Leveraging Patterns on Domain Models to
Improve UML Profile Definition

Francois Lagarde!, Hudscar Espinoza!, Francois Terrier!, Charles André?,
and Sébastien Gérard*

L' CEA, LIST, Gif-sur-Yvette, F-91191, France
{francois .lagarde, huascar.espinoza, francois.terrier,
sebastien.gerard}@cea.fr
2 13S Laboratory,

BP 121,

06903 Sophia Antipolis Cédex,

France
charles.andreQunice.fr

Abstract. Building a reliable UML profile is a difficult activity that re-
quires the use of complex mechanisms -stereotypes and their attributes,
OCL enforcement- to define a domain-specific modeling language (DSML).
Despite the ever increasing number of profiles being built in many do-
mains, there is a little published literature available to help DSML de-
signers. Without a clear design process, most such profiles are inaccurate
and jeopardize subsequent model transformations or model analyses. We
believe that a suitable approach to building UML based domain specific
languages should include systematic transformation of domain representa-
tions into profiles. This article therefore proposes a clearly-defined
process geared to helping the designer throughout this design activity.
Starting from the conceptual domain model, we identify a set of design
patterns for which we detail several profile implementations. We illustrate
our approach by creating a simplified profile that depicts elements belong-
ing to a real-time system domain. The prototype tool supporting our ap-
proach is also described.

1 Introduction

Over the last few decades, domain-specific languages (DSLs) have proven efficient
for mastering the complexities of software development projects. The natural
adaptation of DSLs to the model-driven technologies has in turn established
domain-specific modeling languages (DSMLs) as vital tools for enhancing design
productivity.

A widespread approach to the design of a DSML is to make use of the so-called
profile mechanisms and to reuse the UML [I] metamodel as the base language.
By extending UML elements with stereotypes and their attributes, it is possible
to define new concepts to better represent elements of a domain. Despite the
ever-increasing number of profiles defined and successfully applied in many ap-
plications (Object Management Group (OMG) [2] has adopted thirteen profiles
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covering a wide range of modeling domains), building a reliable profile is still an
obscure process with very little literature available to help designers.

A study of the currently adopted profiles reveals two existing profile design
methods. The first is a one-stage process: the profile is directly created to support
concepts belonging to the targeted domain. This method has been adopted for
instance by SysML [3] profile designers. The main drawback of such an approach
is to narrow down the design space to the implementation level.

A second, more methodical process involves two stages. Stage one is intended
to define the conceptual constructs required to cover a specific domain. The prod-
uct of this stage is usually called the conceptual domain model. In stage two, this
artifact is then mapped onto profile constructs. This was the approach used to
design UML profiles such as the Schedulability, Performance and Time specifica-
tion [4] and the QoS and Fault Tolerance specification [5]. Applying this second
method allows designers to focus on domain concepts and their relationships
before dealing with language implementation issues. The main disadvantage is
the time it requires. Finding a correct profile construct to support a concep-
tual model domain is far from straightforward. Several profile implementations
may support a concept, thus obliging the designer to apply cumbersome design
heuristics to comply as much as possible with the conceptual model.

We believe that a suitable approach to building UML-based domain-specific
languages entails systematic transformation of domain representations (captured
in a metamodel) into profiles. For this purpose, we propose a clearly-defined pro-
cess geared to help the designer. Transformation is based upon a set of design
patterns occurring on the domain model for which we provide profile imple-
mentations. By doing so, we attempt to improve the accuracy of profiles and
facilitate adoption of DSMLs based on UML profiles.

In a previous short-paper [6], we provided arguments in favor of a staged
process. In the present paper, we give a thorough description of our process and
present a set of preliminary results obtained from the prototype tool that we
developed.

Most of the results given are based on experience acquired in defining various
UML profiles [4l[7]. Among these, the UML profile for Modeling and Analysis of
Real-Time and Embedded systems (MARTE) [7] required definition of a complex
DSML that involved a significant collaborative effort by domain experts.

This paper is organized as follows: Section2lexplains the reasons for devising a
DSML and advocates use of profiling mechanisms. Section Bl details the identified
key stages of our process and progressively introduces a set of profile design
guidelines. Section Hl presents the prototype. Section [ describes related work
and Section [0l gives our conclusions.

2 Why (How and When) to Create a DSML

Most of the reasons for creating DSLs are also valid for DSMLs. The expected
benefits have been described in previous studies [8,[9]. The most widely shared
of these advantages are that DSMLs:
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— allow solutions to be expressed in the idiom and at the level of abstraction
of the problem domain,

— embody domain knowledge and thus enable the conservation and reuse of
this knowledge.

The easiest approach to design a DSML is to reuse an existing metamodel. A
common approach is to develop libraries, also called domain-specific embedded
languages (DSELs) [10], which are easy to integrate into almost all frameworks.
In some cases, constraints may be expressed, to confine the use of an existing
language to a specific domain. While both these options are applicable to almost
all languages, model-driven technologies afford two novel approaches which are
usually classified according to their mechanisms. They are:

heavyweight extension: this approach allows designers to extend and modify
the source language as required to create a new DSML. In a recent paper [I1],
Alanen and Porres provide a comprehensive overview of available mecha-
nisms, and outline the possibilities of subset and union properties in formal
definition of new metamodels. This extension method is particularly suited
to cases where there are few identifiable relationships to existing languages,

lightweight extension: this approach is restricted to the use and extension of
an existing Meta-Object Facility (MOF) [12] based metamodel which cannot
be modified. It is supported with the standard profiling mechanism.

Development of a DSML may lead to heavy investments, and recourse to such
tool requires strategic decisions. Clearly, there are no systematic criteria for such
decision making. A balanced rule would be to avoid creating a DSML wherever
possible, by instead learning to better identify the design needs and recognize
them in existing languages.

Unfortunately this rule cannot always be applied; and regardless of the mech-
anisms chosen, the following difficulties remain:

— designing and maintaining a DSML is a time-consuming task,

— it is hard to strike a suitable balance between domain-specific and general
purpose language constructs,

— the costs of educating DSML users could be high.

Among the approaches available, standard mechanisms can be regarded as the
most sustainable solutions. Such mechanisms benefit from the low cost of sup-
port tools and the limited investments involved in the learning process. We con-
sequently advocate creation of metamodels with profiling mechanisms, since the
latter are standard built-in mechanisms and present a more steeply downward-
sloping learning curve for multiple and long term projects.

3 Design Activities Flow

This section discusses the four phases proposed for our process. Fig. [[l shows the
process workflow with its different outputs, from conceptual domain definition
to profile creation:
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1. The designer gives a coarse-grain description of the space problem using a
UML class diagram. This first iteration is the conceptual domain model.

2. This model is then tailored to a conceptual solution model,

3. Solution entities are transformed into potential stereotypes and extensions
to UML metaclasses are given. This operation results in a profile skeleton,

4. The profile skeleton is used as an analysis artifact. At this stage, profile
designers decide how domain representations are to be supported in the
final profile.

3.1 Conceptual Domain Model

Domain model definition is the initial phase of our process. It identifies the
required concepts and their relationships in order to describe a problem area,
also called problem space. This design activity is independent from technological
solutions and thus lets the designer focus on domain constructs.

Much attention has been paid on domain analysis and many existing studies
[13,[14] describe the techniques used to support this process. One of the central
issues is how to manage the common concepts and variable concepts of a problem
area to enable reuse assets for different projects.

One way of incorporating such flexibility into a modeling process is to make
use of template mechanisms. These allow formal identification of parametric
information that can subsequently be refined. Recourse to templates in the de-
sign work flow then makes it necessary to determine at what stage they can be
included. While templates are frequently used for system modeling, few stud-
ies [I5I6] have examined their uses for metamodeling. We believe that to better
meet the design for reuse criterion, we need to capture variability at the start
of our process. We therefore introduce this facility at the conceptual domain
definition stage.

We use the UML Class package to build the conceptual domain model. The
advantages are that DSML designers are familiar with its concepts (e.g., inheri-
tance, associations, and packages) and that the UML Class package has a support
for template mechanisms.

To tangibly illustrate this discussion, we have created a simplified DSML for
the real time domain, called Simple Real Time System, inspired by the profiles
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SPT and MARTE. The SRTS package in the left panel of Fig. 2lis an excerpt of
this conceptual model. A SchedulableResource depicts any resources to be sched-
uled and maintains a reference to exactly one Scheduler. The latter is character-
ized by its SchedulingPolicy. Schedule and SchedulingJob are entities for modeling
a queue of jobs waiting to be executed.

The model embodies two parametric concepts shown in the dashed box in the
upper right corner of Fig.[2l The reasons for this choice are that an hypothetical
list of schedule policies or schedulable resources would have hampered reusability
of the conceptual domain model.

MySRTS
SRTS i i
 SchedulingPolicy i Task 1
i Sct ource | > >{ EntryPoint
e — i entryPoint

ingJob -— priority: Integer
schedule/[\..*

Scheduler }:mél'{ SchedulableResource

<<bind>>

1
1 [ ourck
i licy i i icy -> EDF licy N N
EDFSchedulingPolicy

L maxRunningJobs: Integer
Conceptual Domain Model

Conceptual Solution Model

Fig. 2. Conceptual domain/solution model

3.2 Reducing the Problem Space: Building a Conceptual Solution
Model

Some concepts may be required within the conceptual domain model to enhance
the readability and completeness of a problem area description; these same con-
cepts may not, however, be appropriate for solving a given problem. The sub-
sequent stage in design consists of identifying the concepts which will serve as
solution assets and to create bindings to the templates.

In order to indicate that a concept is merely present for description purposes,
with respect to the targeted domain application, we introduce an irrelevant
concept supported through a stereotype named Irrelevant.

The left and right panel in Fig. 2] together constitute the result of this stage
(details have been omitted to preserve readability). It is then decided to identify
ProcessingResource, SchedulingJob and Schedule as irrelevant concepts since their
roles are limited to making the problem more understandable.

Templates bindings have been declared. The parameter SchedulableResource
is substituted for Task. This concept is made up of one EntryPoint and a set
of Services. The Service concept is further specialized into PremptibleService and
NonPremptibleService. Scheduling policy is bound to the EDFSchedulingPolicy.

3.3 Profile Skeleton Definition

This phase initiates creation of the profile. Each conceptual solution entity is
transformed into a stereotype; and all the relationships, such as generalizations
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and associations, are maintained. Note that the capability of stereotypes for
participating in associations has only recently been included in version 2.1 of
UML. Exceptions are the irrelevant concepts, since they are not intended for use
in practical modeling situations.

At this point, the main design decision activity is mapping stereotypes to the
UML metaclasses. A set of extension associations must therefore be manually
established from the stereotypes to the UML metaclasses.

Fig. Blis the profile skeleton. We have specialized the metaclass Class to sup-
port both Scheduler and Task, while considering that Operation metaclass is
better suited to supporting EntryPoint and Service. EDFSchedulingPolicy reuses
the DataType concept because it is a primitive type of our DSML.

«profile » SRTS

« metaclass » « metaciass » « metaclass » « metaclass »

DataType Class Class Operation

« stereoytpe » « pe»

EDFSchedulingPolicy « stereotype » nost Task | entryPoint|  « stereotype »

maxRunningJobs: Integer  [1 Scheduler 1| priority: Integer 1| EntryPoint
Servicel stereotype »

1 Service
« stereotype » ‘ « stereotype » ‘
icService i i

Fig. 3. Profile skeleton

3.4 Profile Consistency Analysis and Profile Optimization

To ensure definition of a well-formedness profile, a designer should ensure that
none of the newly introduced concepts must conflict with the semantics of the ex-
tended metamodel. The term semantics must be interpreted in a broad sense. It
namely encompasses the informal class description or class semantics of the UML
metamodel, along with the structural definition of the metamodel (e.g., there is
no possibility of creating additional meta-associations or meta-attributes). That
is why, in [I, p.650], the reference metamodel is deemed to be read-only.

If this vital rule is usually satisfied in simple metamodel design, its strict
application to a broader metamodel definition is difficult. The complexity of
the UML metamodel, when combined with the (voluntary) ambiguities of UML
semantics, means that there can be no guarantee of success other than the trust
placed in the designer’s skills.

Although a formal mechanism to assess well-formedness of profile and con-
sistency with the reference metamodel seems hard to establish, in-depth explo-
ration of the metamodel may help the designer select the most suitable profile
implementation. The following section presents a set of formal guidelines en-
abling profile creation based on design patterns on the profile skeleton. We have
divided these guidelines into two parts. First we identify all the patterns re-
lated to association/composition in the conceptual domain for which the profile
solution is given, and, second, we provide detailed rules for profile optimization.
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Dealing with Meta-association

It is common to create new meta-associations between concepts which must in
some way be reflected in the profile.

The designer is then responsible for finding the implementation that best
represents the meta-association. This mainly entails mapping onto two profile
constructs; either a stereotype attribute is defined to maintain a reference to
the associated concept or a submetaclass of a Relationship is made mandatory at
level M 1. Occasionally, the relationship may already be sufficiently represented
in the metamodel and an OCL rule is enough to reinforce this intent. Even if
these solutions express comparable information, they result in different profile
applications scenarios that may affect its usability.

In our example, Scheduler has an association link with EDFSchedulingPolicy.
The designer might choose the first solution, and the stereotype supporting the
concept of Scheduler in turn embeds an attribute; or he/she might use a subclass
of a DirectedRelationship such as Dependency to better represent this association.

Since associations at level M2 may be represented differently at level M1,
some means of distinction should be provided. However the lack of information
available to instantiate an association across more than one level makes the
designer accountable for her/his decisions. This inability to carry information
has already been the focus of research efforts. In [I7], the authors refer to it as
shallow instantiation. Their initial observation is that information concerning
instantiation mechanisms is bound to one level. A recent study [18] formulates
a similar diagnosis and its authors propose to recognize induced associations in
models.

To provide a means for selecting the proper profile implementation, we identify
different association patterns between concepts. Firstly, we detail the modeling
case where the specialized metaclasses supporting the two associated concepts
have an association. Secondly, we elaborate on the case in which no association
is found. We then explore the constructs that make it possible to distinguish
between a composite association and a non composite association. Fig. @] sum-
marizes the associations of interest here, along with the identified solutions.

Existing meta-association. In our example, Task is associated with EntryPoint
and both extend the metaclasses Class and Operation. The first precaution is
to make sure that this association does not violate the structure of the ex-
tended metamodel. Since there is at least one composite association from Class
to Operation, the two introduced concepts satisfy this requirement. This meta-
association may be mapped in three ways: attribute creation, directed relation-
ship support or OCL enforcement.
We formally identify pattern recognition as follows:

Identification 1 (meta-association identification). Let A and B be two
stereotypes extending the metaclasses MA and MB respectively. If A has one
(composite) association with B with member end rb (lower bound multiplicity
n, upper bound multiplicity m) and if in MA there is at least one (composite)
association with MB, then A and B are part of a meta-association pattern.
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Pattern in profile skeleton Profile solution Profile application (user model)
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Fig. 4. Association patterns and profile solutions

An intuitive mapping solution is to declare an attribute in a stereotype to
maintain information with the associated concept. In order to faithfully represent
the information conveyed by the association: the type of the property must be
that of the base class of the associated stereotype, and OCL rule enforcement
must ensure correct application of stereotypes to the associated elements. We
have generalized these considerations via the following profile solution:

Solution 1.1 (attribute creation). The property rb is used to create an at-
tribute in A:

— the attribute rb is created with a multiplicity equal to the multiplicity of rb,

— attribute type is MB,

— stereotype <A> becomes a context for an OCL rule ensuring that values of
rb are stereotyped <bx>:

context A inv:
self .rb->forAll(e:MB | not(e.extension_B.oclIsUndefined ()))

Use of a relationship such as Dependency or Abstraction provides a flexible means
for modeling references between DSML elements. A typical example of this is the
allocation concept of SysML. The advantage of this approach is that relationships
are readily recognizable, since they are represented with an explicit element.

In order to ensure that elements stereotyped «a» have DirectedRelationship
links with enough elements stereotyped <b> we need to create an OCL constraint
in the context of the stereotype «Ax. Because the base class supporting A is not
affected by the DirectedRelationship, navigating to linked elements is difficult
and involves exploring the namespace of the element stereotyped «A>. We have
only given a fragment of the OCL rule ensuring the lower bound multiplicity of
property rb.
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Solution 1.2 (explicit association). OCL constraints must be created to
make sure that are enough DirectedRelationship links with element stereotyped
<b> to comply with the multiplicity of rb.

context A inv:
self .base_MA .namespace.ownedMember->select (e: NamedElement |
(e.oclIsTypeOf (uml::DirectedRelationship)) and
(not(e.oclAsTypeOf (uml::DirectedRelationship))
.target.extension_B.oclIsUndefined ()))->size ()>=n

The above two solutions either create a stereotype attribute or make explicit
use of a subclass relationship metaclass. Alternatively we can consider that the
association is sufficiently represented in the metamodel. In that case, we must
ensure stereotypes application.

For instance, based on the association from Task to EntryPoint, we may decide
that a profile application is correct as long as a Class stereotyped <task> owns
enough Operation stereotyped <entryPoint>.

The following OCL expression gives the generic profile solution (as illustration,
only the lower bound multiplicity is verified). Note that this solution narrows
down the scope of the associated elements to the owned members of MA.

Solution 1.3 (OCL rules). A becomes a context for an OCL declaration in
charge of ensuring compliance with the multiplicity constraint obtained from
property rb.

context A inv:

self .base_MA.ownedElement ->select(e: Element |
(e.oclIsTypeOf (MB)) and
(not (e.extension_B.oclIsUndefined ())))->size()>=n

Non-existing meta-association. This subsection considers failure of the pre-
vious meta-association pattern identification, i.e stereotypes having associations
that are not in the metamodel. The profile requirement that none of the intro-
duced elements conflicts with the semantics (in this case the structure) of the
extended metamodel is then not met.

Strict application of this requirement leads to the conclusion that there is a
modeling error and to rejection of the offending association in the profile. The
solution is to identify another metaclass to support one of the two stereotypes.
For example, the designer may look at the parents of one of the base metaclasses,
which are higher concepts with fewer constraints (the metaclass Element can be
virtually used to support any extensions: it can also be part of any association
with any other element, since Element has a cyclic composition with Element).

However, recourse to another metaclass may affect the semantics of the
concept and not be a faithful support. To strike a balance between flexibil-
ity and adherence to the guideline, we suggest solutions that do not affect the
base metaclass. Among the formerly identified patterns, the explicit use of a
DirectedRelationship meets this requirement.
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Handling composite concepts. Thus far, we have formulated no hypothesis
about the kind of aggregation involved in the associations in the profile skeleton.
However, this characteristic plays a key role in domain modeling and requires a
reliable profile support.

The semantics of a composite association, also known as an aggregation or
containment relationship have a common meaning in traditional programming
language. They indicate that the aggregated object’s lifecycle is controlled by
the aggregating object. In models, composition is used to denote hierarchy and
ownership. Composition between metaelements results in a deletion constraint
between instances of the metaelements. In profiles, this definition has no straight-
forward interpretation. Stereotypes are statically applied to model elements and
their application cannot therefore be coerced.

We have identified two possible solutions to support this design intent. The
first, confines the use of composite association to concepts that extend meta-
classes already having a composite relationship. In this situation, the attribute
pattern solution and OCL solution comply with the composition constraint. Nev-
ertheless, this approach raises much the same issues as already mentioned for
the OCL solution and implies that composite elements are owned members of
the aggregating element. By doing so, deletion of the base class supporting the
aggregating concept results in deletion of the aggregated concepts.

To overcome this limitation, we opt for the attribute pattern solution and
the aggregation kind meta-attribute of the stereotype attribute. This solution
involves a support tool (discussed in section H) to ensure correct deletion. When
a base class supporting a stereotype is deleted, their attributes are inspected,
if the kind of aggregation is composite then the referenced model elements are
deleted.

Solution 1.4 (composite attribute creation). The same scheme is used as
for the attribute creation solution. Additionally, composition information is re-
flected in the meta-attribute aggregation kind.

Optimization

The next identified subtask in profile creation is profile optimization for the
purpose of minimizing the number of stereotypes. This is intended to preclude a
proliferation of stereotypes and resulting applications that may be detrimental
to the readability and understandability of models.

We propose two reduction patterns, as illustrated in Fig. Bl The first of these
entails hiding a concept in an already existing UML concept with a stereotype
attribute, and the second subsumes domain concepts in enumeration data types.

Hiding an existing concept. In our example, the Task concept is made up of
EntryPoints. One alternative is to keep both concepts as stereotypes. However,
we might consider that the EntryPoint entity, which is considered equivalent
to a behavioral feature concept, is sufficiently represented by UML operation
elements, and thus save one stereotype declaration. Based on this reasoning, we
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Fig. 5. Optimization patterns

can create a <Task> stereotype and use the association end named entryPoint
to create an attribute typed as UML Operation. Obviously, this pattern only
succeeds if the aggregated stereotype does not embed an attribute or participate
in another association or generalization.

Identification 2 (hidden concept). Let A and B be stereotypes complying
with conditions expressed in the meta-association pattern. If A does not have ad-
ditional stereotype attributes or additional stereotype association/generalization
relationships, then B can be hidden in the target profile.

Solution 2 (stereotype deletion). The attribute solution is reused with the
difference that stereotype «B> is no longer required.

Subsuming a concept. This pattern occurs in inheritance relationships when
the specialized concepts are used to describe taxonomies and do not carry any
information (domain attributes or associations) except the concept itself.

In our example, Service is further specialized into AtomicService and
NonAtomicService. The profile skeleton assigns one stereotype to each. As a re-
duction strategy, we might wish to replace the specialized concepts by an enu-
meration named ServiceKind, with a set of literals named NonAtomicService and
AtomicService (see final profile in [f). Service thus contains an attribute named
serviceKind, to indicate which kind of service we are referring to.

Identification 3 (subsumed concept). If a set of stereotypes (e.g., B and C)
specializes another stereotype A, and if the former do not embed any property or
participate in any association or generalization relationship, then the substereo-
types could potentially be reduced.

Solution 3 (kind of). An enumeration AKind is created with literals matching
the reduced substereotypes (e.g., C and D). An attribute in A allows reference
to the enumeration data type: AKind.
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Final Profile

[@lis one final profile resulting from consecutive application of the identified trans-
formation patterns to the initial profile skeleton. It embodies a set of OCL rules
associated with the selected patterns. The derived profile clearly outlines the
difference between the conceptual domain model and its implementation. Every
association has been translated either into a stereotype attribute or into proper
OCL constraints. The immediate result is that the profile can no longer be con-
sidered the main support for conveying how concepts are related to each other.
However, this side effect has no impact on understanding of the DSML since we
consider the domain model as the main artifact for declaring concepts.

<<profile>> SRTS

<<metaclass>> <<metaclass>>

DataType Class Class Operation
<<stereotype>> <<stereotype>> <<stereotype>> P nerati
EDF H icy Task Service ServiceKind
o | N
. . D T entryPoint: Operation [1] i . iceKil AtomicService
maxRunningJobs:Integer . ! _ ~Ocenvice: Operation [1."] > serviceKind: Servicekind \, | NonAtomicService
~ 1 -~ vl \

~ -

Explicit Dependency at level M1 AN allrib_ule y Kind of optimization%
creationsolution

Fig. 6. One final profile

4 Tool Prototype and Evaluations

4.1 Tool Prototype

Our methodology involves several model manipulations which may be error-
prone if they are performed manually. This is especially true for writing OCL
enforcements and exploring metaclasses relationships.

Since we have identified profile design patterns for which we then identified
pattern solutions, it is possible to partially automate our proposed approach.
We have evaluated its viability by developing an Eclipse plug-in for the Papyrus
UML tool as a means for partially automating the process. The plug-in’s user
interface is a sequence of dialogues corresponding to each of the identified key
steps.

The main difficulty arises from the several profile implementation possibili-
ties for an identified pattern. The designer is responsible for selecting the most
appropriated solution and the transformation must take place interactively.

To provide a flexible support for describing rules we have defined a metamodel
(not presented here due to limited space). Elements of this metamodel describe
concepts for running diagnoses on models. This is done by a protocol definition
that can execute tests on the model. Each such test associates a recognition
concept, which is a context for declaring OCL helpers in charge of detecting
a pattern in the model (like code smells for models), with the corresponding
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solutions. A solution is broken down into elementary fix. If a test succeeds, then
one or more solutions are suggested to the designer with an order of preference.
Once a pattern is identified and a solution has been selected, the following
operation is to process it with the relevant fix. We used Epsilon Object Language
(EOL) [19] as an imperative OCL language for model manipulations. The Fix
becomes a place to declare theses expressions.
Fig. [0 shows the dialog box that
indicates which solutions may be ap- — se——
plied to the Task. For each of these SO- | sementtesces

Task

lutions, basic model transformations &=

~ i an existing metacomposition has been found

are also given. M e ot KLl
As part of this prototype, we also

defined mechanisms to handle the

composite attribute creation solution.

When a model element supporting a | © B it nE5

stereotype is deleted, if a composite

attribute exists, a dialog box appears Fig. 7. Dialog box for selecting a profile im-

to confirm deletion of the composed plementation

elements.

a constraint wil be created to ensure multiplicity 1...*
a constraint will be created to ensure stereotype application of Service
a constraint will be created to mark this property service as composite.
delete the association Association_Task_Service

b < the composition will be supported with a ocl rule.

4.2 Evaluation and Feedback

This plug-in has made it possible to evaluate our approach on the MARTE pro-
file. We have considered the final adopted MARTE profile (realtime/07-05-02) as
the profile skeleton. The presented patterns/solutions have been described with
a model that conforms to the protocol metamodel. In addition, new tests have
been defined to take into account additional rules (e.g., naming convention, opti-
mization of stereotype extensions). This led us to define more than 15 tests. The
accuracy of the resulting profile is enhanced by the OCL constraints declared
in each stereotype and some modeling design mistakes (stereotypes extending a
metaclass and one of its sub-metaclass e.g. Class and Classifier) were identified.

5 Related Work

As already stated earlier, very little published material is available on design of
domain-specific UML profiles.

In [20], Fuentes and Vallecillo pointed to the need for first defining a domain
metamodel (using UML itself as the language) to clearly define the domain of
the problem. In more recent work [21], Bran Selic has described a similar staged
development of UML profiles and gives useful guidelines for mapping domain
constructs to UML. The initial version of the SPEM [22] profile, presents gen-
eral guidelines for transforming a metamodel into a profile. Our proposal also
leverages use of a conceptual model but attempts to go a step further by identi-
fying patterns on the conceptual model as a means for inferring a reliable profile.

Concerning conceptual modeling, Gerti Kappel et al described in [23] a process
for “lifting metamodels into ontology models”. A metamodel is considered here
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as an implementation-specific artifact that makes concepts hard to understand.
It identifies a collection of patterns that help to transform metamodels into
equivalent ontology constructs. Our research entails the opposite approach, i.e.
transforming conceptual domain models into well-formedness profiles.

A precedent for our type of approach was established by the AUTOSAR
(AUTomotive Open System ARchitecture) project, whose modeling framework
defines an interesting mechanism for building templateable metamodels. This
entails a special “language”, defined by the UML profile for Templates. This
language identifies a set of common patterns occurring in (meta)modeling (e.g.,
types, prototypes, instances). In our approach, we attempt to define a more
systematic and flexible approach to designing the conceptual model and its im-
plementation.

6 Conclusion

This paper presents a systematic approach to the design of UML profiles by lever-
aging use of the conceptual domain model. For this purpose, we have elaborated
on a staged process that helps the designer throughout the profile design process.
Starting from the conceptual domain we, determine a set of regularly occurring
design pattern for which we identify profile solutions in terms of stereotypes as
well as OCL constraints.

Our approach is illustrated by a running example for which we define con-
cepts for depicting a simple real-time system domain. These domain concepts
are transformed step-by-step into an equivalent profile.

To evaluate the viability of our approach, we present the Eclipse plug-in de-
veloped for this purpose. This plugin is a promising development that appears
to have other potential applications. It could be used whenever a model trans-
formation requires intervention from the designer to select a rule transformation
from among several possibilities.

We are currently completing our plug-in to handle traceability requirements.
This would allow designers to easily navigate between the different representa-
tions of an element: from conceptual domain to profile and vice versa. It would
also allow storage of designer’s decisions and permit profile regeneration.
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