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Abstract. In this article, we present a model and a denotational se-
mantics for hybrid systems. Our model is designed to be used for the
verification of large, existing embedded applications. The discrete part
is modeled by a program written in an extension of an imperative lan-
guage and the continuous part is modeled by differential equations. We
give a denotational semantics to the continuous system inspired by what
is usually done for the semantics of computer programs and then we show
how it merges into the semantics of the whole system. The semantics of
the continuous system is computed as the fix-point of a modified Picard
operator which increases the information content at each step.

1 Introduction

The importance of static analysis techniques [6] for software validation is no
longer to be outlined. Their application to highly critical programs has become
a major challenge for many industries. Such programs are often automatically
generated, imperative programs which are embedded into a heterogeneous sys-
tem. They mostly behave as follows: they capture information from the physical
environment via sensors, treat it using numerical computations and then modify
the environment via actuators. The analysis of such programs requires either to
over-approximate the physical environment, which often leads to an imprecise
analysis, or to analyze the hybrid system made of the continuous environment
and the discrete program [BIT4]. We use this approach. The analysis of hybrid
systems requires as a starting point a formal description of their behavior. We
need to give a coherent interpretation of both the discrete and the continuous
subsystems. The formalization of a continuous system using the same notions
as for a computer program is already a challenge of its own. The continuous
variables move along a continuous function of the real time while the discrete
system is defined, in a denotational semantics approach, as a function between
discrete environments [24]. In this article, we propose a formalism for modeling
hybrid systems together with a description of their behavior as a hybrid denota-
tional semantics: the evolution of the hybrid system is a function between hybrid
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environments (containing a discrete and a continuous part) which is computed
as the least fix-point of a sequence of approximations.

Our model for hybrid systems is designed for an implementation level and
ensures a clear separation of the discrete and the continuous subsystems. They
are modeled in two different formalisms (see Sects. 21l and [22]) which allows the
analysis of one program within various environments for example. Despite this
heterogeneity, we give a unique description of the behavior of the hybrid system.
First, we suppose that the discrete part is completely determined and we give a
semantics [x] for the continuous part (Sect. ). It is computed as the fix-point
of an operator I" which acts on partially defined functions and we show that this
fix-point is actually the limit of Tarski’s iterates [22]. The semantics [A] of the
purely discrete part of the system is computed using the standard semantics of
imperative languages (as in [24]). We add denotations for some hybrid actions
that represent sensors and actuators, and show how these are combined to [£]
to form the hybrid semantics [£2]* (Sect.H]). For conciceness reasons, we ommit
in this paper most of the proofs of the presented results. An extended version
containing them with more details on the theory of ODEs can be found in [3].

Running Fxample. We will illustrate this article with a simplified version of the
well-known two tanks problem [I8]. It consists of one water tank (Fig. 1
filled by a constant flow ¢ with two evacuation tubes: one at the bottom, which
has a valve v than can be open or closed, and one at height h. The continuous
system is the height = of the water in the tank, whose evolution is governed by
the ordinary differential equation of Fig. The discrete part is a controller
whose goal is to maintain = between safe bounds by closing/opening the valve.

Related Work. The modeling of hybrid systems with hybrid automata was initi-
ated by Henzinger [I6]. They are finite state automata to which we add at each
node a flow equation describing the continuous dynamics at this point. Their op-
erational semantics was introduced in the early papers and their analysis using
model checking techniques has been well studied [T2/T7]. A denotational seman-
tics for these models was recently proposed by Edalat [II] and proved to be
equivalent to the operational semantics. Since the first results, many models for
hybrid systems and verification methods were proposed. These include hybrid
process algebra like HyPa [8] or Hybrid Chi [23]. Meanwhile, Hybrid-CC [I5]
introduced hybrid components to the concurrent constraints theory. All these

Ill i — ki/x — kav/z — hif 2 > h and v open

— i = i—kavz —h if x> h and v closed
h T )i ke if < h and v open
) otherwise
(a) Scheme. (b) Continuous System.

Fig.1.1. One Tank Example
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models are generally used as high level abstract formalisms to reason about the
principles of hybrid systems. However, when the verification of industrial size,
critical systems is at stake, they are not fully sufficient. First, for safety rea-
sons, the analysis of the embedded source code is always necessary. Secondly,
for industrial size problems, it is necessary to have a clear distinction between
discrete and continuous states to allow the modeling process of the both parts
to be executed by different engineers. Most of the models we cited are not well-
suited for these requirements, although some advances have been made for the
separation issue [I]. The main difficulty in the formalization of hybrid systems
is to give a coherent meaning to the continuous and the discrete parts. Edalat
et al. proposed a formalization of differential calculus and of the solutions of
differential equations in the theory of Scott domains, both for the mono-variate
[9] and multi-variate [I0] cases. We used their theory as a starting point for our
work to define the denotational semantics of the continuous subsystem.

Notations and Mathematical Background. In this article, R denotes the set of
real numbers, R the set of non-negative real numbers and N denotes the natural
integers. The set of compact intervals over R is I(R). For i € I(R), we write i
(resp. i) its lower (resp. upper) bound. We define its width w(i) = i — ¢ and
its midpoint mid(i) = i;i. In Sect. B we use some advanced techniques of the
theory of ordinary differential equations (ODEs). We assume that the reader
is familiar with the basics of this theory, and give here just the main results
that we will use. The main theorem that we will use concerns the iterates of the
Picard operator P;(F,yo). Given I € I(R), a continuous function F and yo €
R, P;(F,yo) is a map between continuous functions defined by Pr(F,yo)(f) =
Az.yo+ [7 F(f(s),s)ds. It gives a characterisation of the solution of an initial value
problem (IVP) as a fixpoint and it provides a way to compute it via successive
approximation, as shown by Theorem [

Theorem 1 (Properties of the Picard operator). Let §y = F(y), y(0) = yo
be an IVP. A continuous, differentiable function f on (a,b), with 0 € (a,b), is a
solution to the IVP if and only if it satisfies:

vVt € (a,b), f(t) = Plan (F,y0)(y)(2) - (1)

If F is globally Lipschitz on R, the Picard iterates defined by fo € C°([a, b)), fnt1 =
Pa (F, yo) (fn) converge uniformly on (a,b). So, whatever the choice of fo, if we
iteratively compute fni1 = Pg ) (F7 yo)(fn), the sequence converges toward the
solution of the IVP on (a,b).

2  Our Model for Hybrid Systems

Our goals for this model of hybrid systems are the following. First, the discrete
part should remain close to existing embedded software. Secondly, the action of
sensors and actuators must be clearly identified. Finally, we want the continuous
and discrete systems to be modeled separately for two reasons. First, to analyze
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the behavior of a controller in different physical environments without rewriting
the entire system, the distinction between the plant (i.e. the discrete part) and
the environment must be clear. Secondly, for existing industrial applications, the
discrete part (i.e. the program) is already written, so we want a model of the
hybrid systems that can use this program “as it is”. An obvious solution would
consist of building a cartesian product between the continuous states and the
states of the program. For combinatorial reasons, our approach consists of first
describing a model for continuous subsystems (Sect. [Z1]) and then a model for
discrete subsystems (Sect. 22)).

2.1 Model for the Continuous Subsystem

The continuous part contains variables evolving continuously with time such as
the water height in the tank or the temperature of the air. They are usually
modelled by an ordinary differential equation; for example, the temperature y
of a room with a heater is given by an ODE like § = 5 — 0.1y. Let s be the
continuous model, its expressiveness depends on the set of functions F' that we
allow to define the IVP ¢ = F(y), y(0) = yo. We need to capture two phenomena:
a change in the dynamics due to the environment itself and a change due to the
discrete program. The first arises for example when the water passes above the
tube (see () while the second appears when the valve is closed.

To capture the changes due to the actuators, we let F' have boolean parameters:
F = F(y,t, k), where k vector of boolean valued. We write Fy(y,t) = F(y,t, k)
for every possible value of k. To capture the changes induced by the environ-
ment itself, we let each F) be a continuous, piecewise Lipschitz function. Thus,
Fi behaves differently in different regions of the space, which is precisely the
kind of changes we wanted to model. We recall that a function g is piecewise
Lipschitz if there exist finitely many real numbers z¢p < 21 < -+ < x,, such that
the restriction of g to [x;, z;41] is Lipschitz. The theory of differential equations
remain unchanged with such functions, except that the solutions are now contin-
uous but only piecewise differentiable functions. Especially, the Picard iterates
still converge uniformly on every interval.

The continuous model & is a triple k = (F, (F;c)kewyo) where (Fk)kek is
the set of possible modes. We write Fj, for (Fk)kekz’ F' is the function defining
the IVP and is such that there exists tg < t1 < --- < t, < ... such that the
restriction of F to [t;, t;+1] is equal to one of the Fj. The model representing the
evolution of the liquid height in the one-tank system is (F,{Fpy, F1},y0) where
(Fo, Fy) are given by (2.

fi—kxkivr—kevVz—hif z>h
Fi(w) = { i—k*xkiyr otherwise (2)
2.2 Model for the Discrete Subsystem

We want the discrete model A to remain close to existing embedded software. We
thus start with a set of standard statements which are common to any imperative
language (stmt in Fig. 2J)): assignemnts, if statements, while loops, arithmetic
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stmt := v = exp | while(bool) stmt | if(bool) then stmt else stmt
| stmt;stmt | hyb stmt
exp := ¢ | exptexp | exp-exp | exp*exp ...
bool := v<exp | v>exp | boolVbool | ...
hyb stmt := sens.y?x | act.klc | wait ¢

Fig. 2.1. Statements for the discrete system

and boolean expressions. This core language can be extended to more complex
statements without perturbing the semantics of the hybrid system as they rep-
resent purely discrete actions. In addition, we have three hybrid actions. First, a
sens action for the sensors: the action of sens.y?x is to bind the variable x to
the value of the continuous variable y at the time the action is executed. Then, a
act action for the actuators: the action of act.k!c is to change the continuous dy-
namics by choosing the function F, among all the possible dynamics Fk. Finally,
a wait action for the passing of time: we suppose that all discrete and hybrid ac-
tions are instantaneous and we model the fact that they were not by explicitly
adding these wait statements. The effect of wait c is to move time forward by
c seconds. This formalism is very close to existing imperative languages and, in
most cases, the programs already contain, as comments, the hybrid statements.
For example, the loops of industrial programs are usually precisely cadenced and
we often see in the codes comments indicating their frequency such as “this loop
runs at 8kHz”. Thus, adding a wait command at the end of the loop to model
its cadence is easy. Using this syntax, we can write a controller for the one tank
system that measures the height x of the water with a sensor and open the valve if
x is too high (see Listing[I]). We suppose that closing the valve takes two seconds,
so the controller must predict the height of the water two seconds later (via the
function anticipate) and start the opening if this predicted value is too high.

1 int main() {

2 sensor x; // sensors declaration
3 actuator k; // actuators declaration
4 while (true) {

5 sens .x7h;

6 if (h>h max)

7 act .k!1; throw( alarm );

8 h in 2 secs = anticipate(h);

9 if (h in 2 secs > h max)

10 act .k!1;

11 wait (0.01); // delay action

12 )

13}

Listing 1. Controller for a one-tank system.

This model for hybrid systems conforms to our three requirements, and we de-
signed it such that it prohibits physically impossible phenomena like continuous
state jumps or Zeno effects. Actually, time is driven by the discrete subsystem
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through the wait statements, thus there must exist a minimum time between
two mode switchings (because the discrete program is finite), which prohibits
Zeno phenomena. We now give a formal, denotational semantics for this model
of hybrid systems.

3 Continuous Semantics

In this section, we give a formal, denotational semantics of the continuous model.
Let us recall that the continuous part of an hybrid system is represented as
K= (F , F,yo) where Fy, is a family of piecewise Lipschitz continuous functions
and yo € R is the initial condition (we suppose to = 0). Each F} is supposed
to be globally a-Lipschitz on R, so that there exists a unique maximal solution
on R to each ODE y = Fj(y,t). We first give the intuition for the continuous
semantics and then we describe the lattice structure that we manipulate (Sect.
BI) and the computation of the semantics as a fix-point (Sect. B.2]).

In an analogy with standard denotational semantics, we want to express the
semantics of k as a function mapping an initial environment to a final value. If
we know the behavior of the discrete part of the system, we know the times at
which the parameters k € k switch. Thus, we know completely the function F
and the semantics of £ maps an initial value to the semantics of the IVP:

Basically, the semantics of the IVP is its maximal solution, i.e. a piecewise differ-
entiable, continuous function y : Ry — R which satisfies (3]). Thus, the semantics
of k is a function [] mapping an initial environment (i.e. the initially available
information y) to the solution of the IVP. The computation of [x](y) requires the
computation of a fix-point, in the sense of Banach’s fix-point theory, as shown
by Theorem [II We translate this fix-point computation into Tarski’s fix-point
theory: [«](y) is computed as the fix-point of an operator I and we prove this
is the supremum of the iterates I"™(L). I" is defined on elements with partial
information and it updates them by increasing their information content. Our
notion of partial information is the following: a function has only partial infor-
mation if it is defined on a finite interval [0, X] for some X € Ry and its value
at each point is bounded, i.e. is an interval. Thus, the maximal elements are
the real-valued functions defined on R, and our semantics will construct one
of these (the solution of (@) as the limit of an approximations sequence, each
approximation being a partially defined, interval-valued function.

3.1 The Lattice of Interval-Valued Functions

We now define the set of partially defined, interval-valued functions. We also
define an order and shows that this order provides a lattice structure.

Definition 1 (Partial, interval-valued functions). Let X € Ry. IFx is
the set of interval-valued functions defined on [0, X]: ITF, = {f:[0,X] — I(R)}
For such a function, we define its upper f and lower f functions as the two
real-valued functions such that Vx € [0, X], f(x) = [f(z), f(x)].
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When [ (respectively f) is right-continuous (respectively left-continuous), f is

(Scott) continuous and write ZF% the set of all continuous, partial, interval-
valued functions. We recall that a function f is right-continuous if when ¢ tends
toward = from above, f(t) tends toward f(z); the left-continuity is the opposite.
We provide the set ZF ())( with a complete partial order structure with the point-
wise reverse order: f Cx g < Vz € [0, X], g(z) C f(z). This order means that at
every point in [0, X], g is more informative than f. Clearly, (I]—'g(7 Cx)isa CPO
(actually, it is a continuous Scott domain [9]). The left-(resp. right) continuity
of f (resp. f) is a necessary condition for f to be Scott-continuous [9] and for

IF 9( to be a CPO; consider for example the piecewise linear functions f,, € ZF (1)
defined by f,(z) =[0,1] if z € [0,]], fu(z) =[0,1 = S (z—3)] ifx €[, 5+ ]
and f,(z) = [0, 3] otherwise. Clearly, f = | |, fn is not continuous in }, while
each f, is. The right-continuity condition imposes that f(z) = 1 for z € [0, }|
and f(z) =} for z € [},1].

TFY is the natural extension of ZF% to functions defined on R . We now build
the set of interval functions defined over arbitrary intervals of R.

Definition 2 (Arbitrary long, interval-valued functions). The set of all
continuous, partial, interval-valued functions is D° = (UXE]R+ I}"g() UZFY.

For f € D°, we note X the upper bound of its domain: Xy = sup(dom(f)).
The value Xy is the mazimum time until which f is defined; if f is defined on
Ry, then Xy = oo.

Note that for all X > 0, the set of continuous, real-valued functions C°([0, X]) is
embedded into DY by the function 7 : f — Az.[f(z), f(x)]. Thus, we will identify
amap f € C°([0, X]) with the map Az.[f(z), f(z)] and write f € D°. We extend
the order Cx to DY by requiring that g is greater than f if it is more precise on
a longer interval than f:

fEge Xy <Xgand fCx; g and Vo € [ Xy, Xg], g(x) C f(Xy) (4)

0,X ]

where 9l denotes the restriction of g to [0, X¢]. Figure Bl gives an example

0,X 4]
of comparalf)le functions (left, the dark one being bigger than the light one) and
an example of incomparable functions (right). The third hypothesis in (@) states
that g remains bounded by the last value of f on [Xf, X,]. It is necessary for D°
to be a CPO: in any increasing chain f,,, the functions f,, and f,, are bounded,
thus (f,,) is a bounded increasing sequence (with respect to the pointwise order

for real-valued functions), so it has a limit f. Equivalently, (f,) has a limit f,

(a) Comparable functions. (b) Incomparable functions.

Fig. 3.1. Order on partially defined functions
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which proves the existence of | |, f, = [f, f]. We extend (D°,C) with a bottom
1 and a top T element such that Vf € D°, L. C f C T. We also define the join
and meet operators LI and M as follows. Let f,g € D°, with Xy < X,. Then,
fUgeTIFS, and frgeIF%, are defined by:

fugte) = {4 e 1Ma() = 1(a) Ug)
This definition of f U g supposes that Vo € [0, Xy], f(z) N g(z) # 0. If this is
not true, flUg=T.

Proposition 1. (D°,C, T, L,L,M) is a continuous lattice.

Let us remark that DV is a lattice and a CPO, so every increasing chain does have
a supremum. It is however not a complete lattice as there exist infinite sequences
without supremum. For example, let us consider the sequence of functions ¢,, €
I]:(l)*i defined by ¢, (z) = [, , ' ]. Clearly, this sequence does not have a
supremum in D° except T, while there are infinitely many f € D° greater than
Jn for all n (for example, the constant function with value 0).We next define
some basic operations on P° that adapt the classical operations on real-valued
functions. The arithmetic operators 4+, —, *, / are defined as an extension of the
interval arithmetic. For ® € {+, —,*, /} and f,g € TF%, we define f©g € TF%
as Vo € [0,X], fOg(z) = {y®z|y€ f(z)and z € g(z)}. We next define the
composition, primitive and width of functions in D°.

Definition 3 (Function composition, Primitive and Width).

The composition of a continuous, real-valued function F': R — R and a partial,
interval-valued function f € I}'g( is the function F ox [ € I}'g( defined by:
Vr € [0,X], (Fox f)(z) ={F(y) : y€ f(z)}. Fox f is well defined because F' is
continuous and f(x) is an interval, so Fo f(x) is an interval for all x. We natu-
rally extend the notion of function composition to D° and define the composition
operator o as: VF:R — R and f € D°, Fo f=Fox, f .

The primitive of a function f € TFY is Ix(f) € IF% defined by: Vo €
0, X], Ix(f)(x) = [[ f(s)ds, [} f(s)ds]. This primitive operator is extended to
DO straightforwardly: for f € D°, we set I(f) = Ix,(f)

The width of a function f € D° is computed as the mazimum width of all
intervals f(x): w(f) = max,eo,x,) w(f(r)).

Proposition 2. The operator o is monotone and continuous. The width w is a
monotone, continuous function from (D°,C) to ([0, 0o[, <) wherex <y &y < .

The proof of this proposition is straightforward: we use the monotonicity of
functions with respect to set inclusion for o and we note that for two intervals
i1,42, 12 C i1 = w(iz) < w(iy), thus the monotonicity of w. The primitive
operator is not monotone, as it does not preserve the third condition for the
order C (Equation (@)). However, the second condition is preserved thanks to
the monotonicity of the primitive for real-valued functions.
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Among all the functions of D, one is of special interest for us: ¥, the maximal
solution of ([B). We compute it by successive approximations and thus need to
measure the quality of our approximation. Following Keye Martin’s measure
theory [19], a measurement is a continuous function p from a CPO D into the
set of nonnegative real numbers with reverse ordering: [0, oo[* that reveals the
distance of f € D to the maximal elements of D, which have measure 0. The
measurement must be coherent with the informational order on D: the more
informative f, the smaller its measure. It must also be the case that if we measure
that the sequence f,, converges towards 0 (lim,, .o (fr) = 0), then the sequence
fn does converge towards a maximal element (| |, f, = f, u(f) = 0). For a
formal definition of a measurement, please refer to [I9], Chapter 2. In our case,
the maximal elements of D° are the real-valued functions defined on R, . These
functions have a null width and an infinitely long domain of definition. Thus, a
measurement must takes both aspects into account.

Definition 4 (The measurement ). Let f € D°. We let u(f) = w(f) +

Xf :
Clearly, u(f) is null if and only if f is maximal, so in particular p(y.) = 0.

Proposition 3. p is a measurement, i.e.:

(i) it is a Scott continuous map from (D°,C) into [0, c0[*.
(ii) for all f € D° such that u(f) = 0 and all sequences f, < f, we have
limy, o0 p1(fr) = 0= Upnfn = f

We recall that the far away relation f < g means that for every increasing chain
pn with a supremum greater than g, the elements p, must become greater than
f at some N € N.

We thus have built a lattice DY and defined three operators on it: I, o and w.
We also have a measurement p on D° which characterizes its maximal elements,
i.e. the real-valued functions defined on R;. We use p in the next section.

3.2 The Semantics

[x](y) is computed as the least fix-point of the operator I'p,, : DY — DO that
acts as follows: a function f € ZF%, it first updates the available information
by bringing each f(x) closer to ys(x) and then it extends the function to the
right by assigning a value to f(x) for z € [X, X + 1]. The first step uses an
iteration of the Picard operator (Sect. [[l) while the second step extends the
function in such a way that if f encloses the solution at X, then the extension
encloses Yoo on [X,X + 1]. This is possible because F' is a-Lipschitz, so yeo
cannot grow faster than e**. We recall that the Picard operator is defined as
Po.x ;1 (F,y0) (f) = Azyo + [ F(f(s))ds = yo + I(F o f).

Definition 5 (Updating operator). Let f € D°, we suppose Xy < o0. Let
F be a continuous, globally a-Lipschitz function and yo € R. Then, I'ry,(f) €
I]-'g(fﬂ is defined by:
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Pio,x ;1 (F,90) (f) () ifr <Xy

Lrye(f)(@) =9 J+ F(J)* [—e%, e % (z — X),
with J = P[O,Xf](F, y0) (f)(X) otherwise

If f € IF°, Try(f) = Pl (F,y0) (f)- Tryo(L) is the function defined on
[0, 0] with value yo.

An example of the effect of I'p,, on a partial function is shown on Fig. The
black line represents yoo; Figure 32(a)] shows the updating mechanism, while
Fig. 32(D)]is the extension. The operator Iz, is not monotone on D°, but we
know that it has a fix-point: y.,. We will show in the following that this fix-point
can be computed as the supremum of the I'r,y, iterates, i.e. yoo = ||, I'z, (L)

Proposition 4. Let f € TF%. I'r,, verifies the invariant:
Vo € [0, X], yoo(2) € f(x) = Vo € [0, X + 1], Yoo (z) € I'ryo (f)(x) -

The iterates fr41 = I'Fy,(fn), starting from fy = L, form a sequence of ap-
proximation of y.: they enclose it and their width converge toward 0. On Table
[0 the figures show how the iterates of I'p,, converge to a real valued function.
The semantics of the continuous subsystem r = (F, Fi,y0) maps f € D° with
the least fix-point of I'py, starting from f: [s](f) = L, I'F,, (f). We now give
the main result of this section.

Theorem 2. The solution yoo of @) is a fiz-point of I'r,y, and

[[’i]](J-) = Fi‘r(FF,yo) = UFF,yO(J—) =Yoo -

4 Hybrid Semantics

Let us now give the semantics of the complete hybrid system. The hybrid model
is a pair 2 = (Am) consisting of a model A for the discrete system and a
model k for the continuous environment that define two dynamical systems that
run in parallel and, from time to time, communicate. On the one hand,data
are passed from x to A via the sensors. This communication requires that both
dynamical systems reached the same time before the data is exchanged. The
sens actions must thus be blocking. On the other hand, orders are passed from

(a) Update the informa- (b) Extends the informa-
tion tion

Fig. 3.2. The updating operator (two steps)
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A to k via the actuators. Indeed, the discrete system only indicates to the
continuous system what its semantics will be, i.e. it chooses one of the possible
functions Fj. This communication needs not to be blocking as it does not affect
the value of the continuous variables but only their future behavior. The hybrid
denotations for sens and act respect these facts. The semantics [£2]7 of £ is a
function between hybrid environments. The discrete environment is altered by
the discrete subsystem while the continuous one is computed only when needed,
i.e. when a sens is found.

4.1 Hybrid Environments

A hybrid environment consists of a pair made of a discrete and a continu-
ous environment. The discrete environment os binds every discrete variable
v € Var to a value and the time time to a positive real value. It also con-
tains the function F' that defines the semantics of the continuous variables.
This function F' is piecewisely defined by the discrete program through the
act statements and thus storing F' is equivalent to storing the sequence of
all executed act actions. The discrete environment thus stores both the value
of the variables, the execution time, as well as the sequence of modifications
brought to the continuous system. We write X4 the set of all discrete envi-
ronments, ¥a = {(Var — Val) * ({time} — Ry) * (F: Ry x R — R)}. The con-
tinuous environment o, contains an approximation of the physical variables
y € D° and the set of functions F) defining the continuous dynamics, i.e.
the set of possible continuous modes that are available for the discrete pro-
gram to chose. We write X, the set of all continuous environments, X, =
{(yeD°) x (Fr | Fr : Ry x R—R)}. As usual, we write 05.X (resp. 0,..Y") the
the value of a variable X € Var U {time, F'} (resp. Y € {y} U F}) in the discrete
(resp. continuous) environment. We write X7 the set of all hybrid environments:

os € XA and o € Y and
2" ={ (0s,04) |3(tn), (cn) s.t. Vi €N, VL€ [ti,tiga], p - (5)
Ug.F(t) = O’R.Fci (t)

We write Il : (0s,04) — 05 and Il : (05,04) — o, the two projections of an
hybrid environment into a discrete (resp. continuous) one.

4.2 Hybrid Denotations

The denotation of the purely discrete parts of the language are defined as
usual for imperative languages (see [24] for example). We have denotations for
numerical (resp. boolean) expressions [exp] (resp. [bool]) which are functions
between a discrete environment and a numerical (resp. boolean) value. Every
discrete statement stmt also has a denotation which is a function between dis-
crete environmnents. We extend them to hybrid environments: [exp]’ (o5, 0.) =
[exp](os), [bool]™(os,0,) = [bool](cs) , and [stms]™(os,0,) = [stms](cs). The de-
notation of a wait is a function from X to X that modifies the value of time:
[wait(c)]"(0s,0x) = (os[time — os.time + c,0,) . The denotation of an action
sens.y?x (Equation (@) with n = |os.time + 1]) is a function from X" to X
that modifies a pair (os,0,) as follows: it first updates o, to ensure that o,.y
has a value at time og.tiéme and then it binds z with this value in os5. The first
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step is done by applying |os.time + 1] times the operator I'r,, (see Sect. B.2)
to ox.y with F' = 05.F and yo = 04.y(0).

sens.y?x| (05, 0.) = I :J“[y'_)F:,;.F,yo (y)],
[[ yogHos 00) = (U:s = oslz — mid(Ué.g);(U&.time))]) ’ (6)

The denotation of an action act.k!c (Equation (7)) is a function from £ to
XM that modifies(os, o) as follows: o, is left unchanged and in o5, the function
F' is modified so that it takes the value of o,.F, for times greater than os.time.

os.F(y,t) if t<os.time
9 Ok
0. Fe(y,t) otherwise

[act.k!c]™ (05, 04) = <05 (7

F|—>)\t,y.{

We can compute the hybrid semantics [A]" of the discrete program by com-
bining these denotations. This does not however compute the semantics of the
continuous environment, this is the role of the semantics of the hybrid system.

4.3 Hybrid Semantics

The semantics of the hybrid model {2 = (A, k) is a function between hybrid envi-
ronments: [2]" : X7 — XM [Q]™ alters a pair (0s,0,) as follows. It computes
(0§, 0%) = [A]™(0s,0.) and two cases occur. If o], = 0, the discrete program
has no effect on the environment, i.e. either there are no sens statements in
it, or they have no effect on 0. This is the case only if o,.y is a fix-point of
I'py,, 1.e. 05.y = [k](0s.y). In this case, we have computed both the continuous
semantics and the discrete one, so we set [2]" (05, 0,) = (0%, 07%). On the other
hand, if ¢/, # o0, the program has modified the environment and thus brought
0s.y closer to [k](0s.y). 0§ (resp. ol.) is only an approximation of the result of
the discrete (resp. continuous) system and we must iterate the process to obtain
a better approximation. We thus propagate o/, into the discrete subsystem, i.e.
we apply [A]™ to (os,0)) and repeat the operation. The semantics [2]" is
computed as a fix-point of a function that applies [A] consecutively until the
semantics of the continuous environment has been computed. The formal defini-
tion of [£2]™ is given in (§). Let us note that [£2] is actually the only fix-point
of the function I'™* just like [] was the only fix-point of I'p, in Sect. Bl [£2]"
is compatible with the continuous semantics [x] presented in Sect. B the con-
tinuous environment is finally computed as the fix-point of the operator I'p,y,
as in Sect. It is also compatible with the standard denotational semantics
of imperative languages: if A does not have any hybrid actions, then [§2]" is
precisely the semantics of the discrete program as defined in [24] for example.

[2]" = Fiz(I'™) where

FH(QD)(O'g,O'K) = (0':570';) with {Jg = H5([[A]]H(06»U;)) . (8)

oy = I (p(os, I ([A] ™ (0, 05)))

4.4 Example

To illustrate that our semantics really computes the behavior of the hybrid
system, let us consider a simplified version of the one-tank controller (see the
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Table 1. First three iterations of the semantics computation

Statement Iteration 1 Iteration 2 Iteration 3

t h T t h T t h T
Initial environment 0 L 1 0 L - < 0 L . %
wait(1); 1 1 1

sens.x?h; 2.0 k 2.45 :i4 2.48 ii%

if (h>h max)
act.k!1; F— Fy F— Fy F — Fy
wait(1); 2 2 2

sens.x7h; 2.8 1% 2.85 1 : E 2.95 1 i 5

if (h>h max)
act.k!1; F— Fy F— Fy F— \.(t < 2)?Fo; F1

first column of Tab. []). We only consider two iterations of the while loop (which
has a period of one second) and forget about the anticipation mechanism. The
continuous system is still given by ), with i =2, ky = ko =1, h =3, h maz =
2.9, and the initial value for the height of water x is 2y = 2. We have two possible
continuous dynamics : F (the valve is closed) and F; (the valve is open). Initially,
the valve is closed, i.e. we start with the dynamic Fy. Table [l shows the first
three iterations of the computation of the semantics of the system. For each
line of the program, we indicate how the variables are changed (¢ is the time,
h the discrete variable and x the continuous one). For the act statement, we
indicate how it changes the function F' of the hybrid environment. The notation
At.(t < 2)?Fy; Fy means that F(t) = Fy(t) if t < 2, and F(t) = Fy(t) otherwise.

5 Conclusion

In this article, we presented a new approach to hybrid systems that can be used
for the modeling and analysis of large critical embedded programs. Our model is
based on a clear separation of the discrete and the continuous systems: ordinary
differential equations with boolean parameters are used to model the continuous
system, an imperative language with hybrid statements is used for the discrete
part. The emphasis has been placed on making this model as unintrusive as
possible for existing software, so we believe that we can use it for industrial
size problems. We defined the semantics of our model in two steps: first, we
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extended results by Edalat and Lieutier [9] to consider the maximal solutions
of IVP on Ry and we presented the semantics of the continuous model as a
function mapping the initial condition to the maximal solution. The semantics
of the hybrid system is then an extension of the standard denotational semantics
of imperative languages in which actions of sensors and actuators are defined.

To the best of our knowledge, this is the first attempt to integrate into the
semantics of imperative languages the continuous environment that models the
programs inputs. We are not aware of any equivalent, operationally defined mod-
els. We believe that our model is expressive enough to encode most of Henzinger’s
hybrid automata, but both models are based on very different asumptions (for
example, we consider that time is driven by the discrete system) so that it is
difficult to formally compare them.

This work is a first step toward the validation of embedded software with their en-
vironment. The analysis of such systems using, for example, abstract interpretation
techniques [6] requires two stages. First, the continuous system must be abstracted
in a non-naive way. The theory of guaranteed integration of ODE [21]] brings us the
adequate tools for the safe abstraction of the continuous system. Validated ODE
solvers [4] compute interval bounds that are proved to contain the solution. This
can be seen as a valid abstraction in the theory of abstract interpretation. For the
analysis of the discrete part, the use of an implementation level model allows us
to use existing methods [TIT3]. These methods must however be completed so that
they consider time: the main difficulty in the analysis of the discrete system is to
carefully analyze the time at which every statement is executed (this is necessary for
the sensor actions to be precise enough) This modification of standard static analy-
sis techniques to our framework will be our main concern for future work. Another
interesting application of our approach for hybrid systems is to modify standard
strictness [20] or termination analysis [2] so that they fit to our model. This could
be used to solve, in an approximate way, the reachability problem of a discrete state
in a hybrid system, which is known to be undecidable [I6]. Several methods have
been proposed for its simplification [I7]; we believe that our approach may be effi-
ciently used for its approximate solution as it benefits from all the static analysis
based methods for programming languages.
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