Strong Normalisation of Cut-Elimination
That Simulates 8-Reduction

Kentaro Kikuchi! and Stéphane Lengrand?

L RIEC, Tohoku University, Japan
2 CNRS, Laboratoire d’Informatique de I'Ecole Polytechnique, France

Abstract. This paper is concerned with strong normalisation of cut-
elimination for a standard intuitionistic sequent calculus. The cut-
elimination procedure is based on a rewrite system for proof-terms with
cut-permutation rules allowing the simulation of #-reduction. Strong nor-
malisation of the typed terms is inferred from that of the simply-typed
A-calculus, using the notions of safe and minimal reductions as well as
a simulation in Nederpelt-Klop’s Al-calculus. It is also shown that the
type-free terms enjoy the preservation of strong normalisation (PSN) pro-
perty with respect to B-reduction in an isomorphic image of the type-free
A-calculus.

1 Introduction

It is now established that cut-elimination procedures in sequent calculus have a
computational meaning (see e.g. [I2I7I32126]), in the same sense as that of proof
transformations in natural deduction. The paradigm of the Curry-Howard cor-
respondence is then illustrated not only by (intuitionistic implicational) natural
deduction and the simply-typed A-calculus [13], but also by a typed higher-order
calculus corresponding to the (intuitionistic implicational) sequent calculus.

In [16], the first author identified through a Prawitz-style translation a subset
of proofs in a standard sequent calculus that correspond to simply-typed A-terms,
and defined a reduction relation on those proofs that precisely corresponds to
B-reduction of the simply-typed A-calculus. The reduction relation was shown
to be simulated by a cut-elimination procedure, so the system of proof-terms
for the sequent calculus is a conservative extension of the A-calculus in both
term-structure and reduction. Since the correspondence holds also for the type-
free case, the rewrite system in [I6] can simulate S-reduction of the type-free
A-calculus, which means that it is strong enough to represent all computable
functions. It was also shown in [I7] that a restriction of the rewrite system in
[16], which is still strong enough to simulate (-reduction, is confluent.

The present paper presents the first proof of strong normalisation of the cut-
elimination procedure in [I7]. Since the cut-elimination procedure can simulate
(B-reduction of the simply-typed A-calculus, its strong normalisation is at least
as hard as that of the latter. In fact, the proof we develop in this paper re-
lies on strong normalisation of the simply-typed A-calculus. However, a naive
simulation of the cut-elimination procedure by [-reduction fails, so we refine

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 380 2008.
© Springer-Verlag Berlin Heidelberg 2008

Strong Normalisation of Cut-Elimination That Simulates 3-Reduction 381

the approach by using two techniques formalised in [2TI22] as the Safeness &
Minimality technique and the simulation in the M\ -calculus of [I9] through a
non-deterministic encoding. A by-product of our method is a proof of strong
normalisation of the type-free terms that encode strongly normalising type-free
A-terms through the Prawitz-style translation. This is known as the property of
Preservation of Strong Normalisation (PSN) in the field of calculi with explicit
substitutions.

Strong normalisation of cut-elimination has been studied by a number of aut-
hors. Here we mention some of them that treat cut-elimination procedures con-
sisting of (Gentzen-style) local proof transformations in a standard sequent cal-
culus. The first is Dragalin’s cut-elimination procedure and simple proof of its
strong normalisation, which can be found in Chapter 7 of [28]. However, the
cut-elimination procedure does not allow any permutation of cuts, so cannot
simulate (-reduction. A cut-elimination procedure that simulates (-reduction
can be found in [3T] (for the classical sequent calculus), with a proof of strong
normalisation. However, the cut-permutation rules involve extra kinds of cuts
that are allowed to pass over usual cuts; therefore it is not clear how the proof of
strong normalisation could be adapted to our case, which leaves the simple syn-
tax of the calculus untouched. Recently, [23] introduced another cut-elimination
procedure and proved its strong normalisation. The cut-elimination procedure
is a modification of the one in [I6], but differs from the one in the present pa-
per. The proof technique for strong normalisation in [23] does not work for our
system, and our proof in this paper solves a related problem that was explicitly
given in Section 6 of [23]. Finally, [29] presents a proof of strong normalisation
for a cut-elimination system that is not intended (and is unlikely) to simulate
B-reduction. However, their technique is also inspired by Nederpelt and Klop’s
works on AI and how it compares to ours, different though the cut-elimination
systems are, remains to be investigated.

The structure of the paper is as follows. In Section [2 we introduce a term
assignment system for a standard sequent calculus and a rewrite system for a
cut-elimination procedure in the sequent calculus. In Section B] we explain our
proof techniques and apply them to showing strong normalisation for the typed
terms and the PSN property for the type-free terms. In Section Hl we discuss
related work and conclude in Section

To save space we omit some of the details in proofs, but a longer paper [I8]
is available at http://www.lix.polytechnique.fr/~lengrand/Work/.

2 A Rewrite System for Cut-Elimination

2.1 Term Assignment for Sequent Calculus

We start by giving a proof-term assignment system for a standard intuitionistic
sequent calculus, following [16]. The syntax of proof-terms can be found in va-
rious textbooks (e.g. [30/28]) and papers (e.g. [I0]) with notational variants. Here
we call the proof-terms AG3-terms. Our cut-elimination procedure is represented
as reduction rules for typed AG3-terms.

382 K. Kikuchi and S. Lengrand

First, the set of raw AG3-terms is defined by the grammar:
M =z | e M | (&M/z)M | [M/x]M

where = ranges over a denumerable set of variables. (/) and [/]| are
term constructors similar to explicit substitutions ([/ | is called the cut-
constructor). We use letters z, y, z, w for variables and M, N, P, @) for AG3-terms.
To denote that M is a strict subterm of N, we write M — N or N 1 M. The
notions of free and bound variables are defined as usual, with an additional
clause that the variable z in (yM/z)N or [M/z]N binds the free occurrences of
x in N. The set of free variables of a AG3-term M is denoted by FV(M). We
often use the notation (zM/y)N to denote (xM/y)N if x ¢ FV (M) UFV(N).
The symbol = denotes syntactical equality modulo a-conversion; so for example
(2P/a) (wM/y)N = (=P/w)(wM/y)N.

The proof-term assignment system for a standard intuitionistic sequent cal-
culus is given in Figure [II We define a typing context, ranged over by I', as a
finite set of pairs {x1 : A1,...,z, : Ay} where the variables are pairwise distinct.
I' z : A denotes the union I'U{z : A}, and = ¢ I" means that = does not appear
in I'. For precise representation of proofs by terms, we should specify formulas
on binders, but we will omit them for brevity. If z ¢ FV(M) U FV(N) in the
AG3-term (xM/y)N, we assume = ¢ I" in the rule L D, which means the formula
A D B is introduced without implicit contraction.

I'tM:A Iy:BFN:C
LD

A r
*ra:Arz: A F,:p:ADBI—(xM/y)N:Cy¢

Ix:A-M: B

- I'-M:A Ix:AFN:B
I'Xxx.M:ADB

R '+ [M/z]N : B z¢

¢rr Cut

Fig. 1. Proof-term assignment for sequent calculus

We write I' -yo3 M : A if the sequent is derivable with the inference rules of
Figure [[l We also write I" -, t: A if it is derivable with the standard inference
rules of the simply-typed A-calculus.

In order to understand the semantics of AG3, we can re-express Gentzen’s
translation of proofs in sequent calculus to those in natural deduction using
AG3-terms and A-terms ({ '} means usual implicit substitution).

G'(x) = x

G*(\x.M) = \z.GY(M)

G (b)) = {2900, L)
G ([M/alN) = {910})

Strong Normalisation of Cut-Elimination That Simulates 3-Reduction 383

Notice that terms of AG3" (i.e. AG3-terms without the cut-constructor) are al-
ways mapped to A-terms in normal form.

We can also give a backward translation from natural deduction to sequent
calculus:

G?(x) x
G2(A\x.t) = \x.G2(t)
G2(ts) = [G%(t)/xl(z G*(s)/y)y

In the above translation, normal forms of A-calculus are not necessarily mapped
to AG3-terms. This is fixed by a Prawitz-style encoding:

Pr(x) =

Pr(Az.t) = Az.Pr(t)

Pr(t s) = Prya(ts)

Pro(y s) = (yPr(s)/z)M
Proa((Ay.t) s) := [My.Pr(t)/z|{zPr(s)/z)M
Prom(tita s) = Propris)/zym(ts t2)

Theorem 1 (Preservation of typing)

— IfI'yg3 M:A then I' =, GY(M): A.

If 'y t:A then T -y g3 G2(1): A.

—IfI'ytstAand Io:Aby\g3 M:B then I by o3 Prom(t s):B.
— IfI't=, t:A then I' o5 Pr(t): A.

The following theorems can be found in the literature, some of them in [10].

Theorem 2 (Properties of the encodings)

— G is surjective, its restriction Qll \g3ef o cul-free terms is surjective on
normal A-terms, and neither is injective.

— G? and Pr are both injective but not surjective on AG3.

— G'oG? =Id\ and G' o Pr = Id,.

— Neither G? o G # Idy\gz nor Pro Gt # Idygs.

— G20 G does not leave AG3 stabl but Pr o G' does.

2.2 The Cut-Elimination Procedure

Our cut-elimination procedure is based on a rewrite system for AG3-terms. The
system is the same as the one in [I7], which is a confluent restriction of the
system in [I6]. (Although confluence is not used in this paper, the system in [16]
so far seems to resist the present technique.)

! (i.e. if M is cut-free, G*(G'(M)) might not be).

384 K. Kikuchi and S. Lengrand

Figure Rlshows the reduction rules of the rewrite system. Each of these reduc-
tion rules corresponds to a local cut-elimination step (cf. [I8]). The reduction
rules (1) through (5) correspond to cut-elimination steps that permute a cut
upwards through its right subproof. The rules (6) and (7’) correspond to steps
permuting a cut upwards through its left subproof. The rule (B) corresponds to
the key-case which breaks a cut on an implication into two cuts on its subfor-
mulas. The rules (Perm;) and (Perms) permute two cuts with some restrictions.

n (Permy), the left rule over the lower cut is another cut, and the right rules
over both cuts must be L D that introduces the cut-formula without implicit
contraction. In (Perm,), the right rule over the lower cut is another cut, which
must construct a proof corresponding to a redex of the rule (B).

(1) M/zly =y (y #72)

(2) [M/x)lx — M

3) [N/z](Ay.M) — Xy.[N/z]M

(4) [P/2[{(xM/y)N — (x([P/z]M)/y)[P/2]N (z # 2)

(5) [P/z){(xM/y)N — [P/z|(x([P/=]M)/y)[P/z]N if z € FV(M)UFV(N)
(6) [z/x){(xM/y)N — (zM/y)N

(7) (aM/y)N/2)(zM" Jw)N" — (M /y)[N/2](zM' /w)N

(B) [A\z.P/z[(xM/y)N — [[M/z]P/y]N

(Permy) [[P/z(xM/y)N/2|(zM'/w)N" — [P/x][{(xM/y)N/z](zM"/w) N

(Perm2) [Q/w][Az.P/z|(zM/y)N — [[Q/w](Az.P)/z]|[Q/w[{zM/y)N

Fig. 2. Rewrite system for cut-elimination

The reduction relation —— ¢yt 1S deﬁned by the contextual closures of the
reduction rules in Figure@l We use — 2, for its transitive closure, and —7,
for its reflexive transitive closure. The set of AG3-terms that are strongly nor-
malising with respect to —cy¢ is denoted by SN, These kinds of notations
are also used for the notions of other reductions in this paper.

The rewrite system without the rule (B) is called x. It was shown in [I7] that
the system x is strongly normalising and confluent.

The original rewrite system in [I6] has instead of (7’) the rule (7) which is
obtained by replacing (zM’/w)N’ in (7’) by a general term P. However then
the system becomes non-confluent (e.g. the critical pair w «— [(xM/y)N/zJw —
(xM/y)[N/z]w is not joinable). We study in this paper the system with (7/),
which was shown to be confluent in [I7] and which is still strong enough to
simulate (-reduction.

Theorem 3 (Simulation of 3-reduction)

—cut Strongly simulates — g through the translation Pr, i.e. if M —z M’
then Pr(M)—2,. Pr(M'").

Strong Normalisation of Cut-Elimination That Simulates 3-Reduction 385

Proof. This is a minor variant of the proof in [I6]. The proof is by induction on
the derivation of the reduction step, using various lemmas. a

3 Strong Normalisation

In this section we prove strong normalisation of —,; on (typed) AG3-terms.
Since this reduction relation can simulate g-reduction in A-calculus, its strong
normalisation is at least as hard as that of the simply-typed A-calculus. In fact,
our proof relies on the latter.

A by-product of our method is a proof of strong normalisation of those AG3-
terms that encode strongly normalising type-free A-terms through the Prawitz-
style translation. This is known as the property of Preservation of Strong Nor-
malisation (PSN) [3]. In other words, the reduction relation of AG3 is big enough
to simulate S-reduction through the Prawitz-style translation, but small enough
to be strongly normalising.

The basic idea in proving that a term M of AG3 is SN is to simulate the
reduction steps from M by [-reduction steps from a strongly normalising A-
term G'(M). Indeed, this would be relevant for PSN since G!(Pr(t)) = t, as
well as for the strong normalisation of a typed AG3-term M, since G!'(M) is a
simply-typed A-term. The idea of simulating cut-elimination by B-reductions has
been investigated in [35125].

Unfortunately, Gentzen’s encoding into A-calculus, which allows the simula-
tion, needs to interpret cut-constructors (and constructors for L D) as implicit
substitutions such as {¥,}¢. Should z not be free in ¢, all reduction steps ta-
king place within the term of which u is the encoding would not induce any
(-reduction in {¥,}t. Therefore, the reduction relation that is only weakly si-
mulated, i.e. the one consisting of all the reductions that are not necessarily
simulated by at least one S-reduction, is too big to be proved terminating (in
fact, it is not).

In order to overcome the aforementioned problem, we combine two techniques
formalised in [2T22] as the Safeness & Minimality technique and the simulation
in the M -calculus of [19] through a non-deterministic encoding.

3.1 Safeness and Minimality

We first define safe and minimal reductions for the rewrite system of — ¢yt on
(some class of) AG3-terms.

The intuitive idea is that a reduction step is minimal if all the (strict) subterms
of the redex are in SN, Theorem [|[)) says that in order to prove that — ¢yt
is terminating, we can restrict our attention to minimal reductions only, without
loss of generalityﬁ Similarly, a reduction step is safe if the redex itself is in
SN*, which is a stronger requirement than minimality. Theorem B[] says that

2 Note that a perpetual strategy, in the sense of [33], can be defined so that only mini-
mal reductions are performed. Also, the technique seems close to that of dependency
pairs (see e.g. [I]) and formal connections should be studied.

386 K. Kikuchi and S. Lengrand

safe reductions always terminate. Those ideas are made precise in the following
definition:

Definition 1 (Safe and minimal reduction). Given a subsystem h of our
cut-elimination system, we define the following rules:

minh M — N if M —p, N and for all P M, P € SNt
safeth M — N if M —sp, N and M € SNt

and denote their contextual closures by — minn and —safen TESPEctively.

We say that a reduction step M —y, N is safe (resp. minimal) if
M —gafen N (resp. M — pminn N) and that it is unsafe if not

Remark 1. We shall constantly use the following facts:

L. min (safeh) =~ “safe(minh) = 7’safeh
2. —7safe(h,h’) = ’safeh,safeh’

3. —min(h,h") =—minh,minh’

We have the following theorems (proofs can be found in [21122]):

Theorem 4. 1. SN™NUt — GNeut,
2. For every AG3-term M, M e SN°a'ecut,

In other words, safe reductions terminate, and in order to prove that a term
is strongly normalising, it suffices to prove that it is strongly normalising for
minimal reductions only.

This leads directly to the following corollary:

Theorem 5 (Safeness & minimality theorem). Given a rewrite system h
satisfying — safecut C——h C—— mincut , Suppose that we have:

— the strong simulation of — mincur \ —h in a strongly normalising calculus,
through a total relation H

— the weak simulation of —p through H

— the strong normalisation of —, .

Then — ¢yt s strongly normalising.

A naive attempt would be to take h = safecut, which terminates by Theo-
rem M[2). Unfortunately, this situation is too coarse, that is to say, the relation
—p is too small so that —mincut \ —h s too big to be strongly simulated.
Hence, in order to define h, we use the safeness criterion in a more subtle way,
that is, we define h = safeB, minx.

Among the conditions to apply Theorem [l we first prove the third one, i.e.
the strong normalisation of safeB, minx. For this we give a technical definition.
The idea is to distinguish a class of terms with cut-constructors, reflecting the
restrictions on permutations of two cuts in the rules (Perm;) and (Perms).

3 In both rules we could require M —, N to be a root reduction so that M is the
redex, but —gafeh and —minh would be the same as they are.

Strong Normalisation of Cut-Elimination That Simulates 3-Reduction 387

Definition 2 (Application term). A AG3-term of the form [M/x]N is called
an application term if N is one of the forms: [P/w|{xM'/y)N', (x M'/y)N’" and
[(xM'/y)N'/z]{zM" Jw)yN" where x occurs only once in N.

Lemma 1. If [M/z]|N is an application term and N — ¢, N', then [M /x| N’
18 also an application term.

Proof. Tt suffices to check each case. O

Next we briefly recall the lexicographic path ordering. For a more detailed des-
cription and proofs, the reader is referred to, e.g. [T412].

Definition 3 (Lexicographic path ordering). Let > be a transitive and ir-
reflexive ordering on the set of function symbols in a first-order signature, and
let s = f(s1,...,8m) and t = g(t1,...,t,) be terms over the signature. Then
5 >po t, if one of the following holds:

1. si =t or 5; >po t for somei=1,...,m,

2. f=gands>pety forallj=1,...,n,

3. f=g,8>potj forallj=1,...,n, and 51 = t1,...,5-1 = ti—1,5 >lpo ti
for somei=1,...,m.

Theorem 6. >, is well-founded if and only if > is well-founded.

Now we encode AG3-terms into a first-order syntax given by the following ordered
infinite signature:

sub(_,)=app(_,) =ii(_,)=i(_) > M

where for every M € SN°“* there is a constant c™. Those constants are all below
i(_), and the precedence between them is given by c™ = ¢V if M—t, N or
M 3 N. Then the precedence relation is well-founded, and so >, induced on
the first-order terms is also well-founded. The encoding aforementioned is given
in Figure

M = cM if M e SN

otherwise

Ax.M = i(M)

(xM/y)N := ii(M,N)

[M/z]N := app(M,N) if [M/x]N is an application term
[M/z]N := sub(M,N) otherwise

Fig. 3. Encoding of AG3 into a first-order syntax

Lemma 2. If M —gafeB minx M’ then M >0 M'. Hence, — safeB,minx 1S
strongly normalising.

Proof. By induction on the derivation of the reduction step. If M = [P/z|N is
an application term and N —gafeB. minx V', then we use Lemma[Il (A detailed
proof can be found in [I§].) |

388 K. Kikuchi and S. Lengrand

3.2 Simulation in \I

Now we have to find a strongly normalising calculus and a total relation H
to strongly simulate —mincut \ ——h therein. Since a simple simulation in
A-calculus fails we use instead the Al-calculus of [19], based on earlier work
by [6/24]. For instance, the technique works for proving PSN of the explicit
substitution calculus Alxr of [I5]. We refer the reader to [27/34] for a survey on
different techniques based on the Al-calculus to infer normalisation properties.

On the one hand, AI extends the syntax of A-calculus with a “memory ope-
rator” so that, instead of being thrown away, a term U can be retained and
carried along in a construct [— , U]. With this operator, those bodies of substi-
tutions are encoded that would otherwise disappear, as explained above. On the
other hand, AI restricts A-abstractions to variables that have at least one free
occurrence, so that G-reduction never erases its argument.

Definition 4 (Grammar of AI). The set Al of terms of the Al -calculus of [19]
1s defined by the following grammar:

T, U:=x|XxT|TU|I[T U]
with the additional restriction that every abstraction A\x.T satisfies x € FV(T).
The following property is straightforward by induction on terms.

Lemma 3 (Stability under substitution [19]).
IfT.U € Al then {¥,}T € AL

Definition 5 (Reduction system of AI). The reduction rules are:

(8) CaT)U = {7}T
(x) [T,U] T — [T T, U]

The following remark is straightforward [19]:

Remark 2. f T —g . T’ then FV(T) = FV(T”) and {T/g;}U—%r {ij}U
provided that z € FV(U).

Performing a simulation in Al requires the encoding to be non-deterministic,
i.e. we define a relation H between AG3 and A, and the reason for this is
that, since the reductions in Al are non-erasing reductions, we need to add this
memory operator at random places in the encoding, using such a rule:

MHT
UeAl
M H [T,U]

The reduction relation of AG3 must then satisfy the hypotheses of Theorem [l
Namely, —mincut \ —h should be strongly simulated by —3 through H ,
and safeB, minx should be weakly simulated by —g » through H .

The relation H between AG3-terms and Al-terms is inductively defined in
Figure [

Strong Normalisation of Cut-Elimination That Simulates 3-Reduction 389

MHT MHU NHT
e FV(T . y € FV(T)
sHx g MHNT @) <xM/y>NH{ U/y}T
MHT MHU NHT
Ue Al b T EFV(T)V M e SN
M H [T,U] [M/z]N H {/Z}T

Fig. 4. Relation between \G3 & AT

It satisfies the following properties:
Lemma 4. If M 'H T, then

1. FV(M) C FV(T)

2. TeAl

3. x ¢ FVY(M) and U € AI implies M 'H {94} T
4 Vet M HYL}T.

Theorem 7 (Simulation in AI). Suppose M H T.

1. If M —nine N is unsafe then there exists U such that N 'H U and
T—%ﬂ U.

2. If M — ming N 1is safe then there exists U such that N HU and T—}, U.

3. If M — minx N then there exists U such that N HU and T— U.

Proof. By induction on the derivation of the reduction step, by case analysis
for root reduction. Indeed, for root-reduction, remember that we only simulate
minimal reductions. Hence, when reducing a redex, all its subterms are in SN,
so the side-condition in the encoding of the cut-constructor is thus satisfied.

For the contextual closure, we have to ensure that, in the first of the above
three points, the one reduction step that must take place is preserved through
the inductive argument. This comes from the assumption that the reduction is
unsafe, which ensures that, in the side-condition x € FV(T)V M € SN, it must
be true that z € FV(T).

A more detailed proof can be found in [I§]. O

3.3 Concluding the Proof

Finally, we need the fact that every term M of AG3 that we wish to prove strongly
normalising can be encoded into a strongly normalising term of A\I, to start off
the simulations. The following method works:

1. Encode the term M as a strongly normalising A-term ¢, such that no subterm
is lost, i.e. mot using implicit substitutions.

2. Using a translation i from A-calculus to A, introduced in this section, prove
that i(¢) reduces to one of the non-deterministic encodings of M in AI, that
is, that there is a term 7' such that M H T and i(t)—} T.

The technique is summarised in Figure

390 K. Kikuchi and S. Lengrand

AG3 A A

tesSN? T >i(t)
-

Bym*
M 7t o7
mincut Bymx
1\\;1 7t > le
mincut B,
\
]l/fi 7 Ui

safeB,minx

\
Nigj

safeB,minx

\

Fig. 5. The general technique to prove that M € SN

Definition 6 (Encoding of AG3 into A-calculus). We encode the AG3 into
A-calculus by slightly refining Gentzen’s encoding as follows:

ngEAl.M) — Az.G' (M)

G ((eM/yN) = {900 A () iy e FY(N)
G ((zM/y)N) == (\y.G" (V) (x G*'(M)) if y ¢ FV(N)
gt (faN) = {900 (V) e FV(N)
G ([M/zIN) = (G (V) G (M) ifx ¢ FV(N)

The reason why the above encoding is interesting for strong normalisation of
some AG3-terms lies in two facts:

Lemma 5

1. For the strong normalisation of typed terms:
IfI by M:A then T, GV (M): A

2. For proving PSN:
Gt (Pr(t)) =t.

Proof. Straightforward inductions on M and t. O

Strong Normalisation of Cut-Elimination That Simulates 3-Reduction 391

Now we recall from [2122] an encoding of A-calculus into A

Definition 7 (Encoding of A-calculus into AI). We encode the A-calculus
mnto X\ as follows:

i(z) = x

i(Ax.t) = Ax.i(t) if v € FV(t)
i(Ax.t) == Ax.[i(t),x] if x ¢ FV(¢)
i(tu) = i(t) i(u)

The above encodings satisfy the following properties:

Lemma 6. For any AG3-term M, there is a A -term T such that M ‘H T and
(G (M) —5 . T.

Proof. By induction on M. O
Theorem 8 (|21422]). For any A-term t, if t € SN°, then i(t) € SN*™.

Hence we get

Corollary 1. If QIT(M) € SN, then M € SN°*.

Proof. Suppose ng(M) € SN”. Then by Theorem [i(ng(M)) € SN and so
by Lemma B there is a AM-term T such that M H T and T € SN®™. Now apply
Theorem [B] with Theorem [and Lemma O

Finally this gives the two strong normalisation results:

Theorem 9 (Strong normalisation and PSN)
If T Fyo3 M:A, orif M = Pr(t) with t € SN, then M € SN“*.

Proof. 1t suffices to combine Lemma [H and Corollary [O

4 Related Work

In this section we discuss related work on strong normalisation of cut-elimination
procedures. We focus on those cut-elimination procedures that have the ability
to simulate B-reduction of the simply-typed A-calculus.

Danos et al. [8J9] introduced strongly normalising cut-elimination procedu-
res in sequent calculi for classical logic. The cut-elimination procedures include
global proof transformations analogous to proof transformations in natural de-
duction. In rewrite systems for proof-terms, such cut-elimination procedures
are implemented by reduction rules that use meta-operations like implicit

4 Note that a similar encoding (without the case distinction for abstractions) can be
found in [I9]; unfortunately we have found it necessary to twist it to prove Theorem [§]
which we have not found in the literature.

392 K. Kikuchi and S. Lengrand

substitution in the A-calculus. Urban [31] described a cut-elimination proce-
dure for the classical sequent calculus in such a rewrite system. Many strong
normalisation results of cut-elimination procedures with global proof transfor-
mations in the literature can be derived from Urban’s result, in both classical
and intuitionistic cases, including those for systems in the style of Aup [7] (cf.
e.g. [20]).

On the other hand, strong normalisation of cut-elimination procedures con-
sisting of Gentzen-style local proof transformations requires us to use techniques
from the field of calculi with explicit substitutions. Urban [31] proved strong
normalisation of such a cut-elimination procedure using the technique of [5] and
the strong normalisation result of his procedure with global proof transformati-
ons mentioned above. The cut-elimination procedure involves labelled cut, which
are allowed to pass over usual cuts. In the present paper, cut-elimination uses
only one kind of cut, and does not seem to be directly simulated by Urban’s
cut-elimination procedure. For example, the rule (Perm;) corresponds to a per-
mutation of labelled cuts, which is not included in Urban’s reduction rules.

Another example of a cut-elimination procedure that consists of local proof
transformations is the one by Dyckhoff and Urban [II] for Herbelin’s sequent
calculus [12]. Our method of proving strong normalisation works also for their
system without using a simulation in AI. For the details, see [2T22].

Recently, Nakazawa [23] introduced a cut-elimination procedure for a standard
intuitionistic sequent calculus, which is close to ours. The main difference bet-
ween the two cut-elimination procedures is as follows. In his cut-elimination pro-
cedure, the redex [Az.P/z](xM/y)N of the rule (B) is reduced to [M/z][P/y]N,
while it is reduced to [[M/z]P/y]N in our cut-elimination procedure. This dif-
ference corresponds to the order of applications of cuts in the resulting proofs.
Strong normalisation of his cut-elimination procedure was proved by an induc-
tive method as in [], but it does not work for our rule (B) as explained in
Section 6 of [23]. Another difference is that his cut-elimination procedure does
not entirely follow Gentzen-style local steps; the cut-permutation rules of his
cut-elimination procedure can be decomposed into two steps of ours (cf. Notes 3

and 4 of [23]).

5 Conclusion

We have proved strong normalisation of a cut-elimination procedure for a stan-
dard intuitionistic sequent calculus, by using the safeness and minimality techni-
que and a simulation in AI, both of which are formalised in [21122]. We have also
established the PSN property of the type-free terms with respect to S-reduction
through a Prawitz-style translation from the type-free A-terms.

We consider our cut-elimination procedure for the intuitionistic sequent cal-
culus as a canonical one, since it is strong normalising and confluent, consists
of completely local steps (without an extra kind of cut), and can simulate (-
reduction. For future work, it will be interesting to show strong normalisation
of more liberal cut-elimination procedures such as the one in [16].

Strong Normalisation of Cut-Elimination That Simulates 3-Reduction 393

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoret.

Comput. Sci. 236(1-2), 133-178 (2000)

. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,

Cambridge (1998)

Benaissa, Z., Briaud, D., Lescanne, P., Rouyer-Degli, J.: Av, a calculus of explicit
substitutions which preserves strong normalisation. J. Funct. Programming 6(5),
699-722 (1996)

Bloo, R.: Preservation of Termination for Explicit Substitution. PhD thesis, Tech-
nische Universiteit Eindhoven, IPA Dissertation Series 1997-05 (1997)

Bloo, R., Geuvers, H.: Explicit substitution: On the edge of strong normalization.
Theoret. Comput. Sci. 211(1-2), 375-395 (1999)

Church, A.: The Calculi of Lambda Conversion. Princeton University Press, Prin-
ceton (1941)

Curien, P.-L., Herbelin, H.: The duality of computation. In: Proc. of the 5th ACM
SIGPLAN Int. Conf. on Functional Programming (ICFP 2000), pp. 233-243. ACM
Press, New York (2000)

. Danos, V., Joinet, J.-B., Schellinx, H.: LKQ and LKT: Sequent calculi for second

order logic based upon dual linear decompositions of classical implication. In: Gi-
rard, J.-Y., Lafont, Y., Regnier, L. (eds.) Proc. of the Work. on Advances in Linear
Logic. London Math. Soc. Lecture Note Ser., vol. 222, pp. 211-224. Cambridge
University Press, Cambridge (1995)

Danos, V., Joinet, J.-B., Schellinx, H.: A new deconstructive logic: Linear logic. J.
of Symbolic Logic 62(3), 755-807 (1997)

Dyckhoff, R., Pinto, L.: Permutability of proofs in intuitionistic sequent calculi.
Theoret. Comput. Sci. 212(1-2), 141-155 (1999)

Dyckhoff, R., Urban, C.: Strong normalization of Herbelin’s explicit substitution
calculus with substitution propagation. J. Logic Comput. 13(5), 689-706 (2003)
Herbelin, H.: A lambda-calculus structure isomorphic to Gentzen-style sequent
calculus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933,
pp. 61-75. Springer, Heidelberg (1995)

Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P., Hin-
dley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus,
and Formalism, pp. 479-490. Academic Press, London (1980) (reprint of a manus-
cript written 1969)

Kamin, S., Lévy, J.-J.: Attempts for generalizing the recursive path orderings.
Handwritten paper. University of Illinois (1980)

Kesner, D., Lengrand, S.: Resource operators for A-calculus. Inform. and Com-
put. 205(4), 419-473 (2007)

Kikuchi, K.: On a local-step cut-elimination procedure for the intuitionistic se-
quent calculus. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI),
vol. 4246, pp. 120-134. Springer, Heidelberg (2006)

Kikuchi, K.: Confluence of cut-elimination procedures for the intuitionistic sequent
calculus. In: Cooper, S.B., Lowe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497,
pp. 398-407. Springer, Heidelberg (2007)

Kikuchi, K., Lengrand, S.: Strong normalisation of cut-elimination that simulates
[B-reduction - long version,

http://www.lix.polytechnique.fr/ lengrand/Work/

http://www.lix.polytechnique.fr/~lengrand/Work/

394

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

K. Kikuchi and S. Lengrand

Klop, J.-W.: Combinatory Reduction Systems, Mathematical Centre Tracts, PhD
Thesis, vol. 127, CWI, Amsterdam (1980)

Lengrand, S.: Call-by-value, call-by-name, and strong normalization for the clas-
sical sequent calculus. In: Gramlich, B., Lucas, S. (eds.) Post-proc. of the 3rd
Int. Work. on Reduction Strategies in Rewriting and Programming (WRS 2003).
ENTCS, vol. 86, Elsevier, Amsterdam (2003)

Lengrand, S.: Induction principles as the foundation of the theory of normalisa-
tion: concepts and techniques. Technical report, Université Paris 7 (March 2005),
http://hal.ccsd.cnrs.fr/ccsd-00004358

Lengrand, S.: Normalisation & Equivalence in Proof Theory & Type Theory. PhD
thesis, Université Paris 7 & University of St. Andrews (2006)

Nakazawa, K.: An isomorphism between cut-elimination procedure and proof re-
duction. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 336-350.
Springer, Heidelberg (2007)

Nederpelt, R.: Strong Normalization in a Typed Lambda Calculus with Lambda
Structured Types. PhD thesis, Eindhoven University of Technology (1973)
Pottinger, G.: Normalization as a homomorphic image of cut-elimination. Ann. of
Math. Logic 12, 323-357 (1977)

Santo, J.E.: Revisiting the correspondence between cut elimination and norma-
lisation. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 600-611. Springer, Heidelberg (2000)

Sgrensen, M.H.B.: Strong normalization from weak normalization in typed lambda-
calculi. Inform. and Comput. 37, 35-71 (1997)

Sgrensen, M.H.B., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Stu-
dies in Logic and the Foundations of Mathematics, vol. 149. Elsevier, Amsterdam
(2006)

Sgrensen, M.H.B., Urzyczyn, P.: Strong cut-elimination in sequent calculus using
Klop’s t-translation and perpetual reduction (available from the authors) (submit-
ted for publication, 2007)

Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge
Tracts in Theoret. Comput. Sci., vol. 43. Cambridge University Press, Cambridge
(2000)

Urban, C.: Classical Logic and Computation. PhD thesis, University of Cambridge
(2000)

Urban, C., Bierman, G.M.: Strong normalisation of cut-elimination in classical
logic. In: Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 365-380. Springer,
Heidelberg (1999)

van Raamsdonk, F., Severi, P., Sgrensen, M.H.B., Xi, H.: Perpetual reductions in
A-calculus. Inform. and Comput. 149(2), 173-225 (1999)

Xi, H.: Weak and strong beta normalisations in typed lambda-calculi. In: de Groote,
P., Hindley, J.R. (eds.) TLCA 1997. LNCS, vol. 1210, pp. 390-404. Springer, Hei-
delberg (1997)

Zucker, J.: The correspondence between cut-elimination and normalization. Ann.
of Math. Logic 7, 1-156 (1974)

http://hal.ccsd.cnrs.fr/ccsd-00004358

	Strong Normalisation of Cut-EliminationThat Simulates β-Reduction
	Introduction
	A Rewrite System for Cut-Elimination
	Term Assignment for Sequent Calculus
	The Cut-Elimination Procedure

	Strong Normalisation
	Safeness and Minimality
	Simulation in ΛI
	Concluding the Proof

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

