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Abstract. We introduce a new decidable logic for reasoning about infinite arrays
of integers. The logic is in the ∃∗∀∗ first-order fragment and allows (1) Presburger
constraints on existentially quantified variables, (2) difference constraints as well
as periodicity constraints on universally quantified indices, and (3) difference
constraints on values. In particular, using our logic, one can express constraints
on consecutive elements of arrays (e.g., ∀i . 0 ≤ i < n→ a[i + 1] = a[i]− 1) as
well as periodic facts (e.g., ∀i . i ≡2 0→ a[i] = 0). The decision procedure fol-
lows the automata-theoretic approach: we translate formulae into a special class
of Büchi counter automata such that any model of a formula corresponds to an
accepting run of an automaton, and vice versa. The emptiness problem for this
class of counter automata is shown to be decidable as a consequence of earlier
results on counter automata with a flat control structure and transitions based on
difference constraints.

1 Introduction

Arrays are a fundamental data structure in computer science. They are used in all mod-
ern imperative programming languages. To verify software which manipulates arrays, it
is essential to have a sufficiently powerful logic, which can express meaningful program
properties, arising as verification conditions within, e.g., inductive invariant checking,
or verification of pre- and post-conditions. In order to have an automatic decision pro-
cedure for the program verification problems, one needs a decidable logic.

In this paper, we develop a logic of arrays indexed by integer numbers, and having
integers as values. To be as general as possible, and also to avoid having to deal explic-
itly with expressions containing out-of-bounds array accesses, we interpret formulae
over both-ways infinite arrays. Bounded arrays can then be conveniently expressed in
the logic by restricting indices to be within given bounds.

Properties that are typically of interest about arrays in a program are (existentially
quantified) boolean combinations of formulae of the form ∀i.G→V where G is a guard
expression containing constraints over the universally quantified index variables i
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(which often range in between some existentially quantified bounds), and V is a value
expression containing constraints over array values. Based on examples, we identified
two types of array properties which seem to appear quite often in programs: (1) proper-
ties relating consecutive elements of an array, e.g., ∀i . l1 ≤ i < l2→ a[i+1] = a[i]−1,
which states the fact that each value of a between two bounds l1 and l2 is less than its
predecessor by one, (2) properties stating periodic facts, e.g., ∀i . i ≡2 0→ a[i] = 0,
stating that all even elements of an array a are equal to 0.

Without specific syntactic restrictions, a logic with such an expressive power can be
easily shown to be undecidable as one can encode histories of computations of a 2-
counter machine [13] as models of a formula over arrays. From this reduction, one can
derive two restrictions leading to decidability. The first restriction forbids references to
a[i] and a[i+1] in the same formula, which is considered in the work of Bradley, Manna,
and Sipma [5]. The second restriction, considered in this paper, allows only array for-
mulae ∀i.G→V in which V does not contain disjunctions. We have chosen the second
option, mainly to retain the possibility of relating consecutive arrays elements, i.e., a[i]
and a[i+ 1], which appears to be important for expressing properties of programs.

We introduce a new logic LIA (Logic on Integer Arrays) in the ∃∗∀∗ first-order
fragment. LIA is essentially the set of existentially quantified boolean combinations of
(1) array formulae of the form ∀i . ϕ(k, i)→ψ(k, i,a) where i is a set of index variables
and a (resp. k) is a set of existentially quantified array (resp. array-bound) variables,
ϕ is a formula on index variables with difference as well as periodicity constraints on
variables i wrt. the array-bounds k, and ψ is a difference constraint on array terms, and
(2) Presburger arithmetic formulae on array-bound variables. In [8], we give an example
program showing the usefulness of this logic to express verification conditions.

We prove decidability of the logic LIA using the classical idea of the connection
between logic and automata [18]: from a formula ϕ of the logic, we build an automaton
Aϕ such that ϕ is satisfiable if and only if the language of Aϕ is not empty. Decidability
of the logic then follows from decidability of the emptiness problem for the class of
automata that is deployed. To this end, we define a new class of counter automata,
called FBCA (bi-infinite Flat Büchi Counter Automata). These are counter automata
running to infinity in both left and right directions, equipped with a Büchi acceptance
condition. For an arbitrary formula ϕ of LIA, we give the construction of the FBCA Aϕ
whose runs correspond to models of ϕ: the value of the counter xa at a given point i in an
execution of Aϕ corresponds to the value of a[i] in a model of ϕ. We prove decidability
of LIA by showing that the emptiness problem for FBCA is decidable by extending
known results [6,4] on flat counter automata with difference bound constraints.

Related work. In the seminal paper [12], the read and write functions from/to arrays
and their logical axioms were introduced. A decision procedure for the quantifier-free
fragment of the theory of arrays was presented in [10]. Since then, various decid-
able logics on arrays have been considered—e.g., [17,11,9,16,1,7]. These logics in-
clude working with various predicates (reasoning about sortedness, permutations, etc.)
and in terms of various arithmetic (usually Presburger) constraints on array indices
and/or values of array entries. However, unlike our logic, most of these works consider
quantifier free formulae. In these cases, nested array reads (like a[a[i]]) are allowed,
which is not the case in our logic.
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In [5], an interesting logic within the ∃∗∀∗ fragment is developed. Unlike our deci-
sion procedure based on automata theory, the decision procedure of [5] is based on the
fact that the universal quantification can be replaced by a finite conjunction. The result
is parameterised in the sense of allowing an arbitrary decision procedure to be used for
the data stored in arrays. However, compared to our results, [5] does not allow modulo
constraints (allowing to speak about periodicity in the array values), general difference
constraints on universally quantified indices (only i− j ≤ 0 is allowed), nor reasoning
about array entries at a fixed distance (i.e., reasoning about a[i] and a[i + k] for a con-
stant k and a universally quantified index i). The authors of [5] give also interesting
undecidability results for extensions of their logic. For example, they show that relating
adjacent array values (a[i] and a[i+1]), or having nested reads, leads to undecidability.

A restricted form of universal quantification within ∃∗∀∗ formulae is also allowed in
[2], where decidability is obtained based on a small model property. Unlike [5] and our
work, [2] allows a hierarchy-restricted form of array nesting. However, similar to the
restrictions presented above, neither modulo constraints on indices nor reasoning about
array entries at a fixed distance are allowed. A similar restriction not allowing to express
properties of consecutive elements of arrays then appears also in [3] where a quite
general ∃∗∀∗ logic on multisets of elements with associated data values is considered.

Remark. For space reasons, all proofs are deferred to [8].

2 Counter Automata

Given a formula ϕ, we denote by FV (ϕ) the set of its free variables. If we denote
a formula as ϕ(x1, ...,xn), we assume FV (ϕ)⊆ {x1, ...,xn}. For ϕ(x1, ...,xn), we denote
by ϕ[t/xi], 1 ≤ i≤ n, the formula in which each occurrence of xi is replaced by a term
t. Given a formula ϕ, we denote by |= ϕ the fact that ϕ is logically valid, i.e., it holds in
every structure corresponding to its signature. By σ : Z→ Z, σ(n) = n + 1, we denote
the successor function on integers. In the following, we work with two sets of arithmetic
formulae: difference bound matrices and Presburger arithmetic.

A difference bound matrix (DBM) formula is a conjunction of inequalities of the
form x−y≤ c, x≤ c, or x≥ c where c∈Z is a constant. If there is no constraint between
x and y, we may explicitly write x− y≤ ∞. In the following, Z

∞ denotes Z∪{∞}. Let
z = {z1, . . . ,zn} be a designated set of variables, called parameters. A parametric DBM
formula is a conjunction of a DBM formula with atomic propositions of the forms x≤
f (z) or x≥ f (z) where f is a linear combination of parameters, i.e., f = a0 + ∑n

i=1 aizi

for some ai ∈ Z, 0≤ i≤ n.
A Presburger arithmetic (PA) formula is a disjunction of conjunctions of either linear

constraints of the form ∑n
i=1 aixi +b≥ 0 or modulo constraints ∑n

i=1 aixi +b≡ c mod d
where ai,b,c,d ∈ Z, c≥ 0 and d > 0, are constants. It is well-known that every formula
of the arithmetic of integers with addition 〈Z,≥,+,0,1〉 can be written in this form due
to quantifier elimination [15]. Clearly, every DBM formula is also in PA.

A counter automaton (CA) is a tuple A = 〈x,Q,−→〉 where x is a finite set of counters

ranging over Z, Q a finite set of control states, and−→ a transition relation given by rules

q
ϕ(x,x′)−−−−→ q′ where ϕ is an arithmetic formula relating current values of counters x to
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their future values x′. A configuration of a CA A is a pair (q,ν) where q∈Q is a control
state, and ν : x→ Z is a valuation of the counters in x. For a configuration c = (q,ν),
we designate by val(c) = ν the valuation of the counters in c. A configuration (q′,ν′) is

an immediate successor of (q,ν) if and only if A has a transition rule q
ϕ(x,x′)−−−−→ q′ such

that |= ϕ(ν(x),ν′(x′)). A configuration c is a successor of another configuration c′ iff
there exists a sequence of configurations c = c0c1 . . .cn = c′ such that, for all 0≤ i < n,
ci+1 is an immediate successor of ci. Given two control states q,q′ ∈Q, a run of A from
q to q′ is a finite sequence of configurations c0c1 . . .cn with c0 = (q,ν), cn = (q′,ν′) for
some valuations ν,ν′ : x→ Z, and ci+1 is an immediate successor of ci for all 0≤ i < n.

Let S be a set. A bi-infinite sequence of S is a function β : Z→ S.1 We denote by
ωSω the set of all bi-infinite sequences over S. A bi-infinite Büchi counter automaton
(BCA) is a tuple A = 〈x,Q,L,R,−→〉 where x is a finite set of counters, Q is a finite set

of control states, L,R ⊆ Q are the left-accepting and right-accepting states, and −→ is

a transition relation defined in the same way as for counter automata.
A run of a BCA A is a bi-infinite sequence of configurations . . .c−2c−1c0c1c2 . . .

such that, for all i ∈ Z, ci+1 is an immediate successor of ci. A run r is left-accepting iff
there exists a state q∈ L and an infinite decreasing sequence of integers . . . < i2 < i1 < 0
such that, for all j ∈ N, we have r(i j) = (q,ν j) for some valuations ν j of the counters
of A. Symmetrically, a run is right-accepting iff there exists a state q ∈ R and an infinite
increasing sequence of integers 0 < i0 < i1 < i2 < .. . such that, for all j ∈ N, we have
r(i j) = (q,ν j) for some valuations ν j of the counters of A. A run is accepting iff it is
both left- and right-accepting. The set of all accepting runs of A is denoted as R (A). If
r ∈ R (A) is a run of A, we define as val(r) = . . .val(r(−1))val(r(0))val(r(1)) . . . the
bi-infinite sequence of valuations in r, and we let V (A) = {val(r) | r ∈ R (A)}.
Lemma 1. For any BCA A, we have r ∈ R (A) if and only if r ◦σ ∈ R (A).

A control path in a CA (or BCA) A is a finite sequence q0q1 . . .qn of control states such

that, for all 0≤ i < n, there exists a transition rule qi
ϕi−→ qi+1. A cycle is a control path

starting and ending in the same control state. An elementary cycle is a cycle in which
each state appears only once, except the first one that appears twice. A CA (or BCA) is
said to be flat iff each control state belongs to at most one elementary cycle.

Decidability and Closure Properties of FBCA. We consider in the following the class
of bi-infinite Büchi counter automata which are flat, whose elementary cycles are la-
belled with parametric DBM formulae, and the remaining transitions are labelled with
PA formulae. Moreover, each transition constraint enforces the values of parameters to
remain constant. We call this class FBCA. We prove that the emptiness problem for
FBCA is decidable using results of [6,4] and their extensions that can be found in [8].

Lemma 2. The emptiness problem is decidable for the class of FBCA.

1 In the early literature [14], a bi-infinite sequence is defined as the equivalence class of all
compositions β◦σn ◦σ−m for arbitrary n,m∈N. This is because a bi-infinite sequence remains
the same if shifted left or right. For simplicity, we formally distinguish here the bi-infinite
sequences β, β◦σn, and β◦σ−n for n > 0.
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The FBCA class is also effectively closed under union and intersection. However, be-
fore proceeding, we need to elucidate the meaning of these operations for CA (BCA).
For a valuation ν : x→ Z, if z⊆ x is a subset of the counters in x, let ν↓z denote the re-
striction of ν to the domain z. For some subset z⊂ x of the counters of A and s ∈V (A),
we define the restriction operator on sequences s ↓z= . . .val(s(−1)) ↓z val(s(0)) ↓z
val(s(1)) ↓z . . ., and V (A) ↓z= {s ↓z | s ∈ V (A)}. Symmetrically, for z ⊃ x, we de-
fine the extension operator on sequences V (A)↑z= {v ∈ ω(z �→ Z)ω | v↓x∈ V (A)}.

A class of counter automata is said to be closed under union and intersection if
there exist operations � and ⊗ such that, for any two FBCA Ai = 〈xi,Qi,Li,Ri,→i〉,
i = 1,2, we have that V (A1�A2) = V (A1)↑x1∪x2 ∪ V (A2)↑x1∪x2 and V (A1⊗A2) =
V (A1) ↑x1∪x2 ∩ V (A2) ↑x1∪x2 , respectively. The class is said to be effectively closed
under union and intersection if these operators are effectively computable.

Proposition 1. Let A = 〈x,Q,L,R,−→〉 be a FBCA. Let Ac = 〈x,Q,Lc,Rc,−→〉 be the

FBCA such that (1) for all q ∈ L and q′ ∈Q, q′ belongs to the same elementary cycle as
q iff q′ ∈ Lc, (2) for all q ∈ R and q′ ∈ Q, q′ belongs to the same elementary cycle as q
iff q′ ∈ Rc. Then we have that R (A) = R (Ac).

Assuming w.l.o.g. that Q1 ∩Q2 �= /0, the union is defined as A1 �A2 = 〈x1 ∪ x2,Q1 ∪
Q2,L1 ∪ L2,R1 ∪R2,→1 ∪ →2〉. The product is defined as A1⊗ A2 = 〈x1 ∪ x2,Q1×
Q2,Lc

1×Lc
2,R

c
1×Rc

2,−→〉 where−→ is as follows: (q1,q′1)
ϕ1 ∧ ϕ2−−−−→ (q2,q′2) iff q1

ϕ1−→ q2 is

a transition rule of A1 and q′1
ϕ2−→ q′2 is a transition rule of A2. Here, Lc

i and Rc
i denote the

extended left-accepting and right-accepting sets of Ai from Proposition 1 for i = 1,2.

Lemma 3. The class of FBCA is effectively closed under union and intersection.

3 A Logic for Integer Arrays

In this section we define the Logic of Integer Arrays (LIA) that we use to specify
properties of programs handling arrays of integers.

Syntax. We consider three types of variables. The array-bound variables (k, l) appear
within the so-called array-bound terms. These terms can be used to define intervals
of indices and also as static references inside arrays. The index (i, j) and array (a,b)
variables are used to build array terms. Fig. 1 shows the syntax of the logic LIA. We use
the symbol � to denote the boolean value true. In the following, we will use f ≤ i≤ g
instead of f ≤ i ∧ i ≤ g, i < f instead of i ≤ f − 1, and i = f instead of f ≤ i ≤ f .
Intuitively, our logic is the set of existentially quantified boolean combinations of:

1. Array formulae of the form ∀i . ϕ(k, i)→ ψ(k, i,a) where k is a set of array-bound
variables, i is a set of index variables, a is a set of array variables, ϕ is an arith-
metic formula on index variables, and ψ is an arithmetic formula on array terms.
In particular, ψ is a DBM formula, and ϕ is composed of atomic propositions of
the form either f ≤ i, i ≤ f , i− j ≤ n, or i ≡s t where f is a linear combination of
array-bound variables, n ∈ Z, and 0 ≤ t < s. Both k and a variables are free in the
array formulae, but they can be existentially quantified at the top-most level.

2. PA formulae on array-bound variables.
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n,m,s,t . . . ∈ Z constants (0≤ t < s)
k, l, . . . ∈ BVar array-bound variables
i, j, . . . ∈ IVar index variables
a,b, . . . ∈ AVar array variables

B := n | k | B+B | B−B array-bound terms
I := i | I +n index terms
A := a[I] | a[B] array terms
G := B≤ I | I ≤ B | I− I ≤ n | I ≡s t | G∨G | G∧G guard expressions
V := A≤ B | B≤ A | A−A≤ n | V ∧V value expressions
C := B≤ n | B≡s t array-bound constraints
P := �→V | G→V | ∀i . P array properties
U := P | C | ¬U |U ∨ U |U ∧ U universal formulae
F := U | ∃k . F | ∃a . F LIA formulae

Fig. 1. Syntax of the logic LIA

Examples. To accustom the reader with the logic, we consider several properties of
interest that can be stated about arrays. For instance, a strictly increasing ordering of an
array a up to a certain bound is defined as ∃k ∀i . 0≤ i < k→ a[i]−a[i+1]≤−1. The
fact that the first k elements of an array a are below the first l elements of an array b at
distance 5 is defined as ∃k, l ∀i, j . 0≤ i < k ∧ 0≤ j < l→ a[i]−b[ j]≤−5. Equality of
two arrays up to a certain bound can be expressed as ∃n∀i . 0≤ i < n→ a[i] = b[i]. The
use of modulo constraints as guards for indices allows one to express periodic facts,
e.g., ∀i, j . i≡2 0 ∧ j ≡2 1→ a[i]≤ a[ j] meaning that any value at some even position
is less than or equal to any value at some odd position in a. In [8], we show that to prove
the correctness of an array merging program, such properties are needed.

Semantics. The logic LIA is interpreted on both-ways infinite arrays. This allows
us to conveniently deal with out-of-bound reference situations common in programs
handling arrays. One can prevent and/or check for out-of-bound references by intro-
ducing explicit existentially quantified array-bound variables for array variables. Let
ϕ(k,a) be any LIA formula. A valuation is a pair of partial functions2 〈ι,µ〉 with
ι : BVar∪ IVar→ Z⊥ associating an integer value with every free integer variable and
µ : AVar→ ω

Z
ω
⊥ associating a bi-infinite sequence of integers with every array symbol

a ∈ a. The valuation ι is extended in the standard way to array-bound terms (ι(B)) and
index terms (ι(I)). By Iι,µ(A), we denote the value of the array term A given by the
valuation 〈ι,µ〉. The semantics of a formula ϕ is defined in terms of the forcing relation
|= as follows:

Iι,µ(a[I]) = µ(a)(ι(I))
Iι,µ(a[B]) = µ(a)(ι(B))

〈ι,µ〉 |= A≤ B ⇐⇒ Iι,µ(A)≤ ι(B)
〈ι,µ〉 |= A1−A2 ≤ n ⇐⇒ Iι,µ(A1)− Iι,µ(A2)≤ n
〈ι,µ〉 |= ∀i . G→V ⇐⇒ ∀ n ∈ Z . 〈ι[i← n],µ〉 |= G→V
〈ι,µ〉 |= ∃a . ψ ⇐⇒ ∃ β ∈ ω

Z
ω . 〈ι,µ[a← β]〉 |= ψ

For space reasons, we do not give here a full definition. However, the missing rules
are standard in first-order arithmetic. A model of ϕ(k,a) is a valuation 〈ι,µ〉 such that

2 The symbol ⊥ is used to denote that a partial function is undefined at a given point.
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the formula obtained by interpreting each variable k ∈ k as ι(k) and each array vari-
able a ∈ a as µ(a) is logically valid: 〈ι,µ〉 |= ϕ. We define [[ϕ]] = {〈ι,µ〉 | 〈ι,µ〉 |= ϕ}.
A formula is satisfiable if and only if [[ϕ]] �= /0.

An Undecidability Result. The reason behind the restriction that array terms may
not occur within disjunctions in value expressions (cf. Fig. 1) is that, without it, the
logic becomes undecidable. The essence of the proof is that an array formula ∀i.G→
V1 ∨ . . . ∨ Vn, for n > 1, corresponds to n nested loops in a counter automaton. Unde-
cidability is shown by reduction from the halting problem for 2-counter machines [13].

Lemma 4. The logic obtained by extending LIA with disjunctions within the value
expressions is undecidable.

Note that having more than one nested loop is a necessary condition for undecidability
of 2-counter machines since a flat 2-counter machine would trivially fall into the class
of decidable counter machines from [6,4].

4 Decidability of the Satisfiability Problem

The idea behind our method for deciding the satisfiability problem for LIA is that, for
any formula of LIA, there exists an FBCA Aϕ such that ϕ has a model if and only if
Aϕ has an accepting run. More precisely, each array variable in ϕ has a corresponding
counter in Aϕ, and given any model of ϕ that associates integer values to all array entries,
Aϕ has a run such that the values of the counters at different points of the run match the
values of the array entries at corresponding indices in the model. Since, by Lemma 2,
the emptiness problem is decidable for FBCA, this leads to decidability of LIA.

In order to build an automaton from a LIA formula, we first normalise it into an exis-
tentially quantified positive boolean combination of simple array property formulae (cf.
Fig. 1). Second, each such array property formula is translated into an FBCA. The final
automaton Aϕ is defined recursively on the structure of the normalised formula with the
� and ⊗ operators being the counterparts for the ∨ and ∧ connectives, respectively.

4.1 Normalisation of Formulae

The goal of this step is to transform any formula written using the syntax of Figure 1
into a formula of the following normal form:

∃k∃a .
�

c

(�
d

φcd(a,k)
)
∧θc(k) (NF)

where a is a set of array variables, k is a set of integer variables, and

– θd is a conjunction of terms of the forms (i) g(k)≥ 0 or (ii) g(k)≡s t with g being
a linear combination of the variables in k and 0≤ t < s,

– φcd is a formula of the following forms for∼∈ {≤,≥},m∈N, 0≤ t < s, 0≤ v < u,
q∈ Z, and fk, gl , f 1

k , g1
l , f 2

k , g2
l being linear combinations of array-bound variables:

∀i .
K�

k=1

fk ≤ i ∧
L�

l=1

i≤ gl ∧ i≡s t→ a[i]∼ h(k) (F1)
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The (F1) formulae bind all values of a in some interval by some linear combination
h of variables in k.

∀i .
K�

k=1

fk ≤ i ∧
L�

l=1

i≤ gl ∧ i≡s t→ a[i]−b[i+ p]∼ q (F2)

Here, p∈ Z. The (F2) formulae relate all values of a and b in the same interval such
that the distance between the indices of a and b, respectively, is constant.

∀i, j .
�K1

k=1 f 1
k ≤ i ∧ �L1

l=1 i≤ g1
l ∧

�K2
k=1 f 2

k ≤ j ∧ �L2
l=1 j ≤ g2

l ∧
i− j ≤ p ∧ i≡s t ∧ j ≡u v→ a[i]−b[ j]∼ q

(F3)

Here, p ∈ Z
∞. The (F3) formulae relate all values of a with all values of b within

two (possibly equal) intervals. The case when p = ∞ corresponds to the situation
when no constraint i− j≤ p with p ∈ Z is used.

Lemma 5. A formula of LIA can be equivalently written in the form (NF).

In the following, we refer to the matrix of ϕ as to the formula obtained by forgetting the
existential quantifier prefix from the (NF) form of ϕ.

4.2 Formulae and Constraint Graphs

In [6,4], the set of runs of a flat counter automaton is represented by an unbounded
constraint graph. Here, we view the models of a formula as a constraint graph both
left- and right-infinite. These constraint graphs are then seen as executions of FBCA,
relating in this way models of formulae to runs of automata.

Let ϕ(k,a) be a formula of type (F1)-(F3), and ι : k→ Z a valuation of its array-
bound variables k. For the rest of this section, we fix the valuation ι, and we denote by
ϕι the formula obtained from ϕ by replacing each occurrence of k ∈ k by the value ι(k).

The formula ϕι can thus be represented by a weighted directed graph Gι,ϕ in which
each node (a,n) represents the array entry a[n] for some a ∈ a and n ∈ Z, and there is
a path of weight w between nodes (a,n) and (b,m) iff the constraint a[n]−b[m]≤ w is
implied by ϕι. In the next section, we will show that these graphs are in a one-to-one
correspondence with the accepting runs of an FBCA.

In order to build the constraint graph of a formula, one needs to pay attention to the
following issue. Consider, e.g., the formula ∀i, j.i− j ≤ 3∧ i ≡2 0∧ j ≡2 1→ a[i]−
b[ j]≤ 5. The constraint graph of this formula needs to have a path of weight 5 between,
e.g., a[0] and b[1], a[0] and b[3], a[0] and b[5], etc. As one can easily notice, the span
of such paths is potentially unbounded. Since we would like this graph to represent
a computation of a flat counter automaton, it is essential to define it as a sequence
composed of (a possibly unbounded number of) repetitions of a finite number of (finite)
sub-graphs (see, e.g., Fig. 2(a) or Fig. 2(b)). To this end, we introduce intermediary
nodes which are connected between themselves with 0 arcs such that, for each non-
local constraint of the form a[n]−b[m]≤w where |n−m| can be arbitrarily large, there
exists exactly one path of weight w through these nodes. E.g., in Fig. 2(a), there is a path
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(a,0) 5−→ (tϕ,−3) 0−→ . . .
0−→ (tϕ,1) 0−→ (b,1) for the constraint a[0]−b[1]≤ 5, another path

(a,0) 5−→ (tϕ,−3) 0−→ . . .
0−→ (tϕ,3) 0−→ (b,3) for the constraint a[0]−b[3]≤ 5, etc.

Formally, the constraint graph Gι,ϕ = 〈V,E〉 of a formula ϕ of type (F1)-(F3) is
defined as follows: The set of vertices is V = (A ∪T ∪{ζ})×Z. Here, A = {a} for
(F1) formulae, and A = {a,b} for (F2)-(F3) formulae, with a or a,b being the arrays that
appear in ϕ of type (F1) or (F2)-(F3), respectively. Next, T = /0 for (F1)-(F2) formulae,
and T = {tϕ} for (F3) formulae where tϕ is a unique auxiliary symbol (track) associated
with each formula ϕ of type (F3). Finally, ζ is a special shared symbol (zero track). The
set of edges E is defined based on the type (F1)-(F3) of ϕ. For space reasons, we give
here only the definitions for formulae of type (F3), which are the most interesting.
Formulae (F1) and (F2) are treated in [8]. In general, for all types of formulae, we have:

E ⊃ {(ζ,k) 0−→ (ζ,k + 1) | k ∈ Z} ∪ {(ζ,k + 1) 0−→ (ζ,k) | k ∈ Z}
i.e., the value of the zero track stays constant.

Constraint graphs for (F3) formulae. Let ϕ be the formula below where 0 ≤ s < t,
0 ≤ u < v, p ∈ Z

∞, q ∈ Z, and f 1
k , g1

l , f 2
k , g2

l are linear combinations of array-bound
variables:

∀i, j .
K1�

k=1

f 1
k ≤ i ∧

L1�

l=1

i≤ g1
l ∧ i≡s t

︸ ︷︷ ︸
φ1

∧
K2�

k=1

f 2
k ≤ j ∧

L2�

l=1

j ≤ g2
l ∧ j ≡u v

︸ ︷︷ ︸
φ2

∧ i− j ≤ p→ a[i]−b[ j]∼ q

Let φ1(i,k) and φ2( j,k) be the subformulae defining the ranges of i and j, respectively,
and P 1

ι = {n∈ Z | |= φ1
ι [n/i]} and P 2

ι = {n∈ Z | |= φ2
ι [n/ j]} be these ranges under the

valuation ι. Let T≤ = {(tϕ,k) 0−→ (tϕ,k +1) | k ∈ Z∧∃n ∈ P 1
ι ∃m ∈ P 2

ι . n−m≤ p} and

T≥ = {(tϕ,k) 0−→ (tϕ,k−1) | k ∈ Z∧∃n ∈ P 1
ι ∃m ∈ P 2

ι . n−m≥ p}. Note that T≤ and

T≥ are empty if the precondition of ϕ is not satisfiable. The set of edges E is defined by
the following case split:

1. If p < ∞, we consider two cases based on the direction of a[i]−b[ j]∼ q:

(a) for a[i]−b[ j]≤ q, we have (Fig. 2(a)):

E ⊃ {(a,k)
q−→ (tϕ,k− p) | k ∈ P 1

ι } ∪ {(tϕ,k) 0−→ (b,k) | k ∈ P 2
ι }∪ T≤

(b) for a[i]−b[ j]≥ q, we have:

E ⊃ {(b,k)
−q−→ (tϕ,k + p) | k ∈ P 2

ι } ∪ {(tϕ,k) 0−→ (a,k) | k ∈ P 1
ι }∪ T≥

2. If p = ∞, we consider again two cases based on the direction of a[i]−b[ j]∼ q:

(a) for a[i]−b[ j]≤ q, we have (Fig. 2(b)):

E ⊃ {(a,k)
q−→ (tϕ,k) | k ∈ P 1

ι } ∪ {(tϕ,k) 0−→ (b,k) | k ∈ P 2
ι } ∪ T≤ ∪ T≥

(b) for a[i]−b[ j]≥ q, we have:

E ⊃ {(b,k)
−q−→ (tϕ,k) | k ∈ P 2

ι } ∪ {(tϕ,k) 0−→ (a,k) | k ∈ P 1
ι } ∪ T≤ ∪ T≥

Nothing else is in E .
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ι(l1) ι(u1)

a

b

tϕ 0

5 5 5

ι(u2)ι(l2)

0 0 00000
0 0 0

(a) ∀i, j.l1≤ i≤ u1∧ l2≤ j≤ u2∧ i− j≤ 3∧ i≡2
0∧ j ≡2 1→ a[i]−b[ j]≤ 5

ι(l1)

a
5 5

ι(u1)

tϕ

b

00 0
0

ι(l2) ι(u2)

000
0

(b) ∀i, j.l1≤ i≤ u1∧ l2≤ j≤ u2∧ i≡2
0∧ j ≡2 1→ a[i]−b[ j]≤ 5

Fig. 2. Examples of constraint graphs for (F3) formulae

Relating constraint graphs and models of formulae. We can now prove a corre-
spondence between constraint graphs and models of formulae of the forms (F1)-(F3).
Namely, it is the fact that if the vertices of a constraint graph for a formula ϕ can be
labelled in a consistent way, then from the labelling, one can extract a model for ϕ, and
vice versa. This formalises correctness of the construction for constraint graphs using
the additional tracks.

Let ϕ(k,a) be a formula of the forms (F1)-(F3), ι : k→ Z a valuation of the array-
bound variables in ϕ, and Gι,ϕ = (V,E) its corresponding constraint graph. A labelling

Lab : V → Z of Gι,ϕ is called consistent if and only if (1) for all edges v1
k−→ v2 ∈ E , we

have Lab(v1)−Lab(v2)≤ k and (2) Lab((ζ,n)) = 0 for all n ∈ Z.

Lemma 6. Let ϕ(k,a) be a formula of the form (F1)-(F3). Then, for all valuations
ι : k→Z and µ : a→ ω

Z
ω, we have that 〈ι,µ〉 |= ϕ if and only if there exists a consistent

labelling Lab of Gι,ϕ such that µ(a)(i) = Lab((a, i)) for all a ∈ a and i ∈ Z.

4.3 From Formulae to Counter Automata

In this section, we describe the construction of an FBCA Aϕ corresponding to a formula
ϕ such that (1) each run of Aϕ corresponds to a model of ϕ, and (2) for each model of ϕ,
Aϕ has at least one corresponding run. In this way, we effectively reduce the satisfiability
problem for LIA to the emptiness problem for FBCA.

The construction of FBCA is by induction on the structure of the formulae. For the
rest of this section, let ϕ be a formula, k the set of array-bound variables in ϕ, and
a the set of array variables in ϕ, i.e., FV (ϕ) = k∪ a. Suppose that ϕ is the matrix of
a formula in the normal form (NF), i.e., ϕ :

�
i∈I θi(k)∧� j∈J ψi j(k,a) where θi are PA

constraints and ψi j are formulae of types (F1)-(F3). The automaton Aϕ is defined as�
i∈I Aθi⊗

�
j∈J Aψi j where � and⊗ are the union and intersection operators on FBCA.

The construction of counter automata Aψi j for the formulae ψi j of type (F1)-(F3) relies
on the definition of the constraint graphs in Section 4.2. Namely, each accepting run of
Aψi j gives a consistent valuation of the constraint graph of ψi j.

Counter Automata Templates. To simplify the definition of counter automata, we
note that each constraint graph for the basic formulae of type (F1)-(F3) is composed
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of horizontal, vertical, and diagonal edges, which are defined in roughly the same way
for all types of formulae (cf. Section 4.2). We take advantage of this fact and we start
by defining three types of counter automata templates, which are subsequently used to
define the counter automata for the basic formulae.3 More precisely, the automata for
(F1)-(F3) formulae will be defined as⊗-products of particular instances of the automata
templates for the horizontal, vertical, and diagonal edges of the appropriate constraint
graphs. In the following definitions, we assume the existence of a special counter xτ
(tick) incremented by each transition rule, i.e., we suppose that the constraint x′τ = xτ +1
is implicitly in conjunction with each formula labelling a transition rule. Intuitively, the
role of the xτ counter is to synchronise all automata composed by the ⊗-product on
a common current position.

The template for the horizontal edges. Let a be an array symbol, dir∈{left,right,bi}
be a direction parameter, and φ be a formula on array-bound variables. Let xk be the set
{xk | k ∈ FV (φ)}. We define the template H(a,dir,φ) = 〈x,Q,L,R,−→〉 where:

– x = {xa}∪xk. These counters will have the same names in all instances of H.
– Q = {qL,qR, pL, pR}. The control states are required to have fresh names in every

instance of H. L = {qL, pL} and R = {qR, pR}.
– qL

ξ−→ qL, qR
ξ−→ qR, qL

φ(xk) ∧ ξ−−−−−→ qR, pL
�−→ pL, pR

�−→ pR, and pL
¬φ(xk)−−−−→ pR.

In the above, φ(xk) is the formula obtained by replacing each occurrence of an
array-bound variable k ∈ FV (φ) by its corresponding counter xk. The formula ξ(xa,x′a)
is xa− x′a ≤ 0 if dir = right, x′a − xa ≤ 0 if dir = left, and x′a = xa if dir = bi.
Moreover, for each transition rule, we assume the conjunction

�
k∈FV (φ) x′k = xk to be

added implicitly to the labelling formula, i.e., the value of an xk counter stays constant
throughout a run.

If the formula φ holds for a given valuation of the parameters xk, then any accepting
run of (any instance of) H visits qL infinitely often on the left and qR infinitely often
on the right. Otherwise, if φ does not hold for the given valuation of xk, the instance
automata have a run that goes infinitely often through pL on the left and through pR on
the right. In this case, the automata do not impose any constraints on xa.

The template for the diagonal edges. Let a,b be array symbols, q ∈ Z, p,s ∈ N
+,

t ∈ [0,s− 1], and dir ∈ {left,right} be a direction parameter. In the following, we
refer to the sets L = {l1, . . . , lK} and U = {u1, . . . ,uL} of lower and upper bounds, re-
spectively, where li and u j are linear combinations of array-bound variables. Let xk =
{xk | k ∈�K

i=1 FV (li) ∪ �L
j=1 FV (u j)}. Further, we assume that L∪U �= /0 and we deal

with the case of L∪U = /0 later on. We define the template D(a,b, p,q,s, t,L,U,dir) =
〈x,Q,L,R,−→〉 where:

– x = {xa,xb}∪xk∪{xi | 1≤ i < p}. The counters xa,xb, and xk will have the same
names in all instances of D. On the other hand, the counters xi, 1 ≤ i < p, will
have fresh names in every instance of D. The xi counters are used for splitting

3 By a template, we mean a class of counter automata which all share the same structure.
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diagonal edges that span over more than one position into series of diagonal edges
connecting only adjacent positions.4

– Q = {qL,qR}∪{qi | 0 ≤ i < s}∪{q j
i | 0 ≤ j < s, j + 1 ≤ i < j + p}. The control

states are required to have fresh names in every instance of D. Let L = {qL} ∪
{qi | 0≤ i < s} and R = {qR}∪{qi | 0≤ i < s}.

– qL
�−→ qL, qR

�−→ qR, and qL
¬(∃i .

�
l∈L i≥l(xk) ∧ �u∈U i≤u(xk) ∧ i≡st)−−−−−−−−−−−−−−−−−−−−−−−−−→ qR.

– qL

�
l∈L xτ≥l(xk)−1 ∧ (

�
l∈L xτ=l(xk)−1) ∧ xτ+1≡si−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ qi for all 0≤ i < s.

– qi

�
l∈L xτ≥l(xk) ∧ �u∈U xτ<u(xk) ∧ ξi[xa/x0,xb/xp]−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q(i+1) mod s for all 0≤ i < s.

– qi

�
u∈U xτ=u(xk) ∧ xτ≡si ∧ ξi[xa/x0,xb/xp]−−−−−−−−−−−−−−−−−−−−−−−→ qi

i+1 for all 0≤ i < s.

– qi

�
u∈U xτ=u(xk) ∧ xτ≡si ∧ ξi[xa/x0,xb/xp]−−−−−−−−−−−−−−−−−−−−−−−→ qR for all 0≤ i < s if p = 1.

– q j
i

ξi[xa/x0,xb/xp]−−−−−−−−→ q j
i+1 for all 0≤ j < s, j < i < j + p−1.

– q j
j+p−1

ξi [xa/x0,xb/xp]−−−−−−−−→ qR for all 0≤ j < s if p > 1.

In the above, l(xk) and u(xk) denote the expressions l and u in which each occurrence of
an array-bound variable k is replaced by its corresponding parameter xk. As before, for
each transition rule, we assume the conjunction

�
k∈FV (φ) x′k = xk to be added implicitly

to the labelling formula, i.e., we require that the value of an xk counter stays constant
throughout the run. The formulae ξi are defined as follows:

– if dir = right, ξi =
�

k∈Ki
xk − x′k+1 ≤ αk for Ki = {k | 0 ≤ k < p, i ≡s k + t},

α0 = q, and αk = 0, k > 0,
– if dir = left, ξi =

�
k∈Ki

x′k−1− xk ≤ αk, Ki = {k | 1≤ k ≤ p, k + i≡s t}, α1 = q,
and αk = 0, k > 1.

Finally, for the case L = U = /0, we define any instance of D(a,b, p,q,s,t, /0, /0,dir) to
be A1⊗A2 where A1 is an instance of D(a,b, p,q,s, t, /0,{0},dir) and A2 is an instance
of D(a,b, p,q,s,t,{0}, /0,dir).

The construction can be understood by considering an accepting run of (any instance
of) D. Let us consider the case in which there exists a value i in between the bounds that
satisfies also the modulo constraint. If this is not the case, there will be an accepting run

that takes the transition qL
¬(∃i .

�
l∈L i≥l(xk) ∧ �u∈U i≤u(xk) ∧ i≡st)−−−−−−−−−−−−−−−−−−−−−−−−−→ qR exactly once.

Since the run is accepting, it must visit a state from L infinitely often on the left, and
a state from R infinitely often on the right. There are three cases: (1) L �= /0 and U �= /0,
(2) L = /0 and U �= /0, and (3) L �= /0 and U = /0. In the case (1), a bi-infinite run will visit
qL infinitely often on the left and qR infinitely often on the right. Notice that the run

4 For instance, the constraint a[i]−b[i+3]≤ 5 can be split to a[i]−x1[i+1]≤ 5, x1[i+1]−x2[i+
2] ≤ 0, and x2[i + 2]− b[i + 3] ≤ 0. The constraints for array values of neighbouring indices
can then be conveniently expressed by using the current and future values of the appropriate
counters (e.g., for our example constraint, xa− x′1 ≤ 5, x1− x′2 ≤ 0, and x2− x′b ≤ 0, which of
course appear on subsequent transitions of the appropriate FBCA).
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qL qR

q1 q1
2

q0
1 q0

2

q1
3

x′a −x1 ≤ 5

� �

x′1 −x2 ≤ 0q0 x ′
a −x1 ≤ 5

x′ 1
−x2

≤
0

x′1 −x2 ≤ 0∧ xτ ≡2 1

∧x′a −x1 ≤ 5
∧x′2 −xtϕ ≤ 0

∧x′1 −x2 ≤ 0

∧x′2 −xtϕ ≤ 0

∧x ′
2 −xtϕ ≤ 0

∧xτ +1 ≡
2 1

∧xτ +1 ≡2 0xτ ≥
xl1

−4∧ xτ = xl1
−4

xτ ≥ xl1 −4∧ xτ = xl1 −4

∧xτ ≡2 0

∧x′a −x1 ≤ 5∧ x′2 −xtϕ ≤ 0

xτ = xu1 −3∧

¬(∃i . xl1 ≤ i ≤ xu1 ∧ i ≡2 0)

xτ ≥ xl1 −3∧ xτ < xu1 −3
xτ ≥ xl1 −3∧ xτ < xu1 −3

xτ = xu1 −3

Fig. 3. The FBCA for the diagonal edges in the formula ϕ : ∀i, j.l1≤ i≤ u1∧ l2 ≤ j≤ u2∧ i− j≤
3∧ i≡2 0∧ j≡2 1→ a[i]−b[ j]≤ 5 from Fig. 2(a) obtained as D(a,tϕ,3,5,2,0−3,{l1−3},{u1−
3},left). To understand the formula ξ0 on the transition from q0 to q1, note that the constraint
i≡s k+t in the definition of the set K0 instantiates to 0≡2 k−3, and hence K0 = {1,3}. A similar
reasoning applies for the other transitions.

cannot visit the loop q0 −→ . . .−→ qs−1 infinitely often due to the presence of both lower

and upper bounds on xτ. In the case (2), the run cannot take any of the transitions qL −→
qi, 0 ≤ i < s, due to the emptiness of L, which makes the guard unsatisfiable. Hence,
the only possibility for an accepting bi-infinite run is to visit the states q0 −→ . . .−→ qs−1

infinitely often on the left. Due to the presence of the upper bound on xτ, the run cannot
stay forever inside this loop and must exit via one of the qi −→ qi

i+1 (or qi −→ qR for

p = 1) transitions, getting trapped into qR on the right. Case (3) is symmetric to (2).
Note that, in all cases, due to the modulo tests on xτ in the entry and exit of the main

loop q0−→ . . .−→ qs−1 on any accepting run, whenever a state qi, 0≤ i < s, is visited, the

value of the xτ counter must equal i modulo s. Note also that the role of the q j
i states is

to describe constraints corresponding to edges that start inside the given interval bounds
and lead above its upper bound (or vice versa). The number of such edges is bounded.
We do not use the same construction at the beginning of the interval as the templates
are applied such that none of the edges represented goes below the lower bounds.

Template for the vertical edges. Let a,b be array symbols, q a linear combination of
array-bound variables, p,s ∈ N

+, and t ∈ [0,s− 1]. We again refer to the sets L =
{l1, . . . , lK} and U = {u1, . . . ,uL} of lower and upper bounds, respectively, where li and
u j are linear combinations of array-bound variables. Also, let xk = {xk | k∈�K

i=1 FV (li)
∪ �L

j=1 FV (u j)}. Further, we assume that L∪U �= /0 and we deal with the case of
L∪U = /0 later on. We define the template V (a,b, p,q,s, t,L,U) = 〈x,Q,L,R,−→〉where:

– x = {xa,xb}∪xk. The counters xa,xb, xk have the same names in all instances of V .
– Q = {qL,qR}∪{qi | 0≤ i < s}. The control states are required to have fresh names

in every instance of V . L = {qL}∪{qi | 0≤ i < s} and R = {qR}∪{qi | 0≤ i≤ s}.
– qL

�−→ qL, qR
�−→ qR, and qL

¬(∃i .
�

l∈L i≥l(xk) ∧ �u∈U i≤u(xk) ∧ i≡st)−−−−−−−−−−−−−−−−−−−−−−−−−→ qR.
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– qL

�
l∈L xτ≥l(xk)−1 ∧ �l∈L xτ+1=l(xk) ∧ xτ+1≡si−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ qi, 0≤ i < s.

– qi

�
l∈L xτ≥l(xk) ∧ �u∈U xτ<u(xk) ∧ xa−xb≤q(xk)−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q(i+1) mod s, 0≤ i < s and i≡s t.

– qi

�
l∈L xτ≥l(xk) ∧ �u∈U xτ<u(xk)−−−−−−−−−−−−−−−−−−→ q(i+1) mod s, 0≤ i < s and i �≡s t.

– qi

�
u∈U xτ=u(xk) ∧ xτ≡si ∧ xa−xb≤q(xk)−−−−−−−−−−−−−−−−−−−−−−−→ qR, 0≤ i < s and i≡s t.

– qi

�
u∈U xτ=u(xk) ∧ xτ≡si−−−−−−−−−−−−−→ qR, 0≤ i < s and i �≡s t.

In the above, l(xk), u(xk), and q(xk) denote the expressions l, u, and q where each oc-
currence of an array-bound variable k is replaced by the parameter xk. As before, we as-
sume that for each transition rule the conjunction

�
k∈FV (φ) x′k = xk is added implicitly to

the labelling formula, i.e., the value of an xk counter stays constant throughout the run.
Finally, if L = U= /0, we define any instance of V (a,b, p,q,s,t, /0, /0) as A1⊗A2 where A1

is an instance of V (a,b, p,q,s,t, /0,{0}) and A2 is an instance of V (a,b, p,q,s, t,{0}, /0).
The intuition behind the construction of V is similar to the one of D.

4.4 Counter Automata for Basic Formulae

We are now ready to define the construction of FBCA for the basic formulae. This is
done by composing instances of templates using the ⊗ operator for intersection (cf.
Section 2). For space reasons, we only give here the construction of the FBCA for (F3)
formulae. The formulae of type (F1), (F2), and PA constraints on array-bound variables
are treated analogously in [8]. Let ϕ be an (F3)-type formula

∀i, j .
K1�

k=1

f 1
k ≤ i ∧

L1�

l=1

i≤ g1
l ∧

K2�

k=1

f 2
k ≤ j ∧

L2�

l=1

j ≤ g2
l ∧ i− j ≤ p ∧ i≡s t ∧ j ≡u v

︸ ︷︷ ︸
φ

→ a[i]−b[ j]∼ q

where 0≤ s < t and 0≤ u < v. Let Li = { f i
1, . . . , f i

Ki
} and Ui = {gi

1, . . . ,g
i
Li
} for i = 1,2,

respectively. By φ, we denote the precondition of ϕ. The automaton Aϕ is defined as
Aϕ = A1⊗A2⊗A3 where A1, A2, A3 are instantiated according to Table 1.

4.5 Assembling Automata for Entire Normalised Formulae

Given a formula ϕ(k,a) which is a positive boolean combination of formulae of types
(F1)-(F3) and PA constraints on the array-bound variables k, let Aϕ be the automaton
defined inductively on the structure of ϕ as follows:

– if ϕ is of type (F1)-(F3), or a PA constraint on k, then Aϕ is as in Section 4.4,
– if ϕ = ψ1∧ψ2, then Aϕ = Aψ1⊗Aψ2 ,
– if ϕ = ψ1∨ψ2, then Aϕ = Aψ1 �Aψ2 .

Let r ∈ R (Aϕ) be an accepting run of Aϕ and δ(r) = val(r(0))(xτ) be the value of
the xτ (tick) counter at position 0 on r. We denote by η(r) = r ◦σ−δ(r) the centered
run obtained from r by shifting it such that the value of xτ at position 0 is also 0. By
Lemma 1, r is an accepting run of Aϕ if and only if η(r) is. Notice that r induces the
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Table 1. The instantiation table for (F3) formulae. Note that in some lines, we shift the original
bounds appearing in the formula in order to be able to re-use the prepared templates that do
not explicitly deal with edges leaving from within the given bounds and going below the lower
bound. Due to the way the templates are constructed, the shifting preserves the semantics of the
formula—instead of edges going below the lower bound of a certain interval, we obtain the same
edges just going above the upper bound of the shifted interval, which our templates are prepared
for. Given a set of integers S and an integer p, we use the notation S+ p for {s+ p | s ∈ S}.

p ∼ A1 A2 A3

∞ ≤ V (a,tϕ,q,s,t,L1,U1) H(tϕ,bi,∃i, j.φ) V (tϕ,b,0,u,v,L2,U2)
∞ ≥ V (b,tϕ,−q,u,v,L2,U2) H(tϕ,bi,∃i, j.φ) V (tϕ,a,0,s,t,L1,U1)
0 ≤ V (a,tϕ,q,s,t,L1,U1) H(tϕ,right,∃i, j.φ) V (tϕ,b,0,u,v,L2,U2)
0 ≥ V (b,tϕ,−q,u,v,L2,U2) H(tϕ,left,∃i, j.φ) V (tϕ,a,0,s,t,L1,U1)
> 0 ≤ D(a,tϕ, p,q,s,t− p,L1−p,U1−p,left) H(tϕ,right,∃i, j.φ) V (tϕ,b,0,u,v,L2,U2)
> 0 ≥ D(b,tϕ, p,−q,u,v,L2,U2,right) H(tϕ,left,∃i, j.φ) V (tϕ,a,0,s,t,L1,U1)
< 0 ≤ D(a,tϕ,−p,q,s,t,L1,U1,right) H(tϕ,right,∃i, j.φ) V (tϕ,b,0,u,v,L2,U2)
< 0 ≥ D(b,tϕ,−p,−q,u,v+p,L2+p,U2+p,left) H(tϕ,left,∃i, j.φ) V (tϕ,a,0,s,t,L1,U1)

following valuations on k and a, respectively: ιr(k) = val(η(r)(0))(xk) for all k ∈ k,
and µr(a)(i) = val(η(r)(i))(xa) for all a ∈ a and i ∈ Z.

For an arbitrary valuation ν ∈ V (Aϕ), there exists r ∈ R (Aϕ) such that ν = val(r).
Let Mϕ(ν) = 〈ιr,µr〉 be the valuation of the free variables in ϕ that corresponds to r.
One can see now that Mϕ defines a function Mϕ : V (Aϕ)→ (k �→ Z)× (a �→ ω

Z
ω).5

Theorem 1. Let ϕ(k,a) be a positive boolean combination of formulae of types (F1)-
(F3) and PA constraints on the array-bound variables k, and Aϕ be the automaton
defined in the previous. Then, Mϕ(V (Aϕ)) = [[ϕ]].

The proof is by induction on the structure of ϕ. For the base case, we use the corre-
spondence between models and constraint graphs of formulae (F1)-(F3) (Lemma 6).
The inductive step follows as a consequence of the fact that the class of FBCA is closed
under union and intersection (Lemma 3). The main result of the paper is the following:

Corollary 1. The logic LIA is decidable.

The proof of Corollary 1 uses the normalisation step (cf. Lemma 5) to rewrite any
formula of LIA into the form (NF) and applies Theorem 1 to the matrix of the formula
(i.e., the formula obtained by skipping the existential quantifier prefix).

5 Conclusions and Future Work

We have presented a new decidable logic for reasoning about properties of programs
with integer arrays. This logic allows one to relate adjacent array values as well as to

5 By definition, for each ν ∈ V (Aϕ), there exist valuations ιr and µr , so Mϕ is defined for all
ν ∈ V (Aϕ). Let r1,r2 ∈ R (Aϕ) be two runs such that val(r1) = val(r2) = ν. We have δ(r1) =
δ(r2), therefore η(r1) = η(r2), which leads to ιr1 = ιr2 and µr1 = µr2 .
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express periodic facts relating all values situated at equidistant positions. We have estab-
lished decidability of this logic by following the automata-theoretic approach. To this
end, we have defined a new class of Büchi automata with counters, for which empti-
ness is decidable. We translate each formula into a corresponding automaton of this
kind and transform deciding satisfiability of the formula to deciding emptiness of the
automaton.

Future work will include the study of the complexity of our decision procedure and
its implementation. We furthermore plan to develop invariant generation methods in
order to give automatic correctness proofs for programs with integer arrays.
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