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Abstract. During the last years, weighted timed automata (WTA) have
received much interest in the real-time community. Weighted timed au-
tomata form an extension of timed automata and allow us to assign
weights (costs) to both locations and edges. This model, introduced by
Alur et al. (2001) and Behrmann et al. (2001), permits the treatment
of continuous consumption of resources and has led to much research on
scheduling problems, optimal reachability and model checking. Also, sev-
eral authors have derived Kleene-type characterizations of (unweighted)
timed automata and their accepted timed languages. The goal of this
paper is to provide a characterization of the possible behaviours of WTA
by rational power series. We define WTA with weights taken in an ar-
bitrary semiring, resulting in a model that subsumes several WTA con-
cepts of the literature. For our main result, we combine the methods
of Schützenberger, a recent approach for a Kleene-type theorem for un-
weighted timed automata by Bouyer and Petit as well as new techniques.
Our main result also implies Kleene-type theorems for several subclasses
of WTA investigated before, e.g., for weighted finite automata, timed
automata and timed automata with stopwatch observers.

1 Introduction

Since its introduction in 1994 by Alur and Dill [2], timed automata have been
a thoroughly investigated model for the specification and analysis of real-time
systems. In the literature, not only a variety of interesting theoretical results for
timed automata and timed languages have been established (see [4] for a survey),
but there has also much practical work been done such as the development
of symbolic data structures and efficient algorithms, leading to model-checking
tools like Kronos, Uppaal and HyTech [17], [25], [22], successfully used for
solving industrially relevant problems, e.g. [27], [23].

Weighted timed automata have been of much interest in the real-time com-
munity during the last years. The model has been introduced independently by
Alur et al. [3] and Behrmann et al. [8] and allows us to assign weights to both the
locations and edges of the underlying timed automaton. The weight of an edge
gives the actual cost for executing it, whereas the weight of a location gives the
cost for staying in this location per time unit. The weight for reaching a certain
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location s (or, analogously, the weight for accepting a certain timed word) is
computed by taking the minimum over the running weights of all runs ending
in s. The running weight of a run is the sum of the costs of all participating
transitions of the run. In this way, WTA have been used to model continuous
consumption of resources, allowing applications in operations research, in par-
ticular optimal scheduling and planning [20], [28]. Consequently, a number of
decision problems have been investigated, most of them concerning the reacha-
bility problem under some optimization aspect [8], [3], [11], model-checking [18],
[12], [14], and weighted timed games [1].

The goal of this paper is to provide a characterization of the possible be-
haviours of WTA in terms of rational power series, i.e., power series constructed
by the standard rational operations addition, Cauchy product and Kleene star
iteration. Moreover, we give a more general definition of WTA which includes
all the various definitions given in the literature so far and which gives rise to
some interesting variants.

We define WTA over a semiring in the same manner as it is done for classical
weighted finite automata [29], [24], [10]. In this way, we are not bound to a
fixed set of weights, nor are we restricted to use the operations of addition and
infimum for computing the weight of a word. Secondly, we do not restrict the cost
functions for the locations to be linear (as previously done in [3], [8]). Instead,
we consider WTA with respect to an arbitrary family of functions F mapping
positive reals to elements in the semiring. The cost for staying in a location s is
defined by a cost function Cs ∈ F . By introducing the notion of a family of cost
functions F and the semiring, we hope to obtain a flexible model of WTA.

For our characterization of the behaviours of WTA by rational power series, we
establish a Kleene-Schützenberger theorem for WTA. Schützenberger’s theorem
is the analogue to the famous Kleene theorem for the class of weighted finite
automata: the set of recognizable power series, i.e., the set of power series that
constitute the behaviour of a weighted automaton, is precisely the set of rational
power series [30]. As is well-known, rational expressions can be used to specify
properties of systems. Recently, there have also been several approaches to give
a Kleene-type theorem for timed languages [5], [7], [6], [15], of which we choose
the latest approach of Bouyer and Petit in 2001 [16] because of its simplicity
and elegance. According to their result, the set of regular timed languages, as
defined by Alur and Dill [2], coincides with the set of rational timed languages,
defined over the standard rational operations +, ·, ∗ and an additional projection
operation. For the proof of our main result, we combine the methods of Bouyer
and Petit, Schützenberger and new techniques.

We define the semantics of WTA based on the notion of clock words as intro-
duced by Bouyer and Petit [16]. Clock words, as opposed to the well-known timed
words [2], bear more information concerning the actual values of clock variables
than timed words, and thus enable the authors to define a concatenation oper-
ation in a natural way. Consequently, all the definitions and constructions for
the Kleene theorem are given with respect to clock words. However, it can be
shown that clock words can easily be mapped to timed words using a projection
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function; thus the Kleene theorem for clock words can be extended to timed
words. To bring weights into play, we introduce the notion of clock series. Clock
series are a particular kind of power series which map clock words to elements
in a semiring. We define addition, Cauchy product and Kleene star iteration on
the set of clock series to give a formal definition for the set of rational clock
series. The main objective of this work is to show that this set is equal to the set
of recognizable clock series, which make up the behaviour of the class of WTA.
We establish this in two steps. First, the crucial part for showing that any ra-
tional clock series is a recognizable clock series is to prove that WTA are closed
under the three operations mentioned above. In our proof, for dealing with the
weights assigned to locations, we need to give new methods for normalizing the
automata. The proof for the other direction, i.e., any recognizable clock series is
rational, is based on the solution of equations [16], [10]. Finally, we show how we
can extend the theorem in such a way that it can be applied to timed semantics
as well.

2 Preliminaries

In the following, we use �≥0 and � to denote the positive reals and natural
numbers, respectively. Furthermore, we write �1+n

≥0 for �≥0 × �
n
≥0.

Clock Constraints and Clock Valuations. Let X be a finite set of variables,
called clock variables. We define clock constraints φ over X to be conjunctions of
formulas of the form x ∼ k, where k ∈ �, x ∈ X , and ∼∈ {<, ≤, >, ≥}. Let Φ(X)
be the set of all clock constraints φ over X . A clock valuation ν : X → �≥0 is a
function that assigns a value to each clock variable. A clock valuation ν satisfies
a clock constraint φ, written ν |= φ, if φ evaluates to true according to the
values given by ν. Given δ ∈ �≥0, we let ν + δ be the clock valuation such that
(ν +δ)(x) = ν(x)+δ for each x ∈ X . For λ ⊆ X , we define ν[λ := 0] as the clock
valuation that assigns 0 to each x ∈ λ, and agrees with ν over the remaining
clock variables x ∈ X\λ.

Timed and Clock Words. Let Σ be a finite alphabet and n ∈ �. A timed
word is a finite sequence w = (σ1, t1)(σ2, t2)...(σk, tk) ∈ (Σ × �≥0)∗, where the
sequence t1t2...tk is non-decreasing. Intuitively, ti gives the time of occurrence
of σi. An n-clock word is a finite sequence w = (t0, ν0)(σ1, t1, ν1)...(σk, tk, νk)
from the infinite set (�1+n

≥0 )(Σ × �
1+n
≥0 )∗, where (σ1, t1)...(σk, tk) is a timed

word, and νi gives the values of the clock variables just after the computa-
tion of σi. The pair (t0, ν0) corresponds to the starting condition and is consid-
ered to be an empty n-clock word. The set of empty n-clock words is denoted
by Γn(= �

1+n
≥0 ). We define (�1+n

≥0 )(Σ × �
1+n
≥0 )+ by (�1+n

≥0 )(Σ × �
1+n
≥0 )∗\Γn. Let

w = (t0, ν0)(σ1, t1, ν1)...(σk, tk, νk) and w′ = (t′0, ν
′
0)(σ

′
1, t

′
1, ν

′
1)...(σ

′
l, t

′
l, ν

′
l) be two

n-clock words. We say that w is compatible with w′ if (tk, νk) = (t′0, ν′
0). In this

case, we define the concatenation w · w′ of w and w′ to be the n-clock word
(t0, ν0)(σ1, t1, ν1)...(σk, tk, νk)(σ′

1, t
′
1, ν

′
1)...(σ′

l , t
′
l, ν

′
l). By |w| we mean the length

of an n-clock word w.
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Semirings and Formal Power Series. A semiring is a tuple K=(K, ⊕, 	, 0, 1)
such that (K, ⊕, 0) is a commutative monoid, (K, 	, 1) is a monoid, 	 is both
left- and right-distributive over ⊕, and 0 	 x = x 	 0 = 0 for any x ∈ K.
As examples consider the semiring (�, +, ·, 0, 1) of natural numbers with the
usual addition and multiplication, the Boolean semiring ({0, 1}, ∨, ∧, 0, 1), and
the tropical semiring (�≥0 ∪ {∞}, min, +, ∞, 0). Let A be an arbitrary set and
K a semiring. A function S : A → K is called a formal power series (fps) over
K. For historical reasons, the image of an element w ∈ A is denoted by (S, w).
We write K〈〈A〉〉 to mean the set of all fps S : A → K.

3 Weighted Timed Automata

Weighted Timed Automata. Let K be a semiring, Σ be a finite alphabet, and
X be a finite set of clock variables. We consider timed automata A augmented
with cost functions that assign elements from K, so-called weights (or costs),
to both the edges and the locations of A. The weight for staying in a location
depends on the amount of time we spend in this location; thus, we define a cost
function from �≥0 to K for each location. Let F be any family of functions from
�≥0 to K. A weighted timed automaton (WTA) over K, Σ, X and F is a tuple
A = (S, S0, Sf , E, C), where

– S is a finite set of locations (states)
– S0 ⊆ S is a set of initial locations
– Sf ⊆ S is a set of final locations
– E ⊆ S × S × Σ × Φ(X) × 2X is a finite set of edges. An edge (s, s′, σ, φ, λ)

allows a jump from location s to location s′ if σ is read, provided that the
current values of the clock variables in location s satisfy the clock constraint
φ. After the edge has been executed, all clock variables in λ are reset to zero,
whereas the values of all other clock variables remain unchanged.

– C = {CE} ∪ {Cs : s ∈ S}, where CE : E → K, and Cs ∈ F for any s ∈ S.

Let A = (S, S0, Sf , E, C) be a WTA. The timed semantics of A is given by an
infinite state transition system that corresponds to a weighted extension of the
original semantics of timed automata defined by Alur and Dill [2]. However, in
the following we will give an additional semantics, called clock semantics. This
model is based on the notion of clock words rather than timed words, and allows
for a natural definition of concatenation [16].

Timed Semantics. Let ST
A be a state-transition-system with states of the form

(s, ν), where s ∈ S and ν is a clock valuation. We define timed transitions to be

transitions of the form (s, ν)
δ/c−→T (s, ν+δ) where c = Cs(δ). A discrete transition

is of the form (s, ν)
σ/c−→D (s′, ν′) such that there is an edge e = (s, s′, σ, φ, λ) in

E where CE(e) = c, ν |= φ, and ν′ = ν[λ := 0]. A timed run rT of A is a finite
alternating sequence of timed and discrete transitions in ST

A

rT =
(
(s0, ν0)

δ1/c1−→ T (s1, ν1)
σ1/c′

1−→ D (s′1, ν
′
1)

δ2/c2−→ T ...
σk/c′

k−→ D (s′k, ν′
k)

)
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where ν0 = 0|X|. With rT , the timed word w = (σ1, t1)(σ2, t2)...(σk, tk), such
that tj =

∑j
i=1 δj for each 1 ≤ j ≤ k, is associated.

Clock Semantics. The clock semantics is very similar to the timed semantics
and is given in terms of |X |-clock words. Consider the state-transition-system
SC
A , whose states are of the form (s, t, ν), where s is a location, t ∈ �≥0, and ν is

a clock valuation. The transition relation over the set of states in SC
A is defined

in the same manner as the transition relation in ST
A. A clock run rC of A is a

finite alternating sequence of timed and discrete transitions

rC =
(
(s0, t0, ν0)

δ1/c1−→ T (s1, t1, ν1)
σ1/c′

1−→ D (s′1, t
′
1, ν

′
1)

δ2/c2−→ T ...
σk/c′

k−→ D (s′k, t′k, ν′
k)

)

where t1 = t0 + δ1, t′i = ti for any 1 ≤ i ≤ k, and ti = t′i−1 + δi for any 2 ≤ i ≤ k.
Note that in contrast to the timed semantics, ν0 can be arbitrary. The label of
a canonical clock run is the |X |-clock word w = (t0, ν0)(σ1, t

′
1, ν

′
1)...(σk, t′k, ν′

k).

Behaviour of A. Let r be a (timed or clock) run as above. We define the
running weight rwt(r) of r to be rwt(r) =

∏k
i=1 ci 	 c′i. The running weight of

the empty clock run (t0, ν0) with label (t0, ν0) ∈ Γ|X| is defined to be 1. We say
that r is initialized if s0 ∈ S0. It is accepting if s′k ∈ Sf . If r is both initialized
and accepting it is called successful. The timed behaviour of the WTA A is the
fps ‖A‖T : (Σ × �≥0)∗ → K defined by

(‖A‖T , w) =
∑

{rwt(r) : r is a successful timed run of A on w}

Similarly, we define the clock behavior of A to be the fps
‖A‖C : (�1+|X|

≥0 )(Σ × �
1+|X|
≥0 )∗ → K given by

(‖A‖C , w) =
∑

{rwt(r) : r is a successful clock run of A on w}

In the remainder of the paper, we will use the clock semantics for defining the
notions of recognizability and rationality. In the last section, we show that these
notions can easily be adapted to the timed semantics.

4 Relation to other Automata Models

Here we show that our model of WTA subsumes a number of more particular
concepts of timed automata, as well as weighted (untimed) automata, which
have been investigated intensively in the literature. In particular, by restricting
K and F , we obtain timed automata and weighted automata. This implies that
our main theorem in Sect. 5 also applies to these automata classes.

Timed Automata. The classical (unweighted) timed automaton defined by
Alur and Dill [2] can be obtained as follows. Let K be the Boolean semiring
({0, 1}, ∨, ∧, 0, 1), F be the family of constant functions 1, i.e., Cs(δ) = 1 for any
s ∈ S, δ ∈ �≥0, and CE(e) = 1 for any e ∈ E. Thus, Theorem 8 of Bouyer and
Petit [16] is implied by our main theorem in Sect. 5.
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Other Weighted Timed Automata Models. Weighted timed automata
have been introduced independently by Alur et al. [3] and Behrmann et al. [8].
Both consider timed automata A augmented with a cost function that assigns a
natural number to locations and edges of A. In doing so, the increase of the cost
variable is restricted to be linear. The cost of reaching a location s is computed
by taking the minimum of the costs of any run ending in s, where the cost of a
run r is the sum of the costs of all participating transitions in r. We can easily
model this using the tropical semiring (�≥0 ∪{∞}, min, +, ∞, 0), and restricting
F to the class of linear functions.

Recently, the weighted timed automaton model has been generalized by allow-
ing more than one cost variable. Larsen and Rasmussen introduced dual-priced
timed automata [26]. The dual-priced timed automaton model can be modeled
by defining a new “tropical” semiring with the underlying set (�≥0 ∪ {∞}) ×
(�≥0 ∪{∞}), and modifying the definitions of min and + in a suitable way, e.g.
coordinate-wise. Similarly, we can extend to multi-priced models [13].

Timed Automata with Stopwatch Observers. A stopwatch is a clock vari-
able that can be stopped and turned on again [21]. In other words, the rate of
change of the stopwatch variable is either 0 or 1. A timed automaton augmented
with a stopwatch variable that can neither be tested in a clock constraint nor be
reset is called a timed automaton with a stopwatch observer. We use a WTA to
model such an automaton by restricting F to be the constant functions 0 and
1. The edges shall not cost anything: CE(e) = 1 for any e ∈ E.

Weighted Finite Automata. A weighted finite automaton A over a semiring
K = (K, ⊕, 	, 0, 1) is a finite automaton whose transitions are assigned costs
taken from the semiring. The behavior of A is defined using the semiring opera-
tions ⊕ and 	 in the same manner as it is done for WTA in Sect. 3. By restricting
the family of functions F to the constant function 1, we yield a model which does
not add any costs while staying in a location. In this way, we yield a classical
weighted finite automaton. This implies that the Schützenberger theorem [30] is
a special case of our main theorem in Sect. 5.

5 Clock Series

To describe the behaviour of a WTA A over K, Σ, X and F , we want to use F-
rational clock series. In this section, we give a general definition of clock series,
some basic properties of clock series, and the definition of rationality. Finally, we
will give the main theorem of the paper. For the remainder of the paper, we fix
a semiring K, a finite alphabet Σ, a set of clock variables X = {x1, ..., xn}, and
a family F of functions from �≥0 to K. If not otherwise specified, by writing A
we mean a WTA A over K, Σ, X and F .

Clock Series. A function S : (�1+n
≥0 )(Σ×�1+n

≥0 )∗ → K is called an n-clock series.
We denote the set of all n-clock series by Kn〈〈Σ,�≥0〉〉. On the set Kn〈〈Σ,�≥0〉〉,
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we define the sum S +T pointwise, i.e., (S +T, w) = (S, w)⊕(T, w). The Cauchy
product S · T is defined by

(S · T, w) =
∑

u·v=w

(S, u) 	 (T, v)

Furthermore, we define the clock series � by (�, w) = 1 if w ∈ Γn, (�, w) = 0
otherwise, and the clock series � by (�, w) = 0 for each w ∈ (�1+n

≥0 )(Σ × �
1+n
≥0 ).

The following lemma is the clock series version of the well-known fact that the set
of fps over the free monoid together with sum and Cauchy product is a semiring.

Lemma 1. The structure (Kn〈〈Σ,�≥0〉〉, +, ·, �, �) is a semiring.

For a clock series S, let S0 = � and, inductively, Sk = S ·Sk−1 be the k-th power
of S for k ≥ 1. The clock series S ∈ Kn〈〈Σ,�≥0〉〉 is called proper, if (S, w0) = 0
for any w0 ∈ Γn. For proper clock series S, we define the Kleene star iteration
S∗ by

(S∗, w) =
∑

k≥0

(Sk, w)

Notice that from (S, w0) = 0 for w0 ∈ Γn, it follows that (Sk, w) = 0 for any
k > |w|. This implies that the sum given above is finite and hence exists in K.

Lemma 2. Let S ∈ Kn〈〈Σ,�≥0〉〉 be proper. Then S · S∗ + � = S∗.

Next, we give an explicit formula for the calculation of Sk. It can be proved by
induction on k.

Lemma 3. If S is a proper n-clock series, k ∈ �, and w ∈ (�1+n
≥0 )(Σ ×�

1+n
≥0 )∗,

then (Sk, w) has the explicit representation

(Sk, w) =
∑

w=w1·...·wk

k∏

i=1

(S, wi)

Rational Clock Series. For c ∈ F , k ∈ K, σ ∈ Σ, φ ∈ Φ(X), and λ ⊆ X , we
define the F -monomial 〈c, k, σ, φ, λ〉 : (�1+n

≥0 )(Σ × �
1+n
≥0 )∗ → K as follows:

(〈c, k, σ, φ, λ〉, w) =

⎧
⎪⎨

⎪⎩

c(δ) 	 k if w = (t, ν)(σ, t + δ, ν′) ∈ (�1+n
≥0 )(Σ × �

1+n
≥0 )

s.t. δ ∈ �≥0, ν + δ |= φ and ν′ = ν + δ[λ := 0]
0 otherwise

An n-clock series S is F-rational if it can be defined starting from finitely
many F -monomials or the clock series � and �, by means of a finite number
of applications of +, · and ∗, where the latter may only be applied to proper n-
clock series. We use KF−rat

n 〈〈Σ,�≥0〉〉 to denote the set of all F -rational n-clock
series.

Observe that, similarly to the case of WTA, by restricting K and F , we obtain
rational expressions for several other (unweighted) automata classes or rational
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fps for weighted automata. For instance, if K is the Boolean semiring and F
is the family of constant functions 1, then rational clock series correspond to
rational clock expressions defined by Bouyer and Petit [16].

Example 1. Consider the following specification of a real-time system with a
single resource, where Λ = {a, b, c, d} is a set of actions:

The system must execute a and b, and b must be executed exactly 3 time
units after a. Between a and b, action c (costs e 3) and action d (costs
e 2) may be executed consecutively for an arbitrary number of times,
but d is restricted to happen strictly between 1 and 2 time units after c.
Being in the state after action a or d has been executed, costs e 5 per
time unit, whereas being in the state after c has been executed, costs e 1
per time unit.

The specification can be represented by the following rational clock series over
the tropical semiring, Λ, Y = {x, y} and Ci(δ) = i · δ for each i, δ ∈ �≥0:

〈C0, 0, a, �, {x}〉(〈C5, 3, c, �, {y}〉〈C1, 2, d, 1 < y < 2, ∅〉)∗〈C5, 0, b, x = 3, ∅〉

where � means true. In Fig. 1, we give the corresponding WTA.

s1 s2

s3 s4

a/0,x:=0

b/0,x=3

c/3
y:=0

d/2
1<y<2

for each δ ∈ �≥0

Cs1(δ) = 0
Cs2(δ) = 5 · δ
Cs3(δ) = 1 · δ
Cs4(δ) = 0

Fig. 1. The weighted timed automaton for Example 1

Recognizable Clock Series. We say that a clock series S is an F -recognizable
n-clock series if there is a WTA A = (S, S0, Sf , E, C) with S = ‖A‖. We use
KF−rec

n 〈〈Σ,�≥0〉〉 to denote the set of all F -recognizable n-clock series.
Now, we are ready to present the main theorem of our paper.

Theorem 1. Let K be a semiring, Σ be a finite alphabet, X = {x1, ..., xn} be a
finite set of clock variables and F be a family of functions from �≥0 to K. Then
the set of F-recognizable n-clock series is equal to the set of F-rational n-clock
series:

KF−rec
n 〈〈Σ,�≥0〉〉 = KF−rat

n 〈〈Σ,�≥0〉〉

Proof. The two inclusions of this result will follow from Proposition 1 and Propo-
sition 2, respectively, presented in the next two sections.
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6 Rationality Implies Recognizability

In this section, we prove one inclusion of Theorem 1, namely that any rational
n-clock series is recognizable. To this end, we will show that the basic n-clock
series �, � and F -monomials are recognized by a WTA. Then, we will present new
constructions that prove that WTA are closed under addition, Cauchy product
and Kleene star iteration.

Proposition 1. KF−rat
n 〈〈Σ,�≥0〉〉 ⊆ KF−rec

n 〈〈Σ,�≥0〉〉.

Proof. Follows from Lemmas 4, 5, 7 and 9 given subsequently.

Lemma 4. �, � and F-monomials in KF−rat
n 〈〈Σ,�≥0〉〉 are recognizable n-clock

series.

Proof. � is the behaviour of the WTA A� = ({s}, {s}, ∅, ∅, C), and the WTA
A� = ({s}, {s}, {s}, ∅, C) corresponds to the clock series �. In both cases, Cs ∈
F is arbitrary. Let S = 〈c, k, σ, φ, λ〉 be an F -monomial in KF−rat

n 〈〈Σ,�≥0〉〉,
where c ∈ F , k ∈ K, σ ∈ Σ, φ ∈ Φ(X), λ ⊆ X . We define the WTA
A〈c,k,σ,φ,λ〉 = (S, S0, Sf , E, C) where

– S = {s1, s2}
– S0 = {s1}
– Sf = {s2}
– E = {(s1, s2, σ, φ, λ)}
– C = {CE} ∪ {Cs : s ∈ S}

where CE : E → K is defined by CE((s1, s2, σ, φ, λ)) = k. Also, let Cs1 = c, and
choose any Cs2 ∈ F . Clearly, ‖A〈c,k,σ,φ,λ〉‖ = S.

The proof of the next lemma can be done as in the case of traditional finite
automata by taking a disjoint union of two WTA.

Lemma 5. If S, T ∈ KF−rec
n 〈〈Σ,�≥0〉〉, then S + T ∈ KF−rec

n 〈〈Σ,�≥0〉〉.

In the following, we give normalization techniques for WTA which will be essen-
tial for subsequent constructions of WTA. For showing closure of WTA under the
Cauchy product, we need a final-location-normalization. We say that a WTA A
is final-location-normalized if there is one single final location, and this location
has no outgoing edge.

Lemma 6. If A is a WTA, then there is a final-location-normalized WTA A′

with (‖A‖, w) = (‖A′‖, w) for any w ∈ (�1+n
≥0 )(Σ × �

1+n
≥0 )+.

Proof. Let A = (S, S0, Sf , E, C) be a WTA.
Define A′ = (S′, S′

0, S
′
f , E ∪ E′, C ∪ C′), where

– S′ = S ∪ {sf}
– S′

0 = S0
– S′

f = {sf}
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– E′ = {(s, sf , σ, φ, λ) : ∃s′ ∈ Sf s.t. (s, s′, σ, φ, λ) ∈ E}
– C′ : E′ → K is defined by C′((s, sf , σ, φ, λ)) =

∑

s′∈Sf

(s,s′,σ,φ,λ)∈E

C((s, s′, σ, φ, λ))

– Csf
∈ F

Intuitively, we redirect all edges going into a final location to the new final
location. The weight of each of these new edges must be the sum of the weights
of all “equivalent” edges, i.e., edges with the same label, clock constraint and
reset set. Using this notion of equivalence, we can show that (‖A‖, w) = (‖A′‖, w)
for any w ∈ (�1+n

≥0 )(Σ × �
1+n
≥0 )+.

Lemma 7. If S, T ∈ KF−rec
n 〈〈Σ,�≥0〉〉, then S · T ∈ KF−rec

n 〈〈Σ,�≥0〉〉.

Proof. We give the construction of the WTA A such that ‖A‖ = S · T . For
i = 1, 2, let Ai = (Si, Si

0, S
i
f , Ei, Ci) such that ‖A1‖ = S and ‖A2‖ = T . By

Lemma 6, we know that there is a final-location-normalized WTA
AN = (SN , SN

0 , {sf}, EN , CN ) such that (‖A1‖, w) = (‖AN‖, w) for any
w ∈ (�1+n

≥0 )(Σ ×�
1+n
≥0 )+. Assume CN = {CN

EN }∪{CN
s }s∈SN and |S1

0 ∩S1
f | = m.

Define AN,2 = (SN ∪ S2, SN
0 , S2

f , EN ∪ E2 ∪ E, {CN} ∪ {C2} ∪ {CE}) where

– E = {(s, s′, σ, φ, λ) : s′ ∈ S2
0 , (s, sf , σ, φ, λ) ∈ EN}

– CE : E → K is defined by CE((s, s′, σ, φ, λ)) = CN
EN ((s, sf , σ, φ, λ)) if

(s, sf , σ, φ, λ) ∈ EN

Intuitively, we redirect all edges going into the single final location of AN to the
initial locations of A2 and preserve the cost assigned to these edges.

For i ∈ �, define A2,i to be an isomorphic copy of A2 such that its locations
and edges are indexed by i. Let A be the disjoint union of AN,2 and A2,i for
1 ≤ i ≤ m. Then, (‖A‖, w) = S · T : AN,2 recognizes precisely the clock words w
that are the concatentation of two clock words w1 and w2 accepted by AN and
A2, respectively. Words obtained by concatentation of an empty word w0 ∈ Γn

and a word w2 recognized by A1 and A2, respectively, have to be treated in a
different manner. To overcome the problem that (‖A1‖, w0) = m · 1 (i.e., the
sum of m summands of 1 ∈ K), whereas (AN , w0) = 0 due to the construction
of AN , we add m isomorphic copies of A2. In this way, words of this kind are
assigned the correct weight.

For showing closure of WTA under the Kleene star iteration, we need an addi-
tional normalization technique. A WTA is initial-location-normalized if all initial
locations are sources, i.e., have no ingoing edges. Note that, in contrast to the
case of classical weighted automata, we do not require to have one single initial
state.

Lemma 8. If A is a WTA, then there is an initial-location-normalized WTA
A′ with (‖A‖, w) = (‖A′‖, w) for any w ∈ (�1+n

≥0 )(Σ × �
1+n
≥0 )∗.

Proof. Let A = (S, S0, Sf , E, C) be a WTA, where C = {CE} ∪ {Cs : s ∈ S}.
For each s ∈ S, let s′ be the copy of s.
Define A′ = (S ∪ S′, S′

0, Sf ∪ S′
f , E ∪ E′, C ∪ C′), where
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– S′ = {s′ : s ∈ S0}
– S′

0 = S′

– S′
f = {s′ : s ∈ S0 ∩ Sf}

– E′ = {(s′, t, σ, φ, λ) : (s, t, σ, φ, λ) ∈ E}
– C′ = {C′

E′} ∪ {C′
s′ : s′ ∈ S′}, where C′

E′ : E′ → K is defined by
C′

E′((s′, t, σ, φ, λ)) = CE((s, t, σ, φ, λ)), and C′
s′ = Cs for any s ∈ S.

The intuituion behind this construction is to create a new initial location s′ for
every initial location s ∈ S0 such that s′ carries only copies of the outgoing
edges of s. In particular, no (new) initial location has any ingoing edge. The
final states of A′ consist of the final states of A and of those locations s′ whose
original location s is both initial and final in A. This choice of new final states
s′ guarantees that A′ behaves correctly on the empty n-clock words. One can
prove ‖A′‖ = ‖A‖ by establishing a weight-preserving bijective correspondence
between the successful runs of A and A′.

Corollary 1. Let A be a WTA. Then there is an initial- and final-location-
normalized WTA AN with (‖AN‖, w) = (‖A‖, w) for any
w ∈ (�1+n

≥0 )(Σ × �
1+n
≥0 )+. Moreover, (‖AN‖, w0) = 0 for any w0 ∈ Γn.

Lemma 9. If S ∈ KF−rec
n 〈〈Σ,�≥0〉〉 is proper, then S∗ ∈ KF−rec

n 〈〈Σ,�≥0〉〉.

Proof. By Corollary 1 there is an initial- and final-location-normalized WTA
A = (S, S0, {sf}, E, C) with ‖A‖ = S. We define
A∗ = (S ∪ {s0f}, S0 ∪ {s0f}, {sf , s0f}, E ∪ E′, C ∪ C′), where

– s0f is a new location (to obtain (‖A∗‖, w0) = 1 for w0 ∈ Γn)
– E′ = {(s, s′, σ, φ, λ) : s′ ∈ S0, (s, sf , σ, φ, λ) ∈ E}
– C′ : E′ → K is defined by C′((s, s′, σ, φ, λ)) = CE((s, sf , σ, φ, λ)) if

(s, sf , σ, φ, λ) ∈ E

By a careful analysis of the successful runs of A∗ and their weights, it can be
shown that ‖A∗‖ = ‖A‖∗, which implies the result.

7 Recognizability Implies Rationality

In this section, we show that any n-clock series recognized by a WTA A is
rational by solving a system of equations induced by A. The solution of the
system corresponds to the rational clock series. Before we present the actual
result, we give some lemmas. Let A = (S, S0, Sf , E, C) be a WTA. For any
two locations s, s′ ∈ S, we set As,s′ = (S, {s}, {s′}, E, C). The following lemma
states how we can compute ‖A‖.

Lemma 10. If A = (S, S0, Sf , E, C) is a WTA, then

‖A‖ =
∑

(s0,sf )∈S0×Sf

‖As0,sf
‖
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The next lemma shows that for the behaviour of any As,s′ , we can give an
equivalent linear equation. This can be proved by decomposing any successful
run of As,s′ after the first discrete transition and replacing the first component by
the corresponding monomial WTA, using laws of associativity and distributivity.

Lemma 11. Let A = (S, S0, Sf , E, C) be a WTA, and assume that
sf ∈ Sf is fixed. Then, for any s ∈ S,

‖As,sf
‖ =

⎧
⎪⎨

⎪⎩

∑

(s,s′,σ,φ,λ)∈E

‖A〈Cs,k,σ,φ,λ〉‖ · ‖As′,sf
‖ + � if s = sf

∑

(s,s′,σ,φ,λ)∈E

‖A〈Cs,k,σ,φ,λ〉‖ · ‖As′,sf
‖ otherwise

where k = CE((s, s′, σ, φ, λ)).

The objective of these lemmas is to provide the basis for building a system of
linear equations that represents the behaviour of a given WTA A. The solution
of this system correesponds to a rational clock series that is equivalent to the
behaviour of A. However, we need to show that it is guaranteed that there is
such a solution. The next lemma supplies us with an even stronger result, namely
that there is a unique solution.

Lemma 12. Let S, S1, S2 ∈ Kn〈〈Σ,�≥0〉〉, S1 be proper. Then the equation
S = S1 · S + S2 has the unique solution T = S∗

1 · S2.

Finally, we present the crucial property between recognizable and rational clock
series. For proving it, we use Lemmas 10, 11 and 12.

Proposition 2. KF−rec
n 〈〈Σ,�≥0〉〉 ⊆ KF−rat

n 〈〈Σ,�≥0〉〉.

8 Timed Series

As mentioned in Sect. 3, we use the clock semantics for defining a natural con-
catenation operation. However, research in the real-time community focuses on
timed languages rather than clock languages. In this section, we show that a
Kleene-Schützenberger theorem can be given for the corresponding class of fps,
so-called timed series.

Timed Series. An fps S : (Σ × �≥0)∗ → K is called a timed series. We
denote the set of timed series by K〈〈(Σ × �≥0)∗〉〉. We say that a timed series
S ∈ K〈〈(Σ × �≥0)∗〉〉 is recognizable if there is a WTA A such that S = ‖A‖T .
The set of recognizable timed series will be denoted by Krec〈〈(Σ × �≥0)∗〉〉.

Projection. The use of timed semantics rather than clock semantics sacri-
fices some significant information concerning the values of the clock variables
that precludes us from defining the notion of rationality for timed series in the
same way as for clock series. Therefore, we use the approach of Bouyer and
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Petit [16], and introduce a projection that maps clock series to timed series.
Let π : (�1+n

≥0 )(Σ × �
1+n
≥0 )∗ → (Σ × �≥0)∗ be the partial function defined by

π((t0, ν0)(σ1, t1, ν1)...(σk, tk, νk)) = (σ1, t1)...(σk, tk) if (t0, ν0) = (0, 0n), unde-
fined otherwise. We extend π to a function π̄ : Krec

n 〈〈Σ,�≥0〉〉 → Krec〈〈(Σ ×
�≥0)∗〉〉 : S �→ π̄(S) where

(π̄(S), wT ) =
∑

wC∈(�1+n
≥0 )(Σ×�

1+n
≥0 )∗

π(wC )=wT

(S, wC)

for any timed word wT ∈ (Σ × �≥0)∗. Notice that the sum in the equation is
finite: for any recognizable timed word, there is only a finite number of n-clock
words wC in π−1(wT ) such that (‖A‖, wC) �= 0, because there is only a finite
number of runs on any clock word wC .

Rational Timed Series. A timed series S ∈ K〈〈(Σ × �≥0)∗〉〉 is rational if
it can be defined by a single application of π̄ to a rational n-clock series T ∈
Krat

n 〈〈Σ,�≥0〉〉, i.e., S = π̄(T ). We use Krat〈〈(Σ × �≥0)∗〉〉 to mean the set of
rational timed series.

The following lemma gives the relation between recognizable timed series and
recognizable clock series.

Lemma 13. Let A be a WTA and wT ∈ (Σ × �≥0)∗ be a timed word. Then
(‖A‖T , wT ) =

(
π̄(‖A‖C), wT

)
.

Corollary 2. Krat〈〈(Σ × �≥0)∗〉〉 = Krec〈〈(Σ × �≥0)∗〉〉.

Proof. The definition of rational timed series and Lemma 13 ensure that both
rational and recognizable timed series correspond to a single application of π̄ to
a rational (recognizable, respectively) n-clock series. This and Theorem 1 imply
the result.

9 Conclusion

We have presented a new definition of WTA for modelling consumption of re-
sources, and we have obtained a Kleene-Schützenberger theorem. Our definition
over a semiring is more general than definitions given in the literature so far
and emphasizes the relation to weighted automata. The Kleene-Schützenberger
theorem for WTA provides an alternative characterization of the possible be-
haviours of WTA. The crucial point for obtaining this result was to find new
normalization techniques that allow for the construction of Cauchy product- and
Kleene star-WTA. We point out that due to the cost functions assigned to the
locations it is not possible to use standard normalization techniques for weighted
automata.

Apart from being a fundamental theoretical result, Kleene’s theorem is also
of practical interest. Kleene’s theorem for the set of regular languages is used
for automata-based verification purposes: the rational expression is considered
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to be the specification of the system, which, by the Kleene theorem, can be
transformed into an equivalent finite automaton. It is a fascinating challenge to
investigate whether our result can be used in the same manner.

In our paper, we have shown that WTA are closed under addition, Cauchy
product and Kleene star iteration. Moreover, the corresponding constructions are
effective. It is of great practical interest whether we get similar positive results for
other standard properties and decidability problems. In particular, we want to
investigate the emptiness problem, i.e., given a WTA A, whether ‖A‖ = �. There
is a good reason to hope for a positive result, as both the emptiness problem
of timed automata and weighted automata is decidable, where the latter result
applies to weighted automata where the semiring is a field.

Another interesting direction for future work is to consider whether there is
a Büchi-type theorem for WTA, i.e., are weighted timed automata expressively
equivalent to some weighted timed version of monadic second-order logic. This
should combine methods of Wilke [31] and Droste and Gastin [19]. The present
closure results for rational operations provide a promising starting point.
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