
Flexible Streaming Infrastructure for UNICORE

Krzysztof Benedyczak1, Aleksander Nowiński2, and Piotr Ba�la1,2

1 Faculty of Mathematics and Computer Science
Nicolaus Copernicus University

Chopina 12/18, 87-100 Toruń, Poland
2 Interdisciplinary Center for Mathematical

and Computational Modelling
Warsaw University

Pawińskiego 5a, 02-106 Warsaw, Poland

Abstract. We present recent innovation in a field of advanced, multi-
purpose streaming solutions for the grid. The described solution is based
on the Unigrids Streaming Framework [7] which has been adopted to the
UNICORE 6 middleware and extended. The main focus of this paper
is the UGSF Data Flow Editor, which is an universal tool for powerful
streaming composition. It has been developed to provide users with a
graphical interface for streaming applications on the grid.

1 Introduction

Data streaming is one of the most advanced services available in the grid. The
data streaming, as well as instrument and application steering, gets significant
attention of the grid users and middleware developers. Unfortunately, there is
still lack of good and stable solutions ready for wide deployment.

The early works on the data streaming in the UNICORE [1] were focused
on solutions dedicated to the particular applications. Among others, specialized
approaches based on the SSH and pre-OGSA version of UNICORE have been
developed [2]. Currently SSH tunnels are used in COVS framework [3] to perfom
streaming of visualisation data. However those developments can not be seen as
universal streaming framework, as are limited to concrete applications.

The new version of OGSA [4] and therefore service oriented version of the UNI-
CORE opened the possibility to develop much better solutions. As a result the
UniGrids Streaming Framework (UGSF) has been made available. The UGSF
is a middleware, which serves as an engine for the new generation of UNICORE
streaming services. It contains also a library for the client development.

The UGSF established a new quality in comparison to the solutions developed
for pre-web services versions of UNICORE. The large part of the UGSF - the
UGSF core is not directly operated by the end-users. It contains a number of
stream implementations which can be deployed and used without any additional
effort. However, from the user’s point of view, there were still few problems
in the UGSF. The main one is lack of user-friendly, graphical tools to access
the streaming services. The development of such tools was limited either to the

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 94–103, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Flexible Streaming Infrastructure for UNICORE 95

programming from scratch1 or to use GPE GridBeans technology [5]. The first
solution is obviously hard, while the second one could be efficiently used only
for concrete streaming scenarios.

The shortcomings of the existing solution motivated us to start the develop-
ment of the UGSF Data Flow Client. It can be considered as an alternative to
the UGSF clients, which have been developed in the GridBeans technology. The
UGSF Data Flow Client can be seen as a streaming counterpart of the GPE
Expert Client, which allows for composing arbitrary live stream connections
instead of building jobs workflows.

In this paper we present the UGSF platform and describe the Data Flow
Client. The detailed discussion of the plugin interface is performed. Example
applications are presented in the second part. The final part of the paper de-
scribes ongoing and future developments.

2 The UGSF Platform

The aim of the UniGrids Streaming Framework (UGSF) is the provision of a
direct data streaming for applications. The main part of UGSF is UGSF core,
which is a middleware that allows developers to create dedicated streaming ser-
vices. Every system based on the UGSF will use the core together with some
application dependent code. The UGSF core provides basic functionality com-
mon for all streaming applications. This includes a creation or a shut down of a
connection. UGSF contains also a large group of versatile software pieces which
can be reused when creating actual implementations of streaming services. A
good example is a component which allows for locating UNICORE job’s work-
ing directory.

The detailed UGSF architecture is presented elsewhere [6] and here we will
introduce its brief overview focused on the basic elements. The UGSF is built
based on the fundamental concept of stream. A Stream is a logical entity that
encapsulates some functionality on server-side. This functionality can be:

1. production of data (by any means, e.g. importing it, reading from a file or
even creating it)

2. consumption of data (any kind of destination like file export to another
streaming system)

3. data processing (filtering, changing data format, etc.)

The stream defines at least one of input ports, output ports or bidirectional
ports. Those represent possibility to connect to different UGSF streams or ordi-
nary clients. The stream can have many ports, with different characteristics (list
of allowed formats is a good example of stream characteristics). It can also per-
form many logical data transfers - “streamings” in common sense. Every logical

1 “Programming from scratch” refers here to the GUI part of such applications. The
UGSF provides client-side library, which simplifies development of the logic of the
application. Nevertheless, significant programming skills are necessary.

96 K. Benedyczak, A. Nowiński, and P. Ba�la

Fig. 1. The general architecture of UGSF

data transfer, started or ended at port of the stream is called a flow. To give
an example: “Theora video decompressing stream” can have two flows; one in-
put which accepts compressed Theora video, and one output flow, that transfers
raw video frames. In this example the stream has defined data processing while
neither production nor consumption of data (as defined above) are present. The
implementation that provides defined functionality is called a stream implemen-
tation. Usage of the stream implementation requires creation of a corresponding
resource which is called a stream instance.

The UGSF streams (or better streams implementations) have a metadata at-
tached. For every flow there are defined capabilities such as reconnect capability,
supported formats (or protocols) and others. It is possible to specify more than
one format for a single flow as well as to express the only supported formats’
combinations for the all flows of the stream together.

2.1 UGSF Architecture

The UGSF system is based on the WSRF compliant version of the UNICORE,
(version 6) [1]. The first version of UGSF system was developed using UnicoreGS
software [7] as the hosting environment. Recently, the hosting environment was
changed to use mainstream UNICORE 6 server-side components: WSRFLite
and UnicoreX.

The UGSF core consists of a UGSF Web Service part, Streaming Server part
and a library to create clients. The usage of the last component is optional. The
UGSF Web Service takes advantage of WSRF capabilities. It is used to control
a set of available stream types, to create new streams and to manage already
created ones. The Streaming Server part is managed by a UGSF Web Service
and performs streaming. Client library is used to simplify the creation of the
client-side software. Overall architecture is shown in Figure 1.

Flexible Streaming Infrastructure for UNICORE 97

The UGSF core is complemented with stream implementations. Those con-
sists of two server-side parts: streaming server and web service modules. Web
service module implements control operations specific to the stream implemen-
tation. Streaming server module deals with a wire streaming protocol and data
consumption or acquisition. The recent works provided a possibility to add client-
side implementation for the stream implementation. The details are given in the
section 3.

2.2 UGSF Web Service

The UGSF Web Service component consists of two kinds of web services. A base
one (called StreamingFrameworkService) is responsible for connection authoriza-
tion, creation of stream and its setup. During this process the new WS-Resource
(called StreamManagementService) is created by a dedicated web service inter-
face. This WS-Resource acts as a controller of an active streaming connection.

The StreamingFrameworkService is a WS-Resource which maintains list of
StreamManagementServices. The StreamingFrameworkService allows users to
get a list of available stream instances and to set up a connection to the speci-
fied one. The list of both owned and accessible streams is available. In addition,
the StreamingFrameworkService has an administrative interface, which empow-
ers system administrator to enable and disable particular stream types on the
fly. The service reconfiguration such as addition or removal of stream types is
also possible.

For each created stream an instance of the StreamManagementService allows
user to perform universal operations for all streams. This includes shutting the
stream down (by means of WS-Lifetime interface) or getting status and statistics
of the connection. This functionality can be easily enriched by the developer. He
can extend StreamManagementService with additional operations. The enriched
implementations are free to consume any special XML configuration supplied to
the StreamingFrameworkService and required for service setup and creation.

2.3 UGSF Streaming Server

The UGSF Streaming Server is a stand-alone, modular application which per-
forms streaming to and from the target system. The server is tightly connected
with the UGSF Web Service which maintains stream definitions (however UGSF
Web Service can control multiple Streaming Servers without a problem). The
server is modular and configurable.

Streaming Server modules can be divided into two categories: entry point
modules and stream modules. The first kind of modules is responsible for im-
plementation of special handshake protocol used to start streaming connection.
Thanks to the modular architecture there can be many of such protocols avail-
able, even concurrently. An addition of a new one is possible and easy. Currently
HTTP and HTTPS entry modules are available (special connection parameters
are passed in HTTP header).

98 K. Benedyczak, A. Nowiński, and P. Ba�la

The second category of modules is responsible for streaming implementation.
These modules can operate simultaneously in both directions: pushing the data
from a server or pulling to the server. Stream module implements required ele-
ments of functionality presented in section 2. One possible class of streams are
“filtering” streams which provides neither source nor sink for data. The data is
read from a client, then processed and finally written out to a (possibly another)
client.

Integration of the streaming functionality with grid jobs is of great interest
here. The UGSF, among its standard stream modules, supplies visualization
stream implementation. It can stream any kind of file both from and to job’s
USpace determined based on the given UNICORE job’s reference and file’s name.
There is also a set of other implementations available, including TCP tunnels,
UDP over TCP tunnels or multiplexer which clones input into many copies to
name a few.

3 UGSF Data Flow Client

The UGSF Data Flow Client has been designed to provide solid base for creation
of a specialized client applications which have to deal with complex streaming
scenarios, including arbitrary data flow composition. The basic idea was to pro-
vide support for all, or nearly all generic features of UGSF and to support fea-
tures available in sophisticated stream implementations by pluggable modules.
Graphical approach was chosen for manipulating stream instances connections
(i.e. data flow). To be fully functional, Data Flow Client must have possibility
to act as a local endpoint for streaming in addition to control server to server
connections. Local machine should be able to stream data in both directions to
and from UGSF servers.

3.1 Generic Functionality

Data Flow Client manages the user’s keystore which allows access to the grid. As
the first entry point, some sort of resource discovery must be performed to locate
streaming services. This is achieved in the usual manner for the UNICORE 6
— the user has to provide addresses of the registries. The same registry can
be used for both UNICORE and UGSF services. The content of registries is
automatically fetched and UGSF services are enumerated in side panel, called
services panel. User can choose between having all services displayed or only
those which are present in the actually chosen registry.

The stream instances managed by UGSF services are displayed in the same
services panel in the form of a tree. From the context menus the user can create
new instances, and destroy existing ones. While destroying is simple, the creation
of a new stream instance is a more advanced operation and involves configuration
of the instance. The client shows a pop-up dialog similar to shown in fig. 3.
The dialog allows user to choose among all stream types defined in the selected
streaming service. Further on, the user can choose the name for the job, set the

Flexible Streaming Infrastructure for UNICORE 99

Fig. 2. The example of Data Flow Editor usage: Two simple data flows are prepared;
one streams a local video file to a remote grid node, where UGSF filtering stream
decompress the video and pushes it to the input file of the grid job. The job processes
the input and its output is (after compression) sent back to the client, where live results
are presented (optical flow of the input video sequence in this example).

termination time and select initial set of formats to be used. The dialog makes
use of plugins to render GUI for preparation of any stream specific configuration
that is needed.

When stream instance is created, its entry appears in the services panel tree.
From there the stream instance can be added to the main workbench of the
program: the graphical data flow editor. The editor visualizes data flow as a di-
rected graph. Vertexes symbolize stream instances. Every vertex can have multi-
ple ports, i.e. places of edges’ attachment. Edges are used intuitively to represent
stream connections (flows). Each fundamental property of a flow specifies direc-
tion of data transport.

Every stream can have many flows and adequate number of ports. There are
also different kinds of ports: input, output and bidirectional rendered in a slightly
different color at a different side of a vertex.

Usage of a stream instance in the data flow editor is accomplished by context
menus. There are two menus: one for the stream instance to perform stream
manipulation, and another one for every port to invoke operations related to
the particular flows. For example, they allow for creating a new connection. The

100 K. Benedyczak, A. Nowiński, and P. Ba�la

Fig. 3. Dialog used to create a stream instance in Data Flow Client. The parameters
of video compression are set in subpanel which is provided by a plugin. The rest of the
dialog window is generic.

client does not allow to connect two ports (an therefore flows) with incompatible
formats or data transport directions.

An automatic policy setting is used for created connections and on default
only creator can connect to the stream. This leads to the problem whenever one
stream instance created in Data Flow Client has to connect to another instance.
In this case the Data Flow Client sets up permissions behind the scene. The
client fetches the identity of the stream A which initiates connection. In the
next step it changes the authorization policy of the target stream, to accept the
connections with the A.

There is also a possibility to manually control the most of generic features of
the stream from the vertex, port and edge context menus. For example, if the
stream supports multiple formats, which is the generic UGSF feature, it is possi-
ble to change them. The streams in the UGSF allow for choosing a format of the
individual flow or of all flows together. Whenever there are format dependencies,
a change of a format of one flow will affect the format of another.

The UGSF Data Flow Client also provides features to monitor data flow
state. This is the function of a dedicated panel located below the data flow
editor panel. The information about selected element is displayed there. If a
port is selected, then related flow properties are shown including (among others)

Flexible Streaming Infrastructure for UNICORE 101

flow status CONNECTED, DISCONNECTED, statistics of transferred bytes in
any direction, average transfer speed and the time of last activity. The status is
updated either automatically or manually by the user.

The Data Flow Client also provides auto-discovery of data flows. This is nec-
essary to avoid problems, when there are stream instances created by other
clients or in other sessions. The available streaming services allow for doing this
except for the connections between UGSF streams and external clients. The
auto-discovery process can be divided into two parts. The more simple one is
used whenever stream instance is added to the data flow editor. The instance is
checked if it has some active connections. If so, the another side of connection is
determined. If it is already known by the editor, the connection is automatically
added. If it is not present, an “orphaned” connection is drawn to mark that the
stream is used.

There is also a more advanced feature which finds all vertices with orphaned
edges, tries to locate them on the grid (not only among streams in the editor)
the peers and add them to the editor. The process is repeated until no more
orphaned connections exist or there is no known element to be added.

3.2 Plugins

The generic functionality of the UGSF cannot be used without dedicated stream
implementations which offer specialized control and configuration possibilities.
The Streaming Framework Client uses dynamically loaded plugins to manage
stream implementations.

There are cases where plugin for the stream implementation is not needed.
The example is multiplexer stream which does not need any special configuration
because it uses only standard operations of UGSF platform.

The client offers extensibility points for the plugins. Usage of most of them is
optional and then some default values/components are used instead. The UGSF
Data Flow Client can provide:

– GUI to ask for these stream creation parameters which are implementation
dependent. The GUI has to return those parameters. It is used in stream
creation dialog, for example to specify compression parameters for Theora
stream encoding (see fig. 3).

– Menu with operations related to the stream. Such a menu is added to the
context menu of vertex in data flow editor panel.

– Menu with operations applicable to the particular flow of the stream. Such
a menu is attached to an appropriate port menu of the stream.

– Ability to create local endpoints.

Local endpoint feature is designed to allow user’s machine to act as a peer
in a data flow. In the UGSF the description how to connect to the remote
stream is implementation dependant. Implementation provides data to stream
and describes data format or application protocol. Local source or sink of data
needs to be defined as well. This functionality is reserved exclusively for the
plugins.

102 K. Benedyczak, A. Nowiński, and P. Ba�la

When local endpoint is created, it appears in a data flow editor as a vertex
(but of different color than ordinary stream instances). The functionality resem-
bles the simplified stream vertex — there are ports and two kinds of context
menus. The only difference is that the contents of the menus are coming nearly
exclusively from plugin implementation.

To give an example, the IVis stream used to stream files to/from UNICORE
job work directory allows for creating local endpoint. This endpoint offers two
features activated in its context menu: to create output flow and to create input
flow. In the first case local file needs to be specified for streaming it out. In the
latter case, the name of a local file to store streamed data is required.

4 Related Work

In general there are few general frameworks which integrate computing grid in-
frastructure with advanced streaming capabilities and flexible data flow creation.

In the case of UNICORE platform there is no such solution known to the
authors. However frameworks that offers (some) streaming capabilities exist. One
example is COVS framework [3]. It’s aim is to support online visualisation and
steering of scientific applications run on the grid, with collaboration support.
The COVS implementation uses VISIT library [8] as underlying technology.
Therefore COVS application is available only for VISIT enabled software. The
COVS framework uses SSH to tunnel VISIT protocol and extedns it with web
service management capabilities. The data flow is fixed: one application run on
the grid node can be steered and visualised by one or more end-users. The UGSF
approach to the streaming is far more powerful. It does not restrict streaming
to one (eg. SSH) low level protocol. Usage of other protocols can bring large
performance gain, especially when encryption is not required. UGSF allows for
client ↔ server communication as COVS does, but also for server ↔ server. Last
but not least, UGSF can be used with any streaming application run on the grid,
not only those VISIT enabled. In conclusion we can state that UGSF and VISIT
overlap only in small part of functionality. UGSF provides low level mechanism
and COVS could be built on top of it.

The length of this paper doesn’t allow for performing through comparison with
streaming frameworks for other than UNICORE grid platforms as NaradaBro-
kering [9], GridKit [10] or GATES [11]. However we can state here that, whilst
most of such platforms offers very extensive features in case of streaming itself,
their integration with computational grid is very limmited. Also the visual data
flow editor described in this paper is a significant advantage of UGSF compared
to other solutions.

5 Conclusions and Future Work

The presented solution is a big step forward in providing streaming capabilities
for UNICORE. It is a convenient and easy base to be used for universal stream
composition.

Flexible Streaming Infrastructure for UNICORE 103

Some of the presented streaming features can be performed using standard
UNICORE technology such as GridBeans and UNICORE Clients. This is not
possible for special cases, where user wants to execute workflow and stream data
between tasks executed on the different target systems. With the UGSF Data
Flow client, such task can be built with a few mouse clicks.

The solution presented here solves the most important problems related to the
data streaming in the grid but needs some further development. One of the im-
portant features is possibility to save and restore data flow composition, which
is different from saving graphical representation of workflow as it can involve
many complicated situations. One example is recreation of already destroyed
stream instances and connections. This might require development of the dedi-
cated service acting as data stream broker. The another required feature is UGSF
administrative interface, which will allow to define stream types and deploy and
manage streaming services. Such work is now in progress.

This work was partially supported by European Commission under IST grant
UniGrids (No. 004279).

References

1. UNICORE project (May 2007), http://sourceforge.net/projects/unicore
2. Benedyczak, K., Nowiński, A., Nowiński, K., Ba�la, P.: Real-Time Visualisation in

the Grid Using UNICORE Middleware. In: Wyrzykowski, R., Dongarra, J., Meyer,
N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 608–615. Springer,
Heidelberg (2006)

3. Riedel, M. et al: Requirements and Design of a Collaborative Online Visualization
and Steering Framework for Grid and e-Science infrastructures. German e-Science
Conference, (May 2007)

4. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration. Globus Project,
2002 (May 2007),
http://www.globus.org/alliance/publications/papers/ogsa.pdf

5. GPE4GTK project (May 2007),
http://gpe4gtk.sourceforge.net

6. Benedyczak, K., Nowinski, A., Nowinski, K., Bala, P.: UniGrids Streaming Frame-
work. In: K̊agström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds.) PARA
2006. LNCS, vol. 4699, Springer, Heidelberg (2007)

7. UniGrids project (May 2007), http://www.unigrids.org
8. Visualization Interface Toolkit (May 2007),

http://www.fz-juelich.de/zam/visit
9. Pallickara, S., Fox, G.: NaradaBrokering: A Distributed Middleware Framework

and Architecture for Enabling Durable Peer-to-Peer Grids. In: Endler, M., Schmidt,
D.C. (eds.) Middleware 2003. LNCS, vol. 2672, pp. 41–61. Springer, Heidelberg
(2003)

10. Grace, P., et al.: GRIDKIT: Pluggable Overlay Networks for Grid Computing. In:
Meersman, R., Tari, Z. (eds.) CoopIS/DOA/ODBASE (2). LNCS, vol. 3291, pp.
1463–1481. Springer, Heidelberg (2004)

11. Chen, L., Reddy, K., Agrawal, G.: GATES: A Grid-Based Middleware for Process-
ing Distributed Data Streams. In: HPDC, IEEE Computer Society, Los Alamitos
(2004)

http://sourceforge.net/projects/unicore
http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://gpe4gtk.sourceforge.net
http://www.unigrids.org
http://www.fz-juelich.de/zam/visit

	Flexible Streaming Infrastructure for UNICORE
	Introduction
	The UGSF Platform
	UGSF Architecture
	UGSF Web Service
	UGSF Streaming Server

	UGSF Data Flow Client
	Generic Functionality
	Plugins

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

