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Abstract. We present a novel coalgebraic logic for deterministic Mealy ma-
chines that is sound, complete and expressive w.r.t. bisimulation. Every finite
Mealy machine corresponds to a finite formula in the language. For the converse,
we give a compositional synthesis algorithm which transforms every formula into
a finite Mealy machine whose behaviour is exactly the set of causal functions sat-
isfying the formula.

1 Introduction

A Mealy machine (S , f ) consists of a set S of states and a transition function f :S →
(B×S )A assigning to each state s ∈ S and input symbol a ∈ A a pair 〈b, s ′〉, consisting
of an output symbol b ∈ B and a next state s ′ ∈ S . Typically one writes

f (s)(a) = 〈b, s ′〉 ⇐⇒ s
a|b �� s ′

One of the most important applications of Mealy machines is their use in the specifi-
cation of sequential digital circuits. Taking binary inputs and outputs, there is a well-
known correspondence between such binary Mealy machines, on the one hand, and
sequential digital circuits built out of logical gates and some kind of memory elements,
on the other. In present day text books on logic design [11] — on the construction of se-
quential digital circuits — Mealy machines are still the most important mathematically
exact means for the specification of the intended behaviour of circuits.

There does not seem to exist, however, a generally accepted way of formally spec-
ifying Mealy machines themselves. The only formal approach we are aware of is the
general model for categories with feedback in [6], which can be instantiated to Mealy
machines. However, Mealy machines are typically “defined” in a natural language such
as English. This obviously leads to ambiguities, inconsistencies and plain errors [4].

In this paper, we propose a simple but adequate and expressive logical language for
the specification of Mealy machines. Here adequate means that the logical equivalence
corresponds to a natural behavioural equivalence on Mealy machines, whereas expres-
sive means that every finite Mealy machine can be represented by a (finite) formula.
Finally, simple means that the logic contains precisely what is needed to obtain this
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goal, and nothing more. The latter point is an important distinguishing factor in com-
parison with some already existing formalisms in the literature, discussed below.

Briefly stated, our approach is coalgebraic. Mealy machines are a basic and well-
understood family of coalgebras, of the functor M (S ) = (B × S )A. The crucial coal-
gebraic insight is that the properties of Mealy machines (coalgebras) are fully dictated
by (the shape of) their defining functor M . This has led, for instance, to the identifica-
tion of a final Mealy machine, in [14], as the set of all causal stream functions from Aω

to Bω.
Following coalgebraic methodology, we apply general insights from coalgebraic

modal logic (see e.g. [12,2]) and define a logic whose basic operations derive directly
from the functor M . The equivalence induced by the logic coincides with that induced
by the functor M . Further, the logic comes equipped with a proof system for reasoning
about universal validity that we prove sound and complete.

All finite Mealy machines can be specified as a formula in the logic. The main tech-
nical contribution of the paper is the construction, for every formula in the logic, of a
finite Mealy Machine whose behaviour is exactly characterised by the formula.

1.1 Related Work

Automata synthesis is a popular and very active research area [13,8,4,15,5]. Most of
the work done on synthesis has as main goal to find a proper and sufficiently expressive
type of automata to encode a specific type of logic (such as LTL [15] or μ-calculus [8]).

Technically, the synthesis from a μ-calculus formula ϕ consists in translating ϕ into
an alternating automaton Aϕ, reducing Aϕ into a non-deterministic automaton which
is then checked for non-emptiness [8]. The same process has been recently generalized
to F -coalgebras in [10]. In this paper, we use a different approach. We construct a
deterministic Mealy machine for a formula directly, by considering the formula as a
state of the automaton containing enough information about its successors.

Although Mealy machines are in one-to-one correspondence with sequential digital
circuits, not much work has been done for their specification and synthesis. In [6], an
algebra for systems with feedback is given, but no synthesis is presented. In [15], a
compositional algorithm for synthesizing Generalized Mealy machines (GMMs) from
LTL formulae is presented. GMMs are a special class of non-deterministic Mealy ma-
chines that have the acceptance condition of generalized Büchi automata. In this paper,
we will remain in the world of deterministic Mealy machines, the one corresponding
to sequential digital circuits. Moreover, our work exploits the structure of the Mealy
machine and, therefore, the resulting logic is simpler than LTL (but expressive enough
for deterministic Mealy machines).

The logic most similar to ours is the one presented in [4]. There a logic for formal
specification of hardware protocols is presented, and an algorithm for the synthesis of
a Mealy machine is given. Their logic corresponds to the conjunctive fragment of LTL.
Their synthesis process is standard: first a non-deterministic Büchi automaton is syn-
thesized, secondly a powerset construction is used to make the automaton deterministic
and, finally, the propositions on the states are used to determine the inputs and outputs
for each state of the Mealy machine. Because of our coalgebraic approach, the equiva-
lence induced by our logic is canonical, and the logic comes with a proof system that
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is sound and complete. Further, our synthesis process remains within standard Mealy
machines and the behaviour of the synthesized automata is exactly characterized by the
original formula. Apart from [14,5], where synthesis for a special case of 2-adic arith-
metic is treated, we did not find any other work on the direct synthesis of deterministic
Mealy machines. From these papers we inherit the basic coalgebraic approach, that we
use here to derive our expressive logical specification language for Mealy machines.

In summary, the work presented in this paper distinguishes itself from all existing
work as follows. Our specification logic is derived directly from the functor, which
results in a very simple and consistent logic that has exactly the operators needed to
fully specify Mealy machines. Note that being simple does not mean this logic has
less expressive power than others. In the context of applications (such as circuits logic
design), this logic has all the relevant operators.

2 Mealy Machines

We give the basic definitions on Mealy machines and introduce the notions of simula-
tion and bisimulation.

First we recall the following definition. A (bounded) meet-semilattice is a set B
equipped with a binary operation ∧B and a constant 	B ∈ B , such that ∧B is commu-
tative, associative and idempotent. The element 	B is neutral w.r.t. ∧B . As usual, ∧B

gives rise to a partial ordering ≤B on the elements of B :

b1 ≤B b2 ⇔ b1 ∧B b2 = b1

Every set S can be transformed into a meet-semilattice by taking the collection PS
of all subsets of S with intersection as meet. We use semilattices to represent data
structures equipped with an information order: b1 ≤B b2 means that b1 is more concrete
than b2.

Our running examples will all use the four element meet-semilattice:

	
���

�
���

�

B = 1 0

⊥
����

����

Here, the 	 element is used for abstracting (under-specification) from any concrete
data; the ⊥ element denotes inconsistency (over-specification) of information; and the
elements 0 and 1 are concrete output values.

Now let A be a finite set and let B be a (possibly infinite) meet-semilattice. A Mealy
machine (S , f ) with inputs in A and outputs in B consists of a set of states S together
with a function

f :S → (B × S )A

For a given state s ∈ S and an input a ∈ A, the function f returns a pair f (s)(a) =
〈b, s ′〉, consisting of an output value b ∈ B and a state s ′ ∈ S . Typically we will write

f (s)(a) = 〈s [a], sa〉
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and call s [a] the (initial) output on input a and sa the next state on input a. We shall
also use the following convention for the representation of Mealy machines:

f (s)(a) = 〈b, s ′〉 ⇐⇒ s
a|b �� s ′

In coalgebraic terms, a Mealy machine (S , f ) is a coalgebra of the functor M :Set →
Set defined, for any set X , as M (X ) = (B × X )A.

A homomorphism from a Mealy machine (S , f ) to a Mealy machine (T , g) is a
function h:S → T preserving initial outputs and next states:

h(s)[a] = s [a] and h(sa ) = h(s)a

(which is equivalent to the condition that g ◦ h = M (h) ◦ f , where the functor M is
defined on functions as usual).

Machines where A is the two-element set {0, 1} and B is the meet-semilattice B are
called binary, and they are fully specified if only 0 or 1 are used as output elements (and
never ⊥ or 	).

For an example, consider the following binary Mealy machine with S = {s1, s2}
and the transition function defined by the following picture.

s1
1|1 ��

0|0
��

s2

1|0,0|1
��

This machine computes the two’s complement of a given binary number.
Next we define the notion of simulation, which can be used to obtain abstraction, and

bisimulation, which plays an important role in the minimization of Mealy machines.

Definition 1 ((Bi)simulation for Mealy). Let (S , f ) and (T , g) be two Mealy ma-
chines. We call a relation R ⊆ S × T a simulation if for all (s , t) ∈ S × T and
a ∈ A

s R t ⇒ ( s [a] ≤B t [a] and sa R ta )

We call R a bisimulation relation if both R and its (relational) inverse R−1 are
simulations.

We write s � t (resp. s ∼ t ) whenever there exists a simulation relation (bisimulation
relation) containing (s , t); and we call � and ∼ the similarity and bisimilarity relations.
By definition, we have � ∩ �−1=∼.

As an example, consider the following two binary Mealy machines:

q1
1|1 ��

0|0
��

q2
1|0,0|1 �� q3

1|0,0|1
��

r1
1|� ��

0|0
��

r2

1|0,0|1
��

Observe that q3 and q2 are bisimilar, since R = {(q2, q3), (q3, q3)} is a bisimulation.
A minimal machine is obtained by identifying all bisimilar states, yielding our two’s
complement machine above.
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Now, note that the rightmost machine can be simulated by any fully specified binary
machine substituting either 0 or 1 as output for the abstract 	 value in the transition
from r1 to r2. For example, considering the above two’s complement machine, we have
s1 � r1 because S = {(s1, r1), (s2, r2)} is a simulation relation.

Next we recall the construction of a final Mealy machine with inputs in A and outputs
in B . Finality plays an important role in minimization as well as in the proof system (in
Section 3).

Let Aω = { σ | σ:{0, 1, 2, . . .} → A}, the set of all infinite streams over A. For
a ∈ A and σ ∈ Aω, we define:

a:σ = (a, σ(0), σ(1), σ(2), . . .) σ′ = (σ(1), σ(2), σ(3), . . .)

We call a function f :Aω → Bω causal if for all σ ∈ Aω and n ≥ 0, the nth output
value f (σ)(n) depends only on the first n input values (σ(0), . . . , σ(n − 1)). Let

Γ = { f :Aω → Bω | f is causal}
The set Γ can be turned into a Mealy machine (Γ, γ) by defining γ(f )(a) = 〈f [a], fa 〉
as follows:

f [a] = f (a:σ)(0) (where σ is arbitrary) fa (σ) = (f (a:σ))′

(Note that by causality the value of f (a:σ)(0) depends only on a.) The following theo-
rem is a minor variation on [14, Prop.2.3 and Corr.2.3].

Theorem 2 (Finality of (Γ, γ)). For every Mealy machine (S , f ) there exists a unique
homomorphism h:S → Γ . It satisfies, for all s , s ′ ∈ S :

s � s ′ ⇐⇒ h(s) � h(s ′)

where on Γ , similarity coincides with the elementwise ordering induced by B :

f � g ⇐⇒ ∀σ ∈ Aω ∀n ≥ 0 . f (σ)(n) ≤B g(σ)(n)

Since the identity function is always a homomorphism, bisimilarity is equality on Γ . As
a consequence, the image h(S ) of a Mealy machine S is in fact its minimisation with
respect to bisimilarity.

3 Mealy Logic

We present a logic for Mealy machines and define its semantics and a satisfaction
relation.

Definition 3 (Mealy formulae). Let A be a set of input actions and let B be a meet-
semilattice of output actions. Furthermore, let X be a set of (recursion or) fixed point
variables. The set L of Mealy formulae is given by the following BNF syntax. For a ∈ A,
b ∈ B , and x ∈ X :

φ:: = tt | x | a(φ) | a↓b | φ ∧ φ | νx .ψ
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where ψ ∈ Lg , the set of guarded formulae, which is given by:

ψ:: = tt | a(φ) | a↓b | ψ ∧ ψ | νx .ψ

We call a(φ) a transition formula and a↓b an output formula. Note that our language
does not include disjunction or negation. As we will discuss in 3.2, this is a natural
restriction and does not decrease the expressiveness of our logic. Moreover, in the same
section we will also point out the reasons for only having one type of fixed point op-
erator. Also note that for every unguarded Mealy formula there exists an equivalent
guarded formula, as a consequence of [9, Theorem 2.1].

The modal fragment of our logic (i.e, the set of closed formulae without the ν oper-
ator) is a special case of the coalgebraic logic obtained by a Stone-type duality [1,2].

In what follows, we shall concentrate on the set Lc
g of formulae that are both guarded

and closed, that is, without free occurrences of fixed point variables x . We turn the set
Lc

g into a Mealy machine (coalgebra)

λ : Lc
g → (B × Lc

g)
A

by defining λ as follows. For a ∈ A and φ ∈ Lc
g , we write λ(φ) = 〈φ[a], φa 〉 and we

define φ[a] and φa by

tt [a] = 	B

a(φ)[a′] = 	B (for any a′ ∈ A)

(a↓b)[a′] =
{

b if a = a′

	B otherwise
(φ1 ∧ φ2)[a] = φ1[a] ∧B φ2[a]
(νx .ψ)[a] = (ψ[νx .ψ/x ])[a]

tta = tt

(a(φ))a′ =
{
φ if a = a′

tt otherwise
(a↓b)a′ = tt (for any a′ ∈ A)
(φ1 ∧ φ2)a = (φ1)a ∧ (φ2)a
(νx .ψ)a = (ψ[νx .ψ/x ])a

Here, ψ[νx .ψ/x ] denotes syntactic substitution, replacing in ψ every free occurrence
of x by νx .ψ.

The above definition uses induction on the following complexity measure, which is
based on the number of nested unguarded occurrences of ν-formulae:

N (tt) = N (a↓b) = N (a(φ)) = 0
N (φ1 ∧ φ2) = max{N (φ1), N (φ2)} + 1
N (νx .ψ) = 1 + N (ψ)

In order to see that the definition of φ[a] and φa is well-formed, note that in the case of
νx .ψ, we have:

N (ψ) = N (ψ[νx .ψ/x ])

This can easily be proved by (standard) induction on the syntactic structure of ψ, since
ψ is guarded (in x ).

Note that the (sub)machine generated by a formula φ ∈ Lc
g by repeatedly applying λ

will in general be infinite. In Section 4, an algorithm to produce a finite Mealy machine
from a formula φ ∈ Lc

g will be presented.
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Having a Mealy coalgebra structure on Lc
g has two advantages. First, it provides us,

by finality of Γ , directly with a natural semantics because of the existence of a (unique)
homomorphism:

Lc
g

[[ · ]] ��

λ

��

Γ

γ

��
(B × Lc

g)A
(id×[[ · ]])A

�� (B × Γ )A

[[φ ]][a] = φ[a] and [[φ ]]a = [[φa ]]

It assigns to every formula φ a causal stream function [[φ ]]:Aω → Bω.
The second advantage of the Mealy structure on Lc

g is that it lets us use the notion
of Mealy simulation to define when a state s ∈ S of a Mealy machine (S , f ) satisfies a
formula φ ∈ Lc

g , by defining:

s |= φ ⇔ s � φ

For brevity, we say that a Mealy machine (S , f ) satisfies a formula φ if some state in S
satisfies φ.

Proving satisfaction then amounts to the construction of a simulation relation R ⊆
S × Lc

g between (S , f ) and (L, λ) such that sRφ.
The above definition is equivalent to the following, more classical definition of sat-

isfaction. For every valuation η:Var → P(S ), we define a satisfaction relation |=η, by
induction, as follows:

s |=η tt for all s
s |=η a(φ) iff sa |=η φ
s |=η a↓b iff s [a] ≤B b
s |=η φ1 ∧ φ2 iff s |=η φ1 and s |=η φ2

s |=η x iff s ∈ η(x )
s |=η νv .ψ iff ∃T ⊆ S .s ∈ T and ∀t ∈ T .t |=η[T/v ] ψ

Here, η[T/v ] denotes the valuation such that, for every x ∈ Var , with x �= v , returns
η(x ) and for x = v returns T .

Note that in this definition single occurrences of x ∈ X are allowed. It can be shown,
by a fairly straightforward and not very instructive proof, that the two definitions of
satisfaction are equivalent. More precisely, if ∅ denotes the everywhere empty valuation,
we have:

s � φ ⇔ s |=∅ φ

for every φ ∈ Lc
g . We omit the proof and will work in what follows with the definition

of satisfaction as simulation.
The following theorem shows that our logic is sufficiently expressive to characterise

bisimilarity.
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Theorem 4

(1) For all states s , s ′ of a Mealy machine (S , f ),

s ∼ s ′ iff ∀φ ∈ Lc
g . s |= φ⇔ s ′ |= φ

(2) If S is finite then there exists for any s ∈ S a formula φs ∈ Lc
g such that

∀s ′ ∈ S . s ∼ s ′ iff s ′ |= φs

Proof. (1) Because s ∼ s ′ implies s � s ′ and s ′ � s we have, for any φ ∈ Lc
g ,

s |= φ ⇐⇒ s � φ ⇐⇒ s ′ � φ ⇐⇒ s ′ |= φ

For the converse, note, for any s ∈ S , a ∈ A, and φ ∈ Lc
g , that s |= a↓s [a] and

sa |= φ ⇐⇒ sa � φ ⇐⇒ s � a(φ) ⇐⇒ s |= a(φ)

As a consequence, the following relation

R =
{ 〈s , s ′〉 ∈ S × S | ∀φ ∈ Lc

g . s |= φ⇔ s ′ |= φ
}

and its inverse R−1 are simulation relations on S . Thus R is a bisimulation.
(2) It is sufficient to construct for a given s ∈ S a formula φs with s ∼ φs . To this

end, we associate with every state s ∈ S a variable xs ∈ X and a formula φs = νxs . ψs

defined by
ψs =

∧
a∈A

a(xsa ) ∧ a↓s [a]

Syntactically replacing free occurrences of xs′ by φs′ in φs (s �= s ′) will ensure that all
φs will be in Lc

g . By construction, s ∼ φs . ��
Let us illustrate the last construction above. Recall the two’s complement Mealy ma-
chine presented before:

s1
1|1 ��

0|0
��

s2

1|0,0|1
��

We define φ1 = νx1. ψ1 and φ2 = νx2. ψ2 by

ψ1 = 0(x1) ∧ 0↓0 ∧ 1(x2) ∧ 1↓1 ψ2 = 0(x2) ∧ 0↓1 ∧ 1(x2) ∧ 1↓0
Substituting φ2 for x2 in ψ1 then yields

φ1 = νx1. 0(x1) ∧ 0↓0 ∧ 1(φ2) ∧ 1↓1 φ2 = νx2. 0(x2) ∧ 0↓1 ∧ 1(x2) ∧ 1↓0
By construction we have s1 ∼ φ1 and s2 ∼ φ2.

3.1 Proof System

We now introduce a proof system for assertions of the form φ1 ≤ φ2, where ≤ is the
relation of logical entailment between the closed formulae φ1 and φ2.
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(refl) φ ≤ φ (top) φ ≤ tt
(∧ − e1) φ1 ∧ φ2 ≤ φ1 (∧ − e2) φ1 ∧ φ2 ≤ φ2

(trans)
φ1 ≤ φ2 φ2 ≤ φ3

φ1 ≤ φ3

(∧ − i)
φ ≤ φ1 φ ≤ φ2

φ ≤ φ1 ∧ φ2

(a↓ − 	) tt ≤ a↓	B (a() −	) tt ≤ a(tt)
(a↓ − ∧) a↓b1 ∧ a↓b2 ≤ a↓(b1 ∧B b2) (a() − ∧) a(φ1) ∧ a(φ2) ≤ a(φ1 ∧ φ2)

(a↓− ≤)
b1 ≤B b2

a↓b1 ≤ a↓b2

(a()− ≤)
φ1 ≤ φ2

a(φ1) ≤ a(φ2)

(ν − i)
φ ≤ ψ[φ/x ]

φ ≤ νx .ψ
(ν − e)

ψ[νx .ψ/x ] ≤ φ

νx .ψ ≤ φ

The first group of axioms and rules gives to the set of formulae the structure of a meet-
semilattice. Further, there are axioms and rules for the two modal operators, showing
the interactions between the transition and output formulae with the meet-semilattice
structure. Finally, the last two rules (ν − i) and (ν − e) can be explained as stating
that the term νx .ψ is the greatest postfixed point, when viewing the formula ψ as a
(monotone) map on formulae.

We write � φ1 ≤ φ2 to indicate that the assertion φ1 ≤ φ2 is derivable from the
above axioms and rules. Note that the converse of (a↓ − ∧) is derivable from (a↓− ≤)
and (∧ − i). Similarly, also the converses of (a↓ − 	), (a() − 	) and (a() − ∧) are
derivable.

Theorem 5 (Soundness). The above proof system is sound, that is, for closed formulae
φ1 and φ2, � φ1 ≤ φ2 implies that for all Mealy machines (S , f ) and s ∈ S if s |= φ1

then s |= φ2.

Proof. By induction on the length of proofs. ��
Next we turn to the completeness for the modal fragment Lm of our Mealy logic L,
where a modal formula is a formula with neither fixed point operators nor variables.
Note that the (Lindenbaum algebra of) Lm is a meet-semilattice.

Let Θ be the set of all filters of (the Lindenbaum algebra of) Lm , where a filter of a
meet-semilattice is a non-empty upper closed subset F such that if a, b ∈ F then also
a∧b ∈ F . The setΘ can be turned into a Mealy machine (Θ, θ) by defining, for F ∈ Θ
and a ∈ A, θ(F )(a) = 〈F [a],Fa 〉, where

F [a] =
∧

{b|a↓b ∈ F} Fa = {φ|a(φ) ∈ F} .

Note that in order for F [a] to be well defined we assume B to be a finite meet-semilattice.
In case B is infinite, we would need B to be a complete meet-semilattice.

Theorem 6. For every Mealy machine (S , f ) there exists a unique homomorphism
kS :S → Θ. In particular, the homomorphism kΓ :Γ → Θ is an isomorphism.

As a consequence of Theorem 4, the isomorphism kΓ :Γ → Θ is also an order iso-
morphism, where the order on Θ is subset inclusion. The logical significance of the
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above result is that a finitary logic with only finite conjunctions suffices to completely
describe all Mealy machines up to bisimilarity. In fact the modal fragment of our logic
is a special case of coalgebraic logic obtained by a Stone-type duality [1,2].

Theorem 6 together with the next lemma gives a logical interpretation of the final
coalgebra: its elements correspond to canonical models (in the logical sense) of the
Mealy logic.

Lemma 7. For every modal formula φ and filter F ∈ Θ, F |= φ if and only if φ ∈ F .

Proof. By induction on the structure of φ, using the fact that F is a filter and the above
definition of θ:Θ → (B ×Θ)A. ��
We can finally prove the completeness of the modal fragment of our Mealy logic.

Theorem 8 (Completeness). For modal formulae φ1 and φ2, if s |= φ1 implies s |= φ2

for all Mealy machines (S , f ) and s ∈ S , then � φ1 ≤ φ2.

Proof. Assume �� φ1 ≤ φ2. It is enough to find a state s in a Mealy machine (S , f )
such that s |= φ1 but s �|= φ2. Define Fφ1 = {ψ | φ1 ≤ ψ}. It is not very difficult to
verify that Fφ1 is a filter, hence it is an element of Θ. Clearly, φ1 ∈ Fφ1 but, by our
assumption φ2 �∈ Fφ1 . We can now conclude by applying Lemma 7. ��

3.2 Adding Negation

The logic we have considered so far contains no negation. Extending the logic with
negated formulae is not problematic as long as we consider Mealy machines with out-
puts in a Boolean algebra B (like the two-element set). In this case, we can still turn the
set of (possibly negated) formulae into a Mealy coalgebra by extending our definition
of λ at the beginning of section 3 with

(¬φ)[a] = ¬B (φ[a]) (¬φ)a = ¬(φ)a .

It is easy to see that according to this definition negation distributes up to bisimulation
over conjunction (de Morgan law), and over the modal operators (a sign that the ma-
chine is indeed deterministic). Further, negation is classical, meaning that ¬(¬φ) ∼ φ.
Clearly, disjunctions and μ-recursive formulae can be defined as derived operators.

From the logical point of view, this means that the Lindenbaum algebra of the
resulting logic with negation is the free Boolean algebra over the meet-semilattice
of the Mealy logic we considered here. In this case one can apply the isomorphism
UFilt(B(L)) ∼= Filt(L) to obtain analogous soundness and completeness results as
above, where L is a meet-semilattice, B(L) is the free Boolean algebra over L and
UFilt(B(L)) is the set of ultrafilters of B(L).

4 Synthesis

We will now describe the synthesis process that produces a Mealy machine from an
arbitrary (closed and guarded) Mealy formula1. Each state of the resulting Mealy ma-
chine will be a formula constructed in such a way that if s is the state corresponding to

1 The source code in HASKELL can be downloaded from www.cwi.nl/˜ams/mealy
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a formula φ, then s ∼ φ. This implies that the semantics of s is exactly the set of causal
functions satisfying φ.

4.1 Formulae Normalization

We have seen that the first group of six axioms and rules of our proof system gives to the
set of formulae the structure of a meet-semilattice. In order to guarantee the termination
of the synthesis process we will need to identify formulae that are provably equivalent
using only these axioms and rules. For instance, the formulae

a(tt) ∧ a↓b ∧ tt ∧ a↓b and a(tt) ∧ a↓b
are equivalent.

To normalize a formula φ, we need to eliminate any redundancy present in the for-
mula: in a conjunction, tt can be eliminated and, by idempotency, the conjunction of
two syntactically equivalent formulae can be simplified.

The function norm encodes this procedure. We define it by induction on the formula
structure as follows:

norm(tt) = tt
norm(a(φ)) = a(norm(φ))
norm(a↓b) = a↓b
norm(φ1 ∧ φ2) = conj (rem(flatten(norm(φ1) ∧ norm(φ2))))
norm(νx .φ) = νx .(norm(φ)) .

Here, conj takes a list of formulae [φ1, . . . , φn ] and returns the formula φ1∧ . . .∧φn

(conj applied to the empty list yields tt ), rem removes duplicates in a list and flatten
takes a formula φ and produces a list of formulae by omitting brackets and replacing
∧-symbols by commas:

flatten(φ1 ∧ φ2) = flatten(φ1) · flatten(φ2)
flatten(tt) = []
flatten(φ) = [φ], φ ∈ {a↓b, a(φ1), νx .φ1}

In this definition, · denotes list concatenation and [φ] the singleton list containing φ.
Note that an occurrence of tt in a conjunction is eliminated because flatten(tt) = [].

For example, the normalization of the two formulae above will result in the same
formula – a(tt) ∧ a↓b.

Note that norm still distinguishes the formulae φ1∧φ2 and φ2∧φ1. For simplifying
the presentation of the normalization algorithm, we decided not to identify these formu-
lae, since this will not influence termination. However, in the implementation, in order
to reduce the number of states, those formulae are identified. In the examples below this
situation will never occur.

4.2 Synthesis

We first describe what happens in a single step of the synthesis process.
The function δ, which does one-step synthesis for a single formula, takes a formula

φ ∈ Lc
g and produces a partial Mealy machine. Below, δ will be used in the functionΔ,

which synthesises the total Mealy machine.
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The function δ is defined, by induction on the complexity measure N defined in
Section 3, as follows:

δ(tt)(a) = 〈	B , tt〉
δ(a′(φ))(a) =

{ 〈	B ,norm(φ)〉 a = a′

〈	B , tt〉 otherwise

δ(a′↓b)(a) =
{ 〈b, tt〉 a = a′

〈	B , tt〉 otherwise
δ(φ1 ∧ φ2)(a) = δ(φ1)(a) � δ(φ2)(a)
δ(νx .φ)(a) = 〈b,norm(φ′)〉 where 〈b, φ′〉 = δ(φ[νx .φ/x ])(a)

where � is defined as: 〈b1, φ1〉 � 〈b2, φ2〉 = 〈b1 ∧B b2,norm(φ1 ∧ φ2)〉.
Note that this function is very similar to the function λ presented in Section 3. In

fact, the difference is the normalization that is now being applied to the formulae so
that a finite machine will be produced.

As an example, consider the formula φ = 1↓0 ∧ (νx .1(x )), specifying a binary
Mealy machine. We can easily compute that δ(φ)(0) = 〈	B , tt〉 and

δ(φ)(1) = δ(1↓0)(1) � δ(νx .1(x ))(1)
= 〈0, tt〉 � 〈	B , νx .1(x )〉
= 〈0, νx .1(x )〉

So, δ(φ) is a (partial) finite function represented by the following diagram.

φ
1|0 ��

0|�B

��

νx .1(x )

tt

To compute the entire Mealy machine that satisfies φ, we need to apply δ to the
new states generated at each step repeatedly until all states in the automata have their
transitions/outputs fully defined.

We implement this procedure with the auxiliary function D . The arguments of this
function are two sets of states: sts ⊆ Lc

g , the states that still need to be processed and
vis ⊆ Lc

g , the states that already have been visited (synthesized). For each φ ∈ sts , D
computes δ(φ) and produces an intermediate transition function (possibly partial) by
taking the union of all those δ(φ). Then, it collects all new states appearing in this step
and recursively computes the transition function for those.

D(sts , vis) =
{∅ sts = ∅

trans ∪ D(newsts , vis ′) otherwise
where trans = {〈φ, δ(φ)〉 | φ ∈ sts}

sts ′ = collectStates(trans)
vis ′ = sts ∪ vis
newsts = sts ′ \ vis ′

The function Δ takes a Mealy formula φ ∈ Lc
g and returns a Mealy machine that

satisfies φ:
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Δ(φ) = (dom(f ), f ) where f = D({norm(φ)}, ∅)

The function dom returns the domain of a finite function.
Due to lack of space, the proof of finiteness and termination of the synthesis algo-

rithm is not included. They are included in the extended version of this paper [3].
Let us look at an example. For the formula φ presented aboveΔ(φ) = (S , f ), where

S = {tt , φ, νx .1(x )} and f is represented by the following diagram.

φ
1|0 ��

0|�B

��

νx .1(x )

1|�B

��

0|�B

���������������

tt

1|�B ,0|�B

		

Note that the Mealy machine produced by Δ is not minimal. In this example, the
states tt and νx .1(x ) are bisimilar and could be identified.

The (special) output value 	B allows us to define underspecified machines: if a given
formula does not contain information about the output value for a given input a, then
we do not return as output a concrete value but instead 	B . If 	B is replaced by any
other element b ∈ B the resulting machine will still satisfy φ.

Let us see a few other examples of the synthesis process. To simplify the presenta-
tion, we consider again binary machines and, moreover, the formulae presented below
will only have information for the input 1. Therefore, for the 0 input δ will always return
〈	B , tt〉.

Let us start with φ1 = 1(1↓0) ∧ (νx .1(x )). We have:

δ(φ1)(1) = δ(1(1↓0))(1) � δ(νx .1(x ))(1)
= 〈	B , 1↓0〉 � 〈	B , νx .1(x )〉
= 〈	B , 1↓0 ∧ (νx .1(x ))〉

We now repeat the process for 1↓0∧ (νx .1(x )), which will yield δ(1↓0∧ (νx .1(x )))
(1) = 〈0, νx .1(x )〉. Finally, we calculate δ(νx .1(x ))(1) = 〈	B , νx .1(x )〉.

The complete Mealy machine is represented in the following diagram:

φ1
1|�B ��

0|�B

��

1↓0 ∧ (νx .1(x ))

1|0
��

0|�B



����������������

tt

1|�B ,0|�B

		 νx .1(x )

1|�B

��
0|�B��

Now, take φ2 = νx .1(1↓0)∧ 1(x ). Because 1(1↓0) has no x ’s one could be tempted
to assume that the automaton for φ2 would be the same as the one for φ1. However, that
is not the case. The synthesis algorithm will produce the following automaton for φ2.
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φ2
1|�B ��

0|�B

��

1↓0 ∧ φ2

0|�B



��������������

1|0
��

tt

1|�B ,0|�B

		

As a last example, let φ3 = νx .1(x ∧ (νy.1(y) ∧ 1↓0)). We have:

δ(φ3)(1) = δ(1(φ3 ∧ (νy.1(y) ∧ 1↓0)))(1)
= 〈	B , φ3 ∧ (νy.1(y) ∧ 1↓0)〉

and

δ(φ3 ∧ (νy.1(y) ∧ 1↓0))(1)
= δ(φ3)(1) � δ(νy.1(y) ∧ 1↓0)(1)
= 〈	B , φ3 ∧ (νy.1(y) ∧ 1↓0)〉 � 〈0, νy.1(y) ∧ 1↓0〉
= 〈0,norm(φ3 ∧ (νy.1(y) ∧ 1↓0) ∧ (νy.1(y) ∧ 1↓0))〉
= 〈0, φ3 ∧ (νy.1(y) ∧ 1↓0)〉

Note that if norm would not have been applied, the resulting state φ3 ∧ (νy.1(y) ∧
1↓0) ∧ (νy.1(y) ∧ 1↓0) would be regarded as a new state, even though it is equivalent
to φ3 ∧ (νy.1(y) ∧ 1↓0). Moreover, applying δ to this state (for input 1) would yield
again an equivalent but (syntactically) different state, namely φ3 ∧ (νy.1(y) ∧ 1↓0) ∧
(νy.1(y) ∧ 1↓0) ∧ (νy.1(y) ∧ 1↓0). This illustrates that the function λ, defined in
Section 3, generally produces an infinite machine. However, the identifications made
by norm ensure the termination of the synthesis process.

5 Conclusions and Future Work

We have given a coalgebraic account of Mealy machines and provided a logical spec-
ification language for them. Despite its simplicity, the logic is expressive in the sense
that all Mealy machines can be characterized by finite formulae, but also in the sense
that logical equivalence corresponds to bisimulation. Further, the logic is sound and the
modal fragment complete for all Mealy machines.

The specification language is finitary and includes a fixed point operator.
Other temporal operators can be defined as derived operators. Interestingly, the lan-

guage is already expressive enough to characterize all Mealy machines even without
negation and disjunction. Even stronger, for binary Mealy machines the addition of
negation does not increase the expressive power of the logic. This situation is typical
also of deterministic finite automata: the addition of negation in regular expressions
does not increase the class of languages that they characterize, even though regular
languages are closed under complement.

Our main result is an algorithm for the synthesis of a Mealy machine from a for-
mula. Our synthesis algorithm is compositional, in the sense that the semantics of the
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Mealy machine synthesized from a formula can be obtained by suitably composing the
semantics of the Mealy machines synthesized from sub-formulae.

In this paper we have explored the synthesis of one particular type of automata, the
Mealy machines. With a small variation of the logic one can easily obtain a similar result
for Moore automata. More generally, different type of automata can be obtained by
varying the functor under consideration on the category of sets. It would be interesting
to generalize the present result in order to synthesize coalgebras for different functors.

Acknowledgements. We would like to thank Clemens Kupke, Helle Hvid Hansen and
Yde Venema for valuable suggestions and discussions.
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