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Abstract. We show how to transform any semantically secure encryption
scheme into a non-malleable one, with a black-box construction that achieves
a quasi-linear blow-up in the size of the ciphertext. This improves upon the
previous non-black-box construction of Pass, Shelat and Vaikuntanathan (Crypto
’06). Our construction also extends readily to guarantee non-malleability under a
bounded-CCA2 attack, thereby simultaneously improving on both results in the
work of Cramer et al. (Asiacrypt ’07).

Our construction departs from the oft-used paradigm of re-encrypting the
same message with different keys and then proving consistency of encryptions;
instead, we encrypt an encoding of the message with certain locally testable and
self-correcting properties. We exploit the fact that low-degree polynomials are
simultaneously good error-correcting codes and a secret-sharing scheme.

Keywords: Public-key encryption, semantic security, non-malleability, black-
box constructions.

1 Introduction

The most basic security guarantee we require of a public key encryption scheme is that
of semantic security [GM84]: it is infeasible to learn anything about the plaintext from
the ciphertext. In many cryptographic applications such as auctions, we would like an
encryption scheme that satisfies the stronger guarantee of non-malleability [DDN00],
namely that given some ciphertext c, it is also infeasible to generate ciphertexts of some
message that is related to the decryption of c. Motivated by the importance of non-
malleability, Pass, Shelat and Vaikuntanathan raised the following question [PSV06]:

It is possible to immunize any semantically secure encryption scheme against
malleability attacks?

Pass et al. gave a beautiful construction of a non-malleable encryption scheme from any
semantically secure one (building on [DDN00]), thereby addressing the question in the
affirmative. However, the PSV construction – as with previous constructions achieving
non-malleability from general assumptions [DDN00, S99, L06] – suffers from the curse
of inefficiency arising from the use of general NP-reductions. In this work, we show
that we can in fact immunize any semantically secure encryption schemes against
malleability attacks without paying the price of general NP-reductions:
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Main theorem (informal). There exists a (fully) black-box construction of a
non-malleable encryption scheme from any semantically secure one.

That is, we provide a wrapper program (from programming language lingo) that given
any subroutines for computing a semantically secure encryption scheme, computes a
non-malleable encryption scheme, with a multiplicative overhead in the running time
that is quasi-linear in the security parameter. Before providing further details, let us first
provide some background and context for our result.

1.1 Relationships Amongst Cryptographic Primitives

Much of the modern work in foundations of cryptography rests on general crypto-
graphic assumptions like the existence of one-way functions and trapdoor permutations.
General assumptions provide an abstraction of the functionalities and hardness we
exploit in specific assumptions such as hardness of factoring and discrete log without
referring to any specific underlying algebraic structure. Constructions based on general
assumptions may use the primitive guaranteed by the assumption in one of two ways:

Black-box usage: A construction is black-box if it refers only to the input/output
behavior of the underlying primitive; we would typically also require that in the
proof of security, we can use an adversary breaking the security of the construction
as an oracle to break the underlying primitive. (See [RTV04] and references within
for more details.). As emphasized earlier, our construction is black-box, using only
oracle access to the key generation, encryption and decryption functionality of the
underlying encryption scheme.

Non-black-box usage: A construction is non-black-box if it uses the code computing
the functionality of the primitive. The PSV construction along with the work it
builds on fall into this category: they use an NP reduction applied to the circuit
computing the encryption functionality of the underlying encryption scheme in
order to provide a non-interactive zero-knowledge proof of consistency.

Motivated by the fact that the vast majority of constructions in cryptography are black-
box, a rich and fruitful body of work initiated in [IR89] seeks to understand the
power and limitations of black-box constructions in cryptography, resulting in a fairly
complete picture of the relations amongst most cryptographic primitives with respect
to black-box constructions (we summarize several of the known relations pertaining
to encryption in Figure 1). More recent work has turned to tasks for which the only
constructions we have are non-black-box, yet the existence of a black-box construction
is not ruled out. Two notable examples are general secure multi-party computation
against a dishonest majority and encryption schemes secure against adaptive chosen-
ciphertext (CCA2) attacks1 (c.f. [GMW87, DDN00]).

1 These are encryption schemes that remain semantically secure even under a CCA2 attack,
wherein the adversary is allowed to query the decryption oracle except on the given challenge.
A CCA1 attack is one wherein the adversary is allowed to query the decryption oracle before
(but not after) seeing the challenge.
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The general question of whether we can securely realize these tasks via black-box
access to a general primitive is not merely of theoretical interest. A practical reason
is related to efficiency, as non-black-box constructions tend to be less efficient due
to the use of general NP reductions to order to prove statements in zero knowledge;
this impacts both computational complexity as well as communication complexity
(which we interpret broadly to mean message lengths for protocols and key size
and ciphertext size for encryption schemes). Moreover, if resolved in the affirmative,
we expect the solution to provide new insights and techniques for circumventing
the use of NP reductions and zero knowledge in the known constructions. Finally,
given that there has been no formal model that captures non-black-box constructions
in a satisfactory manner, the pursuit of a positive result becomes all the more
interesting.

Indeed, Ishai et al. [IKLP06] recently provided an affirmative answer for secure
multi-party computation by exhibiting black-box constructions from some low-level
primitive. Their techniques have since been used to yield secure multi-party compu-
tation via black-box access to an oblivious transfer protocol for semi-honest parties,
which is complete (and thus necessary) for secure multi-party computation [H08]. This
leaves the following open problem:

Is it possible to realize CCA2-secure encryption via black-box access to a
low-level primitive, e.g. enhanced trapdoor permutations or homomorphic
encryption schemes?

Previous work pertaining to this problem is limited to non-black-box constructions of
CCA2-secure encryption from enhanced trapdoor permutations [DDN00, S99, L06];
nothing is known assuming homomorphic encryption schemes. In work concurrent
with ours, Peikert and Waters [PW07] made substantial progress towards the open
problem – they constructed CCA2-secure encryption schemes via black-box access
to a new primitive they introduced called lossy trapdoor functions, and in addition,
gave constructions of this primitive from number-theoretic and worst-case lattice
assumptions. Unfortunately, they do not provide a black-box construction of CCA2-
secure encryption from enhanced trapdoor permutations.

Our work may also be viewed as a step towards closing this remaining gap (and a
small step in the more general research agenda of understanding the power of black-
box constructions). Specifically, the security guarantee provided by non-malleability
lies between semantic security and CCA2 security, and we show how to derive non-
malleability in a black-box manner from the minimal assumption possible, i.e., semantic
security. In the process, we show how to enforce consistency of ciphertexts in a black-
box manner. This issue arises in black-box constructions of both CCA2-secure and
non-malleable encryptions. However, our consistency checks only satisfy a weaker
notion of non-adaptive soundness, which is sufficient for non-malleability but not for
CCA2-security (c.f. [PSV06]). As a special case of our result, we obtain a black-box
construction of non-malleable encryptions from any (poly-to-1) trapdoor function. Our
results are incomparable with those of Peikert and Waters since we start from weaker
assumptions but derive a weaker security guarantee.
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Fig. 1. Known relations among generic encryption primitives, and our results. Solid lines indicate
black box constructions, and dotted lines indicate non-black-box constructions (c.f. [BHSV98,
DDN00, PSV06, CHH+07, PW07]). The separations are with respect to black-box reductions, or
black box shielding reductions (c.f. [GMR01, GMM07]). Our contributions are indicated with the
thick arrows.

Related positive results. A different line of work focuses on (very) efficient con-
structions of CCA2-secure encryptions under specific number-theoretic assumptions
[CS98, CS04, CHK04]. Apart from those based on identity-based encryption, these
constructions together with previous ones based on general assumptions can be
described under the following framework (c.f. [BFM88, NY90, RS91, ES02]). Start
with some cryptographic hardness assumption that allows us to build a semantically
secure encryption scheme, and then prove/verify that several ciphertexts satisfy certain
relations in one of two ways:

– exploiting algebraic relations from the underlying assumption to deduce additional
structure in the encryption scheme (e.g. homomorphic, reusing randomness) [CS98,
CS04];

– apply a general NP reduction to prove in non-interactive zero knowledge (NIZK)
statements that relate to the primitive [DDN00, S99, L06].

None of the previous approaches seems to yield black-box constructions under general
assumptions. Indeed, our work (also [PW07]) does not use the above framework.

1.2 Our Results

As mentioned earlier, we exhibit a black-box construction of a non-malleable en-
cryption scheme from any semantically secure one, the main novelty being that our
construction is black-box. While this is interesting in and of itself, our construction also
compares favorably with previous work in several regards:

– Improved parameters. We improve on the computational complexity of previous
constructions based on general assumptions. In particular, we do not have to do an
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NP-reduction in either encryption or decryption, although we do have to pay the
price of the running time of Berlekamp-Welch for decryption. The running time
incurs a multiplicative overhead that is quasi-linear in the security parameter, over
the running time of the underlying CPA secure scheme. Moreover, the sizes of
public keys and ciphertext are independent of the computational complexity of the
underlying scheme.

– Conceptual simplicity/clarity. Our scheme (and the analysis) is arguably much
simpler than many of the previous constructions, and like [PSV06], entirely
self-contained (apart from the Berlekamp-Welch algorithm). We do not need to
appeal to notions of zero-knowledge, nor do we touch upon subtle technicalities
like adaptive vs non-adaptive NIZK. Our construction may be covered in an
introductory graduate course on cryptography without requiring zero knowledge
as a pre-requisite.

– Ease of implementation. Our scheme is easy to describe and can be easily
implemented in a modular fashion.

We may also derive from our construction additional positive and negative results.

Bounded CCA2 non-malleability. Cramer et al. [CHH+07] introduced the bounded
CCA2 attack, a relaxation of the CCA2 attack wherein the adversary is only allowed
make an a-priori bounded number of queries q to the decryption oracle, where q is fixed
prior to choosing the parameters of the encryption scheme. In addition, starting from
any semantically secure encryption, they obtained2:

– an encryption scheme that is semantically secure under a bounded-CCA2 attack
via a black-box construction, wherein the size of the public key and ciphertext are
quadratic in q; and

– an encryption scheme that is non-malleable under a bounded-CCA2 attack via a
non-black-box construction, wherein the size of the public key and ciphertext are
linear in q.

Combining their approach for the latter construction with our main result, we obtain an
encryption scheme that is non-malleable under a bounded-CCA2 attack via a black-box
construction, wherein the size of the public key and ciphertext are linear in q.

Separation between CCA2 security and non-malleability. Our main construction
has the additional property that the decryption algorithm does not query the encryption
functionality of the underlying scheme. Gertner, Malkin and Myers [GMM07] referred
to such constructions as shielding and they showed that there is no shielding black-box
construction of CCA1-secure encryption schemes from semantically secure encryption.
Combined with the fact that any shielding construction when composed with our
construction is again shielding, this immediately yields the following:

Corollary (informal) There exists no shielding black-box construction of
CCA1-secure encryption schemes from non-malleable encryption schemes.

2 While semantic security and non-malleability are equivalent under a CCA2 attack [DDN00],
they are not equivalent under a bounded-CCA2 attack, as shown in [CHH+07].
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Note that a CCA2-secure encryption scheme is trivially also CCA1-secure, so this also
implies a separation between non-malleability and CCA2-security for shielding black-
box constructions.

Our techniques. At a high level, we follow the cut-and-choose approach for con-
sistency checks from [PSV06], wherein the randomness used for cut-and-choose is
specified in the secret key. A crucial component of our construction is a message
encoding scheme with certain locally testable and self-correcting properties, based on
the fact that low-degree polynomials are simultaneously good error-correcting codes
and a secret-sharing scheme; this has been exploited in the early work on secure multi-
party computation with malicious adversaries [BGW88]. We think this technique may
be useful in eliminating general NP-reductions in other constructions in cryptography
(outside of public-key encryption).

Towards CCA2 Security? The main obstacle towards achieving full CCA2 security
from either semantically secure encryptions or enhanced trapdoor permutations using
our approach (and also the [PSV06] approach) lies in guaranteeing soundness of the
consistency checks against an adversary that can adaptively determine its queries
depending on the outcome of previous consistency checks. It seems conceivable that
using a non-shielding construction that uses re-encryption may help overcome this
obstacle.

1.3 Overview of Our Construction

Recall the DDN [DDN00] and PSV [PSV06] constructions: to encrypt a message, one
(a) generates k encryptions of the same message under independent keys, (b) gives a
non-interactive zero-knowledge proof that all resulting ciphertexts are encryptions of
the same message, and (c) signs the entire bundle with a one-time signature. It is in step
(b) that we use a general NP-reduction, which in return makes the construction non-
black-box. In the proof of security, we exploit that fact that for a well-formed ciphertext,
we can recover the message if we know the secret key for any of the k encryptions.

How do we guarantee that a tuple of k ciphertexts are encryptions of the same
plaintext without using a zero-knowledge proof and without revealing any information
about the underlying plaintext? Naively, one would like to use a cut-and-choose
approach (as has been previously used in [LP07] to eliminate zero-knowledge proofs
in the context of secure two-party computation), namely decrypt and verify that some
constant fraction, say k/2 of the ciphertexts are indeed consistent. There are two issues
with this approach:

– First, if only a constant number of ciphertexts are inconsistent, then we are unlikely
to detect the inconsistency. To circumvent this problem, we could decrypt by
outputting the majority of the remaining k/2 ciphertexts.

– The second issue is more fundamental: decrypting any of the ciphertexts will
immediately reveal the underlying message, whereas it is crucial that we can
enforce consistency while learning nothing about the underlying message.
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We circumvent both issues by using a more sophisticated encoding of the message m
based on low-degree polynomials instead of merely making k copies of the message as
in the above schemes. Specifically, we pick a random degree k polynomial p such that
p(0) = m and we construct a k × 10k matrix such that the i’th column of the matrix
comprises entirely of the value p(i). To verify consistency, we will decrypt a random
subset of k columns, and check that all the entries in each of these columns are the
same.

– The issue that only a tiny number of ciphertexts are inconsistent is handled using
the error-correcting properties of low-degree polynomials; specifically, each row of
a valid encoding is a codeword for the Reed-Solomon code (and we output ⊥ if it’s
far from any codeword).

– Low-degree polynomials are also good secret-sharing schemes, and learning a
random subset of k columns in a valid encoding reveals nothing about the
underlying message m. Encoding m using a secret-sharing scheme appears in the
earlier work of Cramer et al. [CHH+07], but they do not consider redundancy or
error-correction.

As before, we encrypt all the entries of the matrix using independent keys and then
sign the entire bundle with a one-time signature. It is important that the encoding also
provides a robustness guarantee similar to that of repeating the message k times: we
are able to recover the message for a valid encryption if we can decrypt any row in the
matrix. Indeed, this is essentially our entire scheme with two technical caveats:

– As with previous schemes, we will associate one pair of public/secret key pairs with
each entry of the matrix, and we will select the public key for encryption based on
the verification key of the one-time signature scheme.

– To enforce consistency, we will need a codeword check in addition to the column
check outlined above. The reason for this is fairly subtle and we will highlight the
issue in the formal exposition of our construction.

Decreasing ciphertext size. To encrypt an n-bit message with security parameter k, our
construction yields O(k2) encryptions of n-bit messages in the underlying scheme. It is
easy to see that this may be reduced to O(k log2 k) encryptions by reducing the number
of columns to O(log2 k).

2 Preliminaries and Definitions

Notation. We adopt the notation used in [PSV06]. We use [n] to denote {1, 2, . . . , n}.
If A is a probabilistic polynomial time (hereafter, ppt) algorithm that runs on input
x, A(x) denotes the random variable according to the distribution of the output of A
on input x. We denote by A(x; r) the output of A on input x and random coins r.
Computational indistinguishability between two distributions A and B is denoted by

A
c≈ B and statistical indistinguishability by A

s≈ B.
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2.1 Semantically Secure Encryption

Definition 1 (Encryption Scheme). A triple (Gen, Enc, Dec) is an encryption scheme,
if Gen and Enc are ppt algorithms and Dec is a deterministic polynomial-time algorithm
which satisfies the following property:

Correctness. There exists a negligible function μ(·) such that for all sufficiently
large k, we have that with probability 1 − μ(k) over (PK, SK) ← Gen(1k): for
all m, Pr[DecSK(EncPK(m)) = m] = 1.

Definition 2 (Semantic Security). Let Π = (Gen, Enc, Dec) be an encryption scheme
and let the random variable INDb(Π, A, k), where b ∈ {0, 1}, A = (A1, A2) are ppt
algorithms and k ∈ N, denote the result of the following probabilistic experiment:

INDb(Π, A, k) :
(PK, SK) ← Gen(1k)
(m0, m1, STATEA) ← A1(PK) s.t. |m0| = |m1|
y ← EncPK(mb)
D ← A2(y, STATEA)
Output D

(Gen, Enc, Dec) is indistinguishable under a chosen-plaintext (CPA) attack, or seman-
tically secure, if for any ppt algorithms A = (A1, A2) the following two ensembles are
computationally indistinguishable:

{
IND0(Π, A, k)

}
k∈N

c≈
{
IND1(Π, A, k)

}
k∈N

It follows from a straight-forward hybrid argument that semantic security implies
indistinguishability of multiple encryptions under independently chosen keys:

Proposition 1. Let Π = (Gen, Enc, Dec) be a semantically secure encryption scheme
and let the random variable mINDb(Π, A, k, �), where b ∈ {0, 1}, A = (A1, A2) are
ppt algorithms and k ∈ N, denote the result of the following probabilistic experiment:

mINDb(Π, A, k, �) :
For i = 1, . . . , �: (PKi, SKi) ← Gen(1k)
(〈m1

0, . . . , m
�
0〉, 〈m1

1, . . . , m
�
1〉, STATEA) ← A1(〈PK1, . . . , PK�〉)

s.t. |m1
0| = |m1

1| = · · · = |m�
0| = |m�

1|
For i = 1, . . . , �: yi ← EncPKi

(mi
b)

D ← A2(y1, . . . , y�, STATEA)
Output D

then for any ppt algorithms A = (A1, A2) and for any polynomial p(k) the following
two ensembles are computationally indistinguishable:

{
mIND0(Π, A, k, p(k))

}
k∈N

c≈
{
mIND1(Π, A, k, p(k))

}
k∈N
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2.2 Non-malleable Encryption

Definition 3 (Non-malleable Encryption [PSV06]). Let Π = (Gen, Enc, Dec) be an
encryption scheme and let the random variable NMEb(Π, A, k, �) where b ∈ {0, 1},
A = (A1, A2) are ppt algorithms and k, � ∈ N denote the result of the following
probabilistic experiment:

NMEb(Π, A, k, �) :
(PK, SK) ← Gen(1k)
(m0, m1, STATEA) ← A1(PK) s.t. |m0| = |m1|
y ← EncPK(mb)
(ψ1, . . . , ψ�) ← A2(y, STATEA)

Output (d1, . . . , d�) where di =

{
⊥ if ψi = y

DecSK(ψi) otherwise

(Gen, Enc, Dec) is non-malleable under a chosen plaintext (CPA) attack if for any ppt
algorithms A = (A1, A2) and for any polynomial p(k), the following two ensembles
are computationally indistinguishable:

{
NME0(Π, A, k, p(k))

}
k∈N

c≈
{
NME1(Π, A, k, p(k))

}
k∈N

It was shown in [PSV06] that an encryption that is non-malleable (under Definition 3)
remains non-malleable even if the adversary A2 receives several encryptions under
many different public keys (the formal experiment is the analogue of mIND for non-
malleability).

2.3 (Strong) One-Time Signature Schemes

Informally, a (strong) one-time signature scheme (GenSig, Sign, VerSig) is an existen-
tially unforgeable signature scheme, with the restriction that the signer signs at most one
message with any key. This means that an efficient adversary, upon seeing a signature
on a message m of his choice, cannot generate a valid signature on a different message,
or a different valid signature on the same message m. Such schemes can be constructed
in a black-box way from one-way functions [R90, L79], and thus from any semantically
secure encryption scheme (Gen, Enc, Dec) using black-box access only to Gen.

3 Construction

Given an encryption scheme E = (Gen, Enc, Dec), we construct a new encryption
scheme Π = (NMGenGen, NMEncGen,Enc, NMDecGen,Dec), summarized in Figure 2,
and described as follows.

Polynomial encoding. We identify {0, 1}n with the field GF(2n). To encode a message
m ∈ {0, 1}n, we pick a random degree k polynomial p over GF(2n) such that p(0) =
m and construct a k × 10k matrix such that the i’th column of the matrix comprise
entirely of the value si = p(i) (where 0, 1, . . . , 10k are the lexicographically first
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10k + 1 elements in GF(2n) according to some canonical encoding). Note that
(s1, . . . , s10k) is both a (k + 1)-out-of-10k secret-sharing of m using Shamir’s secret-
sharing scheme and a codeword of the Reed-Solomon code W , where

W = { (p(1), . . . , p(10k) | p is a degree k polynomial }.

Note that W is a code over the alphabet {0, 1}n with minimum relative distance 0.9,
which means we may efficiently correct up to 0.45 fraction errors using the Berlekamp-
Welch algorithm. [tm: add reference]

Encryption. The public key for Π comprises 20k2 public keys E indexed by a triplet
(i, j, b) ∈ [k] × [10k] × {0, 1}; there are two keys corresponding to each entry of a
k×10k matrix. To encrypt a message m, we (a) compute (s1, . . . , s10k

) as in the above-
mentioned polynomial encoding, (b) generate (SKSIG, VKSIG) for a one-time signature,
(c) compute a k × 10k matrix c = (ci,j) of ciphertexts where ci,j = EncPK

vi
i,j

(sj), and
(d) sign c using SKSIG.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

EncPK
v1
1,1

(s1) EncPK
v1
1,2

(s2) · · · EncPK
v1
1,10k

(s10k)

EncPK
v2
2,1

(s1) EncPK
v2
2,2

(s2) · · · EncPK
v2
2,10k

(s10k)
...

...
. . .

...

EncPK
vk
k,1

(s1) EncPK
vk
k,2

(s2) · · · EncPK
vk
k,10k

(s10k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Consistency Checks. A valid ciphertext in Π satisfies two properties: (1) the first row
is an encryption of a codeword in W and (2) every column comprises k encryptions
of the same plaintext. We want to design consistency checks that reject ciphertexts
that are “far” from being valid ciphertexts under Π. For simplicity, we will describe the
consistency checks as applied to the underlying matrix of plaintexts. The checks depend
on a random subset S of k columns chosen during key generation.

COLUMN CHECK (column-check): We check that each of the k columns in
S comprises entirely of the same value.

CODEWORD CHECK (codeword-check): We find a codeword w that agrees
with the first row of the matrix in at least 9k positions; the check fails if no
such w exists. Then we check that the first row of the matrix agrees with
w at the k positions indexed by S.

The codeword check ensures that with high probability, the first row of the matrix agrees
with w in at least 10k − o(k) positions. We explain its significance after describing the
alternative decryption algorithm in the analysis.

Decryption. To decrypt, we (a) verify the signature and run both consistency checks,
and (b) if all three checks accept, decode the codeword w and output the result, other-
wise output ⊥. Note that to decrypt we only need the 20k secret keys corresponding to
the first row of the matrix and 2k secret keys corresponding to each of the k columns
in S.
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NMGen(1k):
1. For i ∈ [k], j ∈ [10k], b ∈ {0, 1}, run Gen(1k) to generate key-pairs

(PKb
i,j , SKb

i,j).
2. Pick a random subset S ⊂ [10k] of size k.

Set PK =
{
(PK0

i,j , PK1
i,j) | i ∈ [k], j ∈ [10k]

}
and SK =

{
S, (SK0

i,j , SK1
i,j) | i ∈

[k], j ∈ [10k]
}

.

NMEncPK(m):
1. Pick random α1, . . . , αk ∈ GF(2n) and set sj = p(j), j ∈ [10k] where

p(x) = m0 + α1x + . . . + αkxk.
2. Run GenSig(1k) to generate (SKSIG, VKSIG). Let (v1, . . . , vk) be the binary

representation of VKSIG.
3. Compute the ciphertext ci,j ← EncPK

vi
i,j

(sj), for i ∈ [k], j ∈ [10k].
4. Compute the signature σ ← SignSKSIG(c) where c = (ci,j).

Output the tuple [c, VKSIG, σ].

NMDecSK([c, VKSIG, σ]):
1. (sig-check) Verify the signature with VerSigVKSIG [c, σ].
2. Let c = (ci,j) and VKSIG = (v1, . . . , vk). Compute sj = DecSK

v1
1,j

(c1,j),
j = 1, . . . , 10k and the codeword w = (w1, . . . , w10k) ∈ W that agrees with
(s1, . . . , s10k) in at least 9k positions. If no such codeword exists, output ⊥.

3. (column-check) For all j ∈ S, check that DecSK
v1
1,j

(c1,j) =
DecSK

v2
2,j

(c2,j) = · · · = DecSK
vk
k,j

(ck,j).
4. (codeword-check) For all j ∈ S, check that sj = wj .

If all three checks accept, output the message m corresponding to the codeword
w; else, output ⊥.

Fig. 2. THE NON-MALLEABLE ENCRYPTION SCHEME Π

Note that the decryption algorithm may be stream-lined, for instance, by running the
codeword check only if the column check succeeds. We choose to present the algorithm
as is in order to keep the analysis simple; in particular, we will run both consistency
checks independent of the outcome of the other.

4 Analysis

Having presented our construction, we now formally state and prove our main result:

Theorem 1. (Main Theorem, restated).
Assume there exists an encryption scheme E = (Gen, Enc, Dec) that is seman-
tically secure under a CPA attack. Then there exists an encryption scheme Π =
(NMGenGen, NMEncGen,Enc, NMDecGen,Dec) that is non-malleable under a CPA attack.
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We establish the theorem (as in [DDN00, PSV06], etc) via a series of hybrid
arguments and deduce indistinguishability of the intermediate hybrid experiments
from the semantic security of the underlying scheme E under some set of public
keys Γ . To do so, we will need to implement an alternative decryption algorithm
NMDec∗ that is used in the intermediate experiments to simulate the actual decryption
algorithm NMDec in the non-malleability experiment. We need NMDec∗ to achieve
two conflicting requirements:

– NMDec∗ and NMDec must agree on essentially all inputs, including possibly
malformed ciphertexts;

– We can implement NMDec∗ without having to know the secret keys corresponding
to the public keys in Γ .

Of course, designing NMDec∗ is difficult precisely because NMDec uses the secret keys
corresponding to the public keys in Γ .

Here is a high-level (but extremely inaccurate) description of how NMDec∗ works:
Γ is the set of public keys corresponding to the first row of the k × 10k matrix. To
implement NMDec∗, we will decrypt the i’th row of the matrix of ciphertexts, for some
i > 1, which the column check (if successful) guarantees to agree with the first row in
most positions; error correction takes care of the tiny fraction of disagreements.

4.1 Alternative Decryption Algorithm NMDec∗

Let VKSIG∗ = (v∗1 , . . . , v∗k) denote the verification key in the challenge ciphertext given
to the adversary in the non-malleability experiment, and let VKSIG = (v1, . . . , vk)
denote the verification key in (one of) the ciphertext(s) generated by the adversary.
First, we modify the signature check to also output ⊥ if there is a forgery, namely
VKSIG = VKSIG∗. Next, we modify the consistency checks (again, as applied to the
underlying matrix of plaintexts) as follows:

COLUMN CHECK (column-check∗): This is exactly as before, we check that
the each of the k columns in S comprises entirely of the same value.

CODEWORD CHECK (codeword-check∗): Let i be the smallest value such
that vi 	= v∗i (which exists because VKSIG 	= VKSIG∗). We find a codeword
w that agrees with the i’th row of the matrix in at least 8k positions (note
agreement threshold is smaller than before); the check fails if so such w
exists. Then we check that the first row of the matrix agrees with w at the
k positions indexed by S.

To decrypt, run the modified signature and consistency checks, and if all three checks
accept, decode the codeword w and output the result, otherwise output ⊥. To implement
the modified consistency checks and decryption algorithm, we only need the 10k secret
keys indexed by VKSIG∗ for each row of the matrix, and as before, the 2k secret keys
corresponding to each of the k columns in S.
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Remark on the Codeword Check. At first, the codeword check may seem superfluous.
Suppose we omit the codeword check, and as before, define w to be a codeword that
agrees with the first row in 9k positions and with the i’th row in 8k positions in the re-
spective decryption algorithms; the gap is necessary to take into account inconsistencies
not detected by the column check. Now, consider a malformed ciphertext ψ for Π where
in the underlying matrix of plaintexts, each row is the same corrupted codeword that
agrees with a valid codeword in exactly 8.5k positions. Without the codeword checks,
ψ will be an invalid ciphertext according to NMDec and a valid ciphertext according
to NMDec∗ and can be used to distinguish the intermediate hybrid distributions in the
analysis; with the codeword checks, ψ is an invalid ciphertext according to both. It
is also easy to construct a problematic malformed ciphertext for the case where both
agreement thresholds are set to the same value (say 9k).

4.2 A Promise Problem

Recall the guarantees we would like from NMDec and NMDec∗:

– On input a ciphertext that is an encryption of a message m under Π, both NMDec
and NMDec∗ will output m with probability 1.

– On input a ciphertext that is “close” to an encryption of a message m under Π,
both NMDec and NMDec∗ will output m with the same probability (the exact
probability is immaterial) and ⊥ otherwise.

– On input a ciphertext that is “far” from any encryption, then both NMDec and
NMDec∗ output ⊥ with high probability.

To quantify and establish these guarantees, we consider the following promise problem
(ΠY , ΠN ) that again refers to the underlying matrix of plaintexts. An instance is a
matrix of k by 10k values in {0, 1}n ∪ ⊥.

ΠY (YES instances) — for some w ∈ W , every row equals w.

ΠN (NO instances) — either there exist two rows that are 0.1-far (i.e. disagree in at
least k positions), or the first row is 0.1-far from every codeword in W (i.e. disagree
with every codeword in at least k positions).

Valid encryptions correspond to the YES instances, while NO instances will correspond
to “far” ciphertexts. To analyze the success probability of an adversary, we examine
each ciphertext ψ it outputs with some underlying matrix M of plaintexts (which may
be a YES or a NO instance or neither) and show that both NMDec and NMDec∗ agree
on ψ with high probability. To facilitate the analysis, we consider two cases:

– If M ∈ ΠN , then it fails the column/codeword checks in both decryption
algorithms with high probability, in which case both decryption algorithms output
⊥. Specifically, if there are two rows that are 0.1-far, then column check rejects
M with probability 1 − 0.9k. On the other hand, if the first row is 0.1-far from
every codeword, then the codeword check in NMDec rejects M with probability
1 and that in NMDec∗ rejects M with probability at least 1 − 0.9k; that is, with
probability 1 − 0.9k, both codeword checks in NMDec and NMDec∗ rejects M .
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– If M /∈ ΠN , then both decryption algorithms always output the same answer for all
choices of the set S, provided there is no forgery. Fix M /∈ ΠN and a set S. The first
row is 0.9-close to codeword w ∈ W and we know in addition that every other row
is 0.9-close to the first row and thus 0.8-close to w. Therefore, we will recover the
same codeword w and message m whether we decode the first row within distance
0.1, or any other row within distance 0.2. This means that the codeword checks in
both decryption algorithms compare the first row with the same codeword w. As
such, both decryption algorithms output ⊥ with exactly the same probability, and
whenever they do not output ⊥, they output the same message m.

4.3 Proof of Main Theorem

In the hybrid argument, we consider the following variants of NMEb as applied to Π,
where VKSIG∗ denotes the verification key in the ciphertext y = NMEncPK(mb):

Experiment NME(1)
b — NME(1)

b proceeds exactly like NMEb, except we replace
sig-check in NMDec with sig-check∗:

(sig-check∗) Verify the signature with VerSigVKSIG [c, σ]. Output ⊥ if the
signature fails to verify or if VKSIG = VKSIG∗.

Experiment NME(2)
b — NME(2)

b proceeds exactly like NMEb except we replace
NMDec with NMDec∗:

NMDec∗SK([c, VKSIG, σ]):
1. (sig-check∗) Verify the signature with VerSigVKSIG [c, σ]. Output ⊥ if the

signature fails to verify or if VKSIG = VKSIG∗.
2. Let c = (ci,j) and VKSIG = (v1, . . . , vk). Let i be the smallest value

such that vi 	= v∗i . Compute sj = DecSK
vi
i,j

(ci,j), j = 1, . . . , 10k and

w = (w1, . . . , w10k) ∈ W that agrees with (s1, . . . , s10k) in at least 8k
positions. If no such codeword exists, output ⊥.

3. (column-check∗) For all j ∈ S, check that DecSK
v1
1,j

(c1,j) = DecSK
v2
2,j

(c2,j)
= · · · = DecSK

vk
k,j

(ck,j).
4. (codeword-check∗) For all j ∈ S, check that DecSK

v1
1,j

(c1,j) = wj .
If all three checks accept, output the message m corresponding to the codeword
w; else, output ⊥.

Claim. For b ∈ {0, 1}, we have
{
NMEb(Π, A, k, p(k))

}
c≈

{
NME(1)

b (Π, A, k, p(k))
}

Proof. This follows readily from the security of the signature scheme. ��

Claim. For b ∈ {0, 1}, we have
{
NME(1)

b (Π, A, k, p(k))
}

s≈
{
NME(2)

b (Π, A, k, p(k))
}
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Proof. We will show that both distributions are statistically close for all possible coin
tosses in both experiments (specifically, those of NMGen, A and NMEnc) except for
the choice of S in NMGen. Once we fix all the coin tosses apart from the choice of
S, the output (ψ1, . . . , ψp(k)) of A2 are completely determined and identical in both
experiments. We claim that with probability 1 − 2p(k) · 0.9k = 1 − neg(k) over the
choice of S, the decryptions of (ψ1, . . . , ψp(k)) agree in both experiments. This follows
from the analysis of the promise problem in Section 4.2. ��

Claim. For every ppt machine A, there exists a ppt machine B such that for b ∈ {0, 1},
{
NME(2)

b (Π, A, k, p(k))
}

≡
{
mINDb(E, B, k, 9k2)

}

Proof. The machine B is constructed as follows: B participates in the experiment
mINDb (the “outside”) while internally simulating A = (A1, A2) in the experiment

NME(2)
b .

– (pre-processing) Pick a random subset S = {u1, . . . , uj} of [10k] and run
GenSig(1k) to generate (SKSIG∗, VKSIG∗) and set (v∗1 , . . . , v∗k) = VKSIG∗. Let
φ be a bijection identifying {(i, j) | i ∈ [k], j ∈ [10k] \ S} with [9k2].

– (key generation) B receives 〈PK1, . . . , PK9k2 〉 from the outside and simulates
NMGen as follows: for all i ∈ [k], j ∈ [10k], β ∈ {0, 1},

(PK
β
i,j , SK

β
i,j) =

{
(PKφ(i,j), ⊥) if β = v∗i and j /∈ S

Gen(1k) otherwise

– (message selection) Let (m0, m1) be the pair of messages A1 returns. B then
chooses k random values (γu1 , . . . , γuk

) ∈ {0, 1}n and computes two degree
k polynomials p0, p1 where pβ interpolates the k + 1 points (0, mβ), (u1, γu1),
. . . , (uk, γuk

) for β ∈ {0, 1}. B sets m
φ(i,j)
β = pβ(j), for i ∈ [k], j ∈ [10k] \ S

and forwards (〈m1
0, . . . , m

9k2

0 〉, 〈m1
1, . . . , m

9k2

1 〉) to the outside.

– (ciphertext generation) B receives 〈y1, . . . , y9k2〉 from the outside (according
to the distribution EncPK1(m

1
b), . . . , EncPK9k2 (m9k2

b )) and generates a ciphertext
[c, VKSIG∗, σ] as follows:

ci,j =

⎧
⎨
⎩

yφ(i,j) if j /∈ S

Enc
PK

v∗
i

i,j

(γj) otherwise

B then computes the signature σ ← SignSKSIG∗(c) and forwards [c, VKSIG∗, σ] to
A2. It is straight-forward to verify that [c, VKSIG∗, σ] is indeed a random encryption
of mb under Π.

– (decryption) Upon receiving a sequence of ciphertexts (ψ1, . . . , ψp(k)) from A2,

B decrypts these ciphertexts using NMDec∗ as in NME(2)
b . Note that to simulate

NMDec∗, it suffices for B to possess the secret keys {SK
β
i,j | β = 1−v∗i or j ∈ S},

which B generated by itself. ��
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Combining the three claims, we conclude that for every ppt adversary A, there is a ppt
adversary B such that for b ∈ {0, 1},

{
NMEb(Π, A, k, p(k))

}
c≈

{
NME(1)

b (Π, A, k, p(k))
}

s≈
{

NME(2)
b (Π, A, k, p(k))

}
≡

{
mINDb(E, B, k, 9k2)

}

By Prop 1, mIND0(E, B, k, 9k2)
c≈ mIND1(E, B, k, 9k2), which concludes the proof

of Theorem 1.

5 Achieving Bounded-CCA2 Non-malleability

We sketch how our scheme may be modified to achieve non-malleability under a
bounded-CCA2 attack. Here, we allow the adversary to query Dec at most q times
in the non-malleability experiment (but it must not query Dec on y). The modification
is the straight-forward analogue of the [CHH+07] modification of the [PSV06] scheme:
we increase the number of columns in the matrix from 10k to 80(k + q), and the degree
of the polynomial p and the size of S from k to 8(k + q), and propagate the changes
accordingly. The analysis is basically as before, except for the following claim (where
NME-q-CCA(1)

b , NME-q-CCA(2)
b are the respective analogues of NME(1)

b , NME(1)
b ):

Claim. For b ∈ {0, 1}, we have
{

NME-q-CCA(1)
b (Π, A, k, p(k))

}
s≈

{
NME-q-CCA(2)

b (Π, A, k, p(k))
}

Proof (sketch). As before, we will show that both distributions are statistically close
for all possible coin tosses in both experiments (specifically, those of NMGen, A and
NMEnc) except for the choice of S in NMGen. However, we cannot immediately
deduce that the output of A2 are completely determined and identical in both exper-
iments, since they depend on the adaptively chosen queries to NMDec, and the answers
depend on S. Instead, we will consider all 2q possible computation paths of A which
are determined based on the q query/answer pairs from NMDec. For each query, we
consider the underlying matrix of plaintexts M :

– If M ∈ ΠN , then we assume NMDec returns ⊥.
– If M /∈ ΠN , then we consider two branches depending on the two possible

outcomes of the consistency checks.

We claim that with probability 1−2q ·p(k) ·0.98(k+q) > 1−neg(k) over the choice of
S, the decryptions of (ψ1, . . . , ψp(k)) agree in both experiments in all 2q computation
paths. ��

Remark on achieving (full) CCA2 security. It should be clear from the preceding
analysis that the barrier to obtaining full CCA2 security lies in handling queries outside
ΠN . Specifically, with even just a (full) CCA1 attack, an adversary could query NMDec
on a series of adaptively chosen ciphertexts corresponding to matrices outside ΠN to
learn the set S upon which it could readily break the security of our construction.
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