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Abstract. Applications to be executed on multipurpose Grids frequently
have very specific resource requirements (platform, kernel, operating sys-
tems, libraries, memory, CPU, etc.) and need to be delegated part of
the resource control. Typical Grid sites offer a limited range of resource
types, inhibiting the range of applications that can be supported; and
Grid node managers are bound to maintain their servers according to
users requirements. To address these problems, we introduce Smart-
Domains, which combines the high performance virtual machine tech-
nology provided by Xen, with automatic deployment of Xen virtual
machines using the SmartFrog configuration and deployment framework.
SmartDomains automatically deploys distributed, synchronized pools of
custom-configured Xen virtual machines and manages them through
their lifecycle as a single coherent distributed execution environment.
SmartDomains uses a representation of the complete distributed re-
sources specifications, including information about how to sequence their
creation and removal. We discuss SmartDomains test cases at CERN for
distributed testbeds and Grid execution nodes.

1 Introduction

Although virtual machine (VM) technology has been around for four decades or
more [II2], there has been a resurgence of interest in recent years as virtualization
has become practical on commodity hardware [3]. It follows that grid resource
management tools will evolve to embrace support for virtual resources and those
that do not will risk obsolescence. Our contribution to this evolution is a tool
called SmartDomains (SD), which automatically supplies custom-configured, dis-
tributed virtual execution environments targeted at running batch Grid jobs or
conducting system tests. In these contexts, it is important to keep independent
the activity on the utilized resources and the maintenance of the backing hard-
ware. SD provides fast, integrated VM control and a representation of resources
to decouple administration and usage. A comparable resource control plane was
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developed in COD [] for nodes provisioning in Beowulf clusters, and in Plan-
etLab [B] for managing networked applications’ points of presence. Scientific
production Grids (e.g. LCG, EGEE, OSG) do not yet optimise back-end re-
source usage with platform virtualization [6], which would add extra dimensions
of flexibility in terms of resource configuration and fractional physical resource
allocation (as illustrated with Tycoon [7]) although Globus Virtual Workspaces
[8] already make interactions with the VM Monitors (VMMSs) a Grid service.

The goal of SD is to provide a simple-to-use yet powerful mechanism for
describing a required set of virtual machine resources, and a fully-automated
deployment system to create VMs according to the supplied description. The
automated deployment engine is a peer-to-peer distributed layer that takes in
resource request descriptions and realises them with the requested sequencing.
The same deployment engine is used to deactivate resource requests and release
their resources, again according to the specified sequencing. Our experience with
this approach leads us to believe that it makes it easier for resource administra-
tors to prepare and control virtual resources, and for developers to create new
functionality.

In this paper we discuss SD from three perspectives: In section [2] we explain
the component technologies used in the SD system. SD usage is explained in
section [3 along with a comparison of other systems using virtualization for re-
source management, and performance measurements are presented. In section [
we illustrate the benefits of SD for resource administration, and its contributions
to research and development in resource management systems.

2 SmartDomains, a Novel Approach

SD builds on Xen [J] for virtualization, and on SmartFrog [L0/TI] for the re-
source description and deployment mechanisms. Using virtualization in batch
execution environments offers resource consumers and resource providers the
following benefits:

Software compatibility: By creating a library of customized VM images, VMs
can easily replicate a very wide range of resource configurations, satisfying
the specific needs of a wide range of applications.

Resource sharing and performance isolation: By running multiple VMs on the
same physical machine, fractional resources can be allocated, with fine-
grained control over the resource consumption of each VM.

Failure isolation: VM failures do not affect the physical node nor other VMs.

We chose the Xen virtualization technology [9] for its high performance,
openness, advanced features (live VM migration, for example) and growing
popularity. Xen allows VMs to run at near native speed, which is critical for
high-performance computing applications. However, the SD approach could be
applied to other virtualization technologies such as VMWare [12], or in-kernel
virtualization approaches such as KVM [I3]. The resource description and de-
ployment mechanism in SD is built using SmartFrog (SF), a Java-based frame-
work for the configuration, deployment and management of distributed software
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systems, developed by HP Labs. In the domain of utility computing, the Sof-
tUDC project [I4] illustrates the use of SF along with VMMs for centralized
management features. SF encourages the separation of the functionality of a
software component from its configuration details. This allows the development
of configuration-driven systems, the behaviour of which, including deployment
choices, can be determined by configuration data. SF provides:

— A rich description language to express the configuration of software compo-
nents (pieces of software to be placed on distributed hosts), and to express
their orchestration at run-time using various composition components.

— A deployment engine formed from a distributed, peer-to-peer network of SF
daemons. The deployment engine interprets the description language, dis-
patches software component deployment and management actions to local
or remote daemons, checks liveness and maintains dependencies and refer-
ences for attribute lookup and remote method invocation.

A domain is a running Xen virtual machine. SD defines a set of SF components
that configure, monitor, deploy and manage Xen virtual machines. A user sub-
mits a description of the distributed environment he requires, specifying with
complete freedom the kernels, filesystem images (distribution, libraries), com-
puting resources (memory, CPU, hard drive size, etc), and orchestration details
(e.g., the deployment sequence). SD automatically deploys the description and
manages the deployment process until the resources are no longer required. Di-
rect access to the physical nodes or to the Xen VMMs is not necessary. SD
has been used in production since early in its development to create distributed
virtual testbeds for the task of integrating and certifying glite, a major grid
middleware software distribution. This caused SD to support fast deployment of
complex distributed configurations. We are now experiencing its integration in
EGEE production Grid. In this context, SF dynamically boots appropriate exe-
cution environments upon request from a VO, and thus improves the compro-
mise between resource delegation to the user, and control by the node manager.

3 Usage: A Comparative Overview

SD requires users to create descriptions for their virtual resource pools. There
are simple extension and composition mechanisms that make it easy to create a
library of different virtual resource pools, and to share these amongst users. It
is simple to deploy a description, to un-deploy it, and to do so repeatedly. We
compare this approach with other tools.

3.1 Launching a Virtual Pool

To start a deployment and launch a virtual pool, users submit a description with
a single command line, and use another command line to un-deploy (remove)

! Virtual Organization, a federation of Grid users.
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the virtual pool: > sfStart localhost pool vp.sf. The user specifies where
deployment is to be initiated (localhost here), provides a name for identification
at runtime (pool), and provides the description (vp.sf) of resource requirements:
> sfTerminate localhost pool. Behavior on termination is defined in the de-
scription as well; by default it shuts down all virtual domains and cleans up the
physical machines to return them to their initial state.

SD is distinctive in that it reduces the virtual resource management bur-
den to the simplicity of an “on/off” button. It can automatically deploy the
appropriate virtual resources on grid sites to handle incoming jobs or job work-
flows, or it can be used for repetitive, varied testbed setups for quality assurance
tasks. A number of advanced enterprise resource management systems (Plat-
form VM Orchestrator [15], Cassat Collage [16], OpenQRM [I7], DynamicOE
[18]) also leverage virtualization, but generally for a different purpose: they let
the site administrator flexibly allocate computer center resources across long-
lived applications, typically addressing resource utilization and high-availability
concerns. Open source virtualization management projects (Virtual Workspaces,
GPE, Enomalism) focus on presenting the VMM control via a variety of different
interfaces. All these systems makes VMMs remotely accessible. SD development
began with many of these ideas in mind, but its evolution was driven by spe-
cific requirements emerging from the CERN computing environment. Hence we
focused on building a highly-configurable, highly-automated system that mini-
mizes user interaction.

3.2 Describing a Virtual Pool

A single logical description specifies the actions that the distributed deployment
system will take in order to deploy, and un-deploy, the requested virtual resource
pool. The only current, known limitation to the run-time, distributed scope of a
SD description is the presence of firewalls that block Java RMI communication,
which is used for peer-to-peer communication by the SF daemons. A virtual re-
source pool deployment can vary in scale from one host to a complete data center.
The RMI limitation will be overcome in future implementations by substituting
RMI for a more firewall-friendly protocol, such as REST-based communication
over HTTP. SD descriptions permit all possible configurations allowed by the
Xen VMM, expressed as attribute valuedd. It differs in this respect from Ama-
zon EC2, which provides fixed virtual machine resource configurations, and is
elastic only in terms of the number of machines. However, like Xenoservers [19],
EC2 does let users upload their own VM images. In Tycoon, it is the resource
provider that decides what image is used. SD is linked to OSFarm[20] for custom
image generation. In addition to configuring a domain, attributes define other
behaviors, such as saving the image after use, compressing / uncompressing it.
For ease of use, however, almost all attributes have default values. As a conse-
quence, describing a single virtual domain with SD requires less knowledge than

2 For brevity, they do not appear on figure [[l For a full list, please see the tutorial:
www.cern.ch/smartdomains.
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sfSyncTerminate true;

PhyslcalHost extends Compound {
myShell extends BashShell;

sfConfig extends Compound {
sfSyncTerminate true;

computerl extends PhysicalHost {
. sfProcessHost "PhysHostOl.cern.ch”;

loop extends LoopbackStorageBackend {
shell LAZY ATTRIB myShell;
domainName "domainLoopback";

. baseImage "/data/xen/51c3—smartfr(
}
B . domainl extends DefaultXenDomain {
domainName "domainLoopback";
ip "123.456.789.011";

. hostname "PhysHostO1-doml";

. storageBackend LAZY ATTRIB loop;
}

=. . lvm extends LVMStorageBackend {

shell LAZY ATTRIB myShell
domainName "domainLVM"

. baseImage "/data/xen/slcE—smartfr(
}
=N . domain2 extends DefaultXenDomain {
domainName "domainLVM";

ip "123.456.789.012";

hostname "PhysHostO1-dom2";
storageBackend LAZY ATTRIB lvm;

}
=N computer2 extends PhysicalHost {
sfProcessHost "PhysHost022.cern.ch";

Fig. 1. Description with minimal configuration

writing a Xen configuration file. The description language lets the user configure
how virtual machines should be synchronized (on figure [l Compound is an ex-
ample of synchronization type). It addresses the need for lifecycle management
mechanisms cited on the Xen road-map [21I], and is necessary for distributed
batch jobs and tests. A management console provides a view of deployed vir-
tual resource pools at runtime, and lets users update their configuration. For
example, to change the frequency of virtual domains liveness checking, change
memory allocation, or alter whether the image will be saved after shutdown.

3.3 Measurements and Future Work on Performance

Our measurements show that SD overhead is negligible on modern systems, for
a considerable gain in resource flexibility. Our first tests with 48 CPU-intensive
benchmark runs did not show any significant overhead introduced by SD. We
found only a 0.25% difference in minimum elapsed times between these configu-
rations: no liveness checking and liveness checking every 2 seconds, and between
checks every 2 and 10 seconds. We monitored memory consumption in different
scenarios (figure B)): a single deployment shows that an idle SD daemon needs
about 20MB, and booting and terminating a first VM requires about 3 more

(We did identify a memory leak: each additional VM requires an addi-
tional 300KB which is never surrendered. For the moment the daemon can just
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Fig. 2. Memory measurements

be restarted after every few hundred deployments.) For successive, cumulative
deployments, we have been restricted by disk space so far. For simultaneous,
multithreaded deployments, currently 8 VMs can be booted together on the
same host; this limitation will be removed in the future. As shown on figure [2,
booting 5 VMs simultaneously requires about 24 MB total, and all the VMs
are booted after about 40 seconds. The time to change an environment is the
same as VMPlants’[22] best case, a complementary work that minimizes software
installation time on VMs.

4 Extending SmartDomains

SD is easy to extend for both resource administrators and developers. Admin-
istrators can easily provide and extend resource pool descriptions, that can be
offered to their users. Developers can easily extend the SD framework through
the addition of new control components.

4.1 Administration: Specialize by Composing and Pre-configuring

The first prerequisite is to install the Xen hypervisor on every physical ma-
chine. Installing SD is then just a matter of downloading the SD distribution
and running an Ant command. It is therefore a simple process to install SD in
large computer installations. And, while SD is targeted at large deployments, the
simplicity of installation makes it quite usable on a single laptop for local VM
deployments. Any computer can trigger the deployment of new virtual resource
on the whole pool of physical hosts of which it is part, and where the virtual
machines actually reside does not matter. There are no a priori privileged hosts
and every node can act as the root for the whole site’s computing power. SD
distributes the work across the distributed computing environment and avoids
bottlenecks and single points of failure. SD makes resource control simple in
cases where it is delegated to a “trusted community” (e.g. physicists working
on the same CERN experiment) or operated inside the same organization. In
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other cases, an additional admission control component may restrict deploy-
ment possibilities, and a user interface will regulate access to this component
to restrict deployments. The extension mechanism (example of domain! extends
XenDomainDefault on figure [Tl) adds or overwrites component attributes that
will be resolved at run-time as configuration data available to the corresponding
class. This lets administrators create partly-configured descriptions which can be
easily extended by users with all the necessary data. The description language
allows attributes to be flexibly linked upwards (ATTRIB, PARENT:), or down-
wards (name: childName: attribute) in the hierarchy. Used in conjunction with
LAZY keyword, this indicates a reference to be used for remote method invoca-
tion; without LAZY, it copies the target of the link. This allows administrators
to define specialized components that populate low-level base components with
user-level attributes. In our use-cases, these mechanisms improved convenience
while using pre-defined templates.

4.2 Development: Enriching SD by Plugging in New Logic and
Composite Structures

The basic SF approach is to describe a hierarchical organisation of software com-
ponents and their configuration data; when deployed, each component interprets
its configuration data, which drives the component’s behavior. This proceeds in
a hierarchy from the root component downwards. We mentioned how important
it is for SD to not require any interaction with the user in order to accept batch
requests for non-interactive jobs or software quality assurance tasks (section B.T]).
Hence automation is vital, and new forms of automation can be developed by
extending the set of SF/SD components. As an example, to dispatch virtual ma-
chines across physical hosts, a Scheduler component chooses the next suitable
host, and a Schedulee wraps in the description the components to be placed.
For fine-grained resource sharing via a bidding system, a definitive advantage
of Tycoon over previous works was the best response algorithm that bids in place
of the user to avoids the need for frequent interaction. Indeed, we contend that
computing resource management should be transparent and automated with-
out restricting functionality. Combining the ability to manipulate descriptions
with the ability to easily add new components allows us to balance function-
ality with automation and transparency. The mechanisms provided in SF for
flexibly composing components at runtime allow developers to easily implement
new behaviors (high availability, scheduling and load balancing mechanisms)
and to apply these to the management of SD virtual resource pools. There is
no restriction in the types of components that can be created, and they can
easily fit into the framework and descriptions. Following the lessons of Planet-
Lab experience[5] SD favors evolutionary design more than clean slate design.
In most other systems from enterprise resource management systems to research
prototypes, adding new functionality can have significant implications for the
whole system structure, thus restricted to some usage policies or available hard-
ware (e.g. the two hard-coded availability classes in DynamicOE). SD allows the
implementation of distributed algorithms involving VMs located on the whole
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peer-to-peer network of trusted daemons, to contrast with Tycoon where real-
time auction for resources is limited to a competition between virtual machines
on a per-physical-host basis [1].

5 Conclusion

SD deploys virtual resource pools for batch jobs or tests. Our use cases at CERN
drove us towards high configurability, and high automation. Interaction is still
possible, but the composable, component-based structure of the system allows
automation functionality to be easily added. Generality is preserved when writ-
ing a description or specializing components, because the extension mechanisms
allow descriptions to be prepared in advance and then customized for every de-
ployment. Configurability, composition and lifecycle management are provided
to the user or administrator through the description language. These are novel
characteristics in a resource management system. they provide the necessary flex-
ibility to decouple administration and usage requirements on the Grid resource
control plane.
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