. Call the left inference L and the right
inference R. It is easily verified that R is sound. Now let LAy, LAy, LS, RA, RS
stand respectively for the premises and conclusion of the left and right inferences.
Since OC implies that [ > r, we have RS, LA = LS, which we can prove by
resolution. Finally, we need to show that LA; = LAs; and LA; > RS. The
former is guaranteed by the asterisk (that is, since s > [, and [ is a maximal
term in LA;, we have LA; > LAs). The latter is guaranteed by the constraint
slp > U, which implies s > s|, > U, and, by monotonicity, s > s[U],. Thus,
procrastination right is a valid replacement.

The rule replacing superposition left inferences is similar:

INs~t—A I"— A'l~r N I's~t— A
LI slrl,~t—AA | s|,=1LN0C slp U s[Ul,~t— A|s|,>U

The argument for validity is similar to that for procrastination right. Since the
procrastination rules are valid replacements, meaning that they only generate
sound inferences and delete redundant ones, we have immediately that:

Lemma 1. System Z. with procrastination is complete for refutation for well-
constrained clause sets.

We now observe that, for pairs (A4, B) with universally quantified interpolants,
we require only local ground instances of B clauses for refutation completeness.

To be more precise, if C' is a clause, let C' | L(B) stand for the set of ground
instances Co of C' where the range of ¢ is contained in 7 (B). That is, we
constrain the values of the variables in C' to be terms over L(B). If our reduction
ordering is oriented for (A, B), then C' | L(B) can be expressed as C' | a > UAa >
V -+ where a is the least ground term not in L(B), and U, V... are the variables
occurring in C'. Thus, C' | L(B) is well-constrained. Finally, if S is a clause set,
then let S | L(B) stand for the set of C' | L(B) for C' in S.

Lemma 2. Let A and B be clause sets. If there is an interpolant for (A, B) in
Ly, then A and B|L(B) are inconsistent.

We are now ready to prove the key lemma that will allow us to build an in-
terpolating prover. We show that on interpolation problems, superposition with
procrastination makes only local deductions:

Lemma 3. Let A and B be clause sets, and = be a reduction order oriented
for (A, B). Then system I. with procrastination, applied to A and B | L(B)
generates only inferences local for (A, B).

The above lemma holds only for provers that rigorously propagate the ordering
constraints from one inference to the next. However, in practice this is not nec-
essary to obtain a local proof. If we test the ordering constraints for satisfiability
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but do not propagate them, the worst outcome is that unnecessary deductions
will be made. We can simply throw away the resulting non-local deductions,
since we know by the above lemma that they are not required for completeness.
Since saturation with procrastination is complete and generates local proofs
for interpolation problems, we can use it to build an interpolation algorithm:

Algorithm 1
Input: A pair of equality clause sets (A, B) having an interpolant in Ly.
Output: An interpolant for (A, B)
1) Choose a reduction order = oriented for (A, B).
2) Apply system I, with procrastination to A, B | L(B).
3) If the prover generates a refutation P local for (A, B), then
4)  Derive an interpolant for (A, B) from P and output the result,
5) Else (if the prover saturates) abort.

Theorem 2. Algorithm[l is correct and terminating.

To allow us to speak of interpolants of program unwindings, we generalize the
notion of interpolant from pairs to finite sequences of formulas. That is, an
interpolant for a sequence of formulas Aq, ..., A, is a sequence A;,...A, ;
such that:

— Ay implies Ay

—foralll1 <i<mn, A; A A, implies AiJrl

— A, ANA,1 implies false.

—forall 1 <i<mn, A; € (L(A1...A) N L(Aiy1...Ap)).

We can think of the interpolant for a sequence of formulas as being structured
refutation of that sequence.

Though we do not prove it here, we can generalize Algorithm [I] to generate
interpolants for sequences, replacing (A, B) with the sequence A4;...A,. We
say that a proof is local for A;...A, when every inference is local to some
A;, and a reduction order > is oriented for A;...A, when it is oriented for
all the pairs ({A1...4;},{Ait1...A,}). Finally, instead of A, B | L(B), we
refute Ay, As | L(As... Ay), ..., Ay | L(A,). The result is a local refutation for
A ... A,, from which we can derive an interpolant sequence in linear time in
the proof size and n.

4 Invariant Generation

Now we come to the question of generating invariants with interpolants. The
intuition behind this approach is the following. Suppose we wish to prove the
correctness of a single-loop while program. For example, we might want to prove:

{i =0} while i < N do a[i]:=0; i++ od {V(0 < j < N)alj] =0}

where i++ is a shorthand for i:=i + 1. To do this, we might try unwinding
the loop n times and proving the resulting in-line program. If we are lucky, the
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resulting Floyd /Hoare proof will contain an inductive invariant for the loop. For
example, for n = 2, we might have:

{i=0} [i<NJ; ali]:=0; i++ {¥(0<j <i)alj] =0}
[i < NJ; ali]:=0; i++ {V(0 <j < N)alj] =0}

where [¢] denotes a guard. Note that the middle assertion of this proof is an
inductive assertion for the loop, which we can verify with a suitable first-order
prover. On the other hand, if we are unlucky, we might obtain:

{i=0} [i<N); a[i]:=0; i++ {i=1Aa[0] =0}
[i <NJ; ali]:=0; i++ {V(0 <j < N)alj] =0}

This is also a valid proof, but the intermediate assertion is useless for gen-
erating an inductive invariant. If we unwind the loop further, we might obtain
i = 2Aal0] = 0Aa[1] = 0, and so on, producing a diverging series of non-inductive
formulas.

As we will see, the Floyd/Hoare proofs for the unwindings can be produced
by interpolation. The trick is to prevent the interpolant formulas from diverging
as we unwind the loops further. We will show that by bounding the behavior of
the prover appropriately, we can prevent divergence and guarantee to eventually
produce an inductive invariant if one exists in Ly.

Transition systems, unfoldings and interpolants. We will use first-order
formulas to characterize the transition behavior of a system, using the usual
device of primed symbols to represent the next state of the system. That is,
a set of uninterpreted function and constant symbols S represents the system
state. A state of the system is an interpretation of S. For every symbol s € S, we
let the symbol s’ represent the value of s one time unit in the future. Moreover,
we think of s with n primes added as representing the value of s at n time
units in the future. For any formula or term ¢, we will use the notation ¢’ to
represent the result of adding one prime to all the occurrence of state symbols
in ¢ (meaning ¢ at the next time), and ™ to denote the addition of n primes
to all occurrence of state symbols in ¢ (meaning ¢ at n time units in the future).

A state formula is a formula in £(S) (which may also include various inter-
preted symbols, such as ~ and +). A transition formula is a formula in L(SUS’).
A safety transition system M is a triple (I, T, P), where state formula I repre-
sents the initial states, transition formula T represents the set of transitions, and
and state formula P represents the set of safe states. A safety invariant for M
is a state formula ¢ such that I = ¢ and ¢, T |= ¢’ and ¢ |= P. That is, a safety
invariant is an inductive invariant of the system that proves that all reachable
states satisfy P.

We will say that an invariant generator G is a procedure that takes a safety
transition system M as input and outputs a sequence of formulas. For a given
language L C L(S), we say that G is complete for invariant generation in L
when, for every M that has a safety invariant in L, G eventually outputs a



Quantified Invariant Generation Using an Interpolating Saturation Prover 423

safety invariant for M. If we have a complete invariant generation procedure,
then we have an complete procedure to verify safety transition systems that
have safety invariants in Ly: we use a complete first-order prover to attempt to
prove correctness of each invariant candidate in the sequence, in an interleaved
manner.

Of course, there is a trivial complete invariant generator that simply outputs
all of the formulas in L in order of their Gédel numbers. Our purpose here is to
construct a practical invariant generator that uses proofs about finite behaviors
to focus the invariant candidates on relevant facts, and thus in a heuristic sense
tends to produce valid invariants quickly. In particular, we will be concerned with
the language Ly(S) of universally quantified state formulas. We will describe a
simple safety invariant generator based on our interpolation algorithm that is
complete for invariant generation in Ly(S). It prevents divergence by bounding
the language of the prover.

The algorithm is based on wunfolding the transition system in the style of
Bounded Model Checking [I]. For k > 0, the k-step unfolding of M (denoted
U (M)) is the following sequence of formulas:

U (M) =I1,T7, TV, .. 7D pk

This formulas characterizes the set of runs of the transition system of exactly k
steps that end in an unsafe state. The system M is safe when Uy (M) is unsatis-
fiable for all k£ > 0. For simplicity, we will assume that =P AT — —P’. That is,
once the safety condition is false, it remains false. This can easily be arranged
by, for example, adding one state bit that remembers when the property has
been false in the past.

To generate invariant candidates, we will make use of a bounded saturation
prover to refute unfoldings. Given a language L, a saturation prover bounded by
L simply throws away all derived clauses not in L (after attempting reductions).
For example, the SPass prover [I4] implements bounding by Wy, the set of
clauses with k symbols or fewer (i.e., clauses of “weight” up to k). In the sequel,
we will assume that L1, Lo, ... is a sequence of finite languages such that L; C
Ly C ---and |J; L; is the set of all clauses. For example, the sequence Wy, Wa, ...
meets these criterion. Note that for any finite L, a saturation prover bounded
by L must terminate on any input, since the number of clauses it can generate
is bounded.

Now let = be RPOS for some precedence order oriented for S, S’,S”,... and
let = be a reduction order such that the set of terms less than any given term
t over a finite vocabulary is finite. For example, we could say that t=s when
the weight of s is less than the weight of ¢ or the weights are equal and ¢ > s.
Let SPB(L) stand for a saturation prover using the union of systems Z.. and Z.
with procrastination, restricted to local deductions and bounded by L. For any
system M with a universally quantified safety invariant, a fixed language L.,
suffices to refute unfoldings of any length using this prover:
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Lemma 4. Let M be a safety transition system with a safety invariant in Ly.
There exists an integer m, such that for every k >0, SPB(L,,) refutes Uy (M ).

Our invariant generation algorithm is as follows (where unp(¢) is ¢ with primes
removed):

Algorithm 2
Input: A system M = (I,T, P) having a safety invariant in Ly.
Output: A sequence of formulas containing a safety invariant for M.
1) Leti=1and k=1
2) Repeat:
3)  Apply Algorithm [l using prover SPB(L;) to Uy (M).
4)  If the algorithm returns an interpolant A, then
5) Forj=1tok+1, output \/;_; ; unp(Ay)
6) Increase k.
7)  Else (if Algorithm [ aborts) increase i

Theorem 3. Algorithm[Q eventually outputs a safety invariant for M.

It is worth noting that this algorithm achieves completeness despite the fact that
the prover is not “complete for consequence generation” as is required in [5]. The
generated invariant candidates can be checked for inductiveness using any com-
plete first-order prover. Since this prover may not terminate in the negative case,
we must interleave these checks, rather than executing them sequentially. This
is a fairly naive approach to generating invariants from interpolants. We could
also use, for example, the method of [7] or the lazy abstraction method [9]. Both
of these methods would require a decision oracle for first-order logic. However,
in practice we could use saturation of the (unbounded) prover as an indication
of unsatisfiability and accept a possibility of non-termination.

5 Implementation and Experiments

The interpolation algorithm has been implemented by modifying the SPASS
prover. This is an efficient saturation prover that implements superposition with
a variety of reduction rules. SPASS was modified in several ways:

1. The procrastination rules were added.

2. The input formulas are numbered in sequence, and a precedence order is
constructed that is oriented for that sequence.

3. Non-local inferences (after replacement) are discarded.

Moreover, it is also allowed to define a background theory by specifying addi-
tional interpreted function and predicate symbols and providing axioms for the
theory. The background axioms may contain only interpreted symbols. Thus,
use of the axioms does not affect locality of the proofs. When computing inter-
polants from proofs, the axioms in the proof are replaced with true, since they
are tautologies of the theory.
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The bound mechanism of SPASS was also modified to allow bounds other than
weight (number of symbols) and nesting depth. In particular, we implemented
a bounding scheme in which L; allows all clauses with at most nesting depth
and at most ¢ variables. This is a finite set of clauses (modulo subsumption).

For the experiments, we axiomatized three theories: the natural numbers with
zero, successor and <, the theory of arrays with select and store, and transitive
closure of arrays, with a reachability predicate. These axioms are necessarily
incomplete. However, we found them adequate to prove properties of some sim-
ple programs manipulating arrays and linked lists. For each example program
an assertion was specified. The the loops were manually unwound n times, for
increasing values of n, and translated into static single-assignment (SSA) form
in the manner of the CBMC tool [2]. These unwindings were then verified using
the modified prover, increasing the bound 7 until a refutation was found for vio-
lation of the assertion. Then the interpolants were tested to see if they contain
inductive invariants for the loops that prove the assertions.

Table Bl shows the results obtained. For each example, the table gives a brief
description of the program, the assertion, the number of loop unwindings, the
bound language required, and the run time of the prover in seconds.

Table 1. Results of invariant generation experiments

name description assertion unwindings bound time (s)

array set set all array elements to 0 all elements zero 3 Ly 0.01

array test set all array elements to 0 all tests OK 3 L1 0.01
then test all elements

11 safe create a linked list then = memory safety 3 Ly 0.04
traverse it

11 acyc create a linked list list acyclic 3 L1 0.02

11 delete delete an acyclic list memory safety 2 Ly 0.01

11 delmid delete any element result acyclic 2 Ly 0.02
of acyclic list

11 rev reverse an acyclic list result acyclic 3 Ly 0.02

As an example, here is the (somewhat simplified) inductive invariant generated
for example list acyc. This is a loop in which newly allocated elements are
added to the beginning of a list by modifying their link field:

and( reachable(link,x,nil),

forall([U], or(U = nil, not(reachable(link,x,U)), alloc(U))))

This says that « (the list head) can reach nil (the list terminator) via the link
field, and every cell reachable from z via the link field is allocated. The for-
mer condition guarantees that the list is acyclic, while the latter implies that
in the future a cell already in the list will not be appended to the head, creating a
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cycle. This shows one advantage of using interpolants for invariant generation
relative to parametric invariant generation techniques such as [I3]. That is, the
interpolator is able to synthesize Boolean combinations without requiring the
user to provide a template. Moreover, it can handle theories other than arith-
metic, such as reachability. Using the interpolating superposition prover and lazy
abstraction, the IMPACT software model checker [9] can automatically verify all
of the above examples.

The linked list examples in the table could be handled easily by canonical heap
abstraction methods [12]. However, using interpolation, we are not required to
provide the instrumentation predicates that define the abstraction. This may be
a significant advantage in scaling to larger programs. In the quantifier-free case
at least, the ability of the interpolating prover to focus invariant generation on
relevant facts has proved to be a significant advantage [7419].

While the example programs we used are very simple, experience shows that
even very simple programs can produce divergence in infinite-state verification
techniques such as predicate abstraction [5]. Our results give some reason to
believe that the divergence problem can be controlled.

6 Conclusion and Future Work

We have shown that, by a small modification of a paramodulation-based satu-
ration prover, we can obtain an interpolating prover that is complete for uni-
versally quantified interpolants. This was done by constraining the reduction
order and adding a reduction rule in order to obtain local proofs. We also solved
the problem of divergence in interpolant-based invariant generation by bounding
the language of the prover and gradually relaxing the bound. Some experiments
verifying simple programs show that, in fact, divergence can be avoided, and
termination can be achieved with shallow unwindings.

The next obvious task is to study the scaling behavior of the approach using a
program verification system such as IMPACT [9], to determine whether the prover
is capable of focusing on just the facts relevant to proving shallow properties of
large programs. In addition, the are a number of possible extensions. The SPASS
prover has the ability to split cases on ground atoms and to backtrack. However,
it may still be much less efficient than a modern DPLL satisfiability solver.
It might be useful to integrate it with an efficient DPLL solver in the style
of “SAT modulo theories” (SMT) for greater efficiency. Moreover, it would be
useful to integrate it with some ground arithmetic procedure (though again, the
divergence problem would have to be solved).

Finally, it would be possible to use an interpolant generator for universally
quantified interpolants as a predicate refinement heuristic for indexed predicate
abstraction [6] much in the same way that this is done for ordinary predicate ab-
straction in [4]. Having an effective refinement heuristic might make the indexed
predicate abstraction technique more practical.
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