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Abstract. The vector decomposition problem (VDP) has been pro-
posed as a computational problem on which to base the security of public
key cryptosystems. We give a generalisation and simplification of the re-
sults of Yoshida on the VDP. We then show that, for the supersingular
elliptic curves which can be used in practice, the VDP is equivalent to the
computational Diffie-Hellman problem (CDH) in a cyclic group. For the
broader class of pairing-friendly elliptic curves we relate VDP to various
co-CDH problems and also to a generalised discrete logarithm problem
2-DL which in turn is often related to discrete logarithm problems in
cyclic groups.
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1 Introduction

The vector decomposition problem (VDP) is a computational problem in non-
cyclic groups G (see Section 2 for the definition of this problem). It was intro-
duced by Yoshida [22,23] as an alternative to the discrete logarithm or Diffie-
Hellman problems for the design of cryptographic systems. Yoshida proved that
if certain conditions hold then the VDP is at least as hard as the computational
Diffie-Hellman problem (CDH) in a certain cyclic subgroup G1 of G. Since the
CDH in G1 may be hard, it follows that VDP may be hard, and so it is a
potentially useful problem on which to base public key cryptography. Indeed,
cryptosystems based on the VDP have been proposed in [22,23,10].

As with any new computational problem in cryptography, it is important to un-
derstand the hardness of VDP if one is to use it in practice. Apart from the re-
sult of Yoshida, there is no discussion in the literature of the difficulty of the VDP.
Hence, it is an open problem to determine the precise security level of the VDP and
thus to evaluate the security/performance of cryptosystemsbased on it. That is the
primary motivation of this paper.
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We prove that the VDP in G is equivalent with certain co-CDH problems in
G if a mild condition holds. A corollary is that CDH ≤ VDP for a much larger
class of groups than considered by Yoshida. We then prove that VDP ≤ CDH
for groups satisfying a condition similar to that considered by Yoshida (namely,
existence of what we call a “distortion eigenvector base”). We show that all the
supersingular elliptic curves which can be used in practice satisfy this condition.
It follows that CDH and VDP are equivalent in practice for supersingular curves.
We also prove this equivalence for the non-supersingular genus 2 curves proposed
by Duursma and Kiyavasch [9]. Our results therefore completely resolve the issue
of the difficulty of the VDP in the groups considered by [22,23,9,10].

Duursma and Park [10] proposed a signature scheme based on VDP. Our
results imply that their signature scheme has no security advantages over sys-
tems based on CDH or DLP. One can therefore compare the performance of the
scheme in [10] with, say, Schnorr signatures and deduce that their scheme has
no advantages in practice.

To summarise the paper: the main definitions and results are in Section 2.
Section 3 proves that distortion eigenvector bases exist for the supersingular el-
liptic curves which can be used in practice. Section 4 explains how our conditions
relate to the definitions given by Yoshida. In Section 5 we review possible con-
structions of non-cyclic groups for cryptography. Finally, Section 6 gives some
methods to reduce the VDP to various generalised discrete logarithm problems.

2 The Vector Decomposition Problem and Relations
with CDH

Let r > 3 be a prime. The vector decomposition problem is usually expressed
in terms of a 2-dimensional vector space over Fr. However, it has currently only
been instantiated on subgroups of exponent r of the divisor class group of a curve
over a finite field. Hence, in this paper we use a group-theoretic formulation.

Throughout the paper G will be an abelian group of exponent r and order
r2 (i.e., G is isomorphic to (Z/rZ) × (Z/rZ)). We assume implicitly that G
can be represented compactly and that the group operation can be computed
in polynomial time. For examples of such groups see Section 5. We write such
groups additively and use capital letters P, Q, R for elements of G. We use the
notation 〈P1, . . . , Pn〉 for the subgroup of G generated by {P1, . . . , Pn}. We call
a pair (P1, P2) a base for G if it generates G, i.e. each element in Q ∈ G can be
uniquely written as a linear combination in P1 and P2.

If A and B are computational problems then we denote Turing reduction of A
to B by A ≤ B. This means that there is a polynomial time algorithm for solving
problem A given access to an oracle to solve problem B. We call such a reduction
tight if the probability of success of algorithm A is at least the probability of
success of oracle B.

Definition 1. The vector decomposition problem (VDP): given a base
(P1, P2) for G and an element Q ∈ G, compute an element R ∈ G such that
R ∈ 〈P1〉 and Q − R ∈ 〈P2〉.
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For a fixed base (P1, P2) we define VDP(P1,P2) as: given Q ∈ G find R as
above.

Clearly, such an element R is unique and if we write Q = aP1 + bP2 for unique
a, b ∈ Z/rZ then R = aP1. We stress that an algorithm to solve the vector
decomposition problem should take as input a triple (P1, P2, Q) and output a
point R such that R ∈ 〈P1〉 and Q − R ∈ 〈P2〉. The VDP conjecture is that
there exist families of groups for which the VDP is hard in the sense that there
is no polynomial time algorithm which succeeds in solving the VDP on groups
in the family with non-negligible probability over all possible input triples.

Yoshida proved that CDH ≤ VDP under certain conditions (see below). This
suggests that VDP can be a hard problem. Our main goal in this paper is to
give results in the other direction. As pointed out by an anonymous referee, an
easy example of such a result can be obtained in the direct product of a cyclic
group.

Definition 2. Let G1 be a cyclic group of order r. The computational Diffie-
Hellman problem CDH(G1) is: given P, aP, bP ∈ G1, compute abP .

Lemma 1. Let G1 be a cyclic group of prime order r and let G = G1 × G1. If
one can solve the VDP in G then one can solve CDH in G1.

Proof. Let P, aP, bP be the input CDH problem. Let P1 = (P, aP ), P2 = (0, P )
and Q = (bP, rP ) for a random integer r. Note that Q = bP1 + (r − ab)P2 so
solving the VDP instance (P1, P2, Q) gives R = bP1 = (bP, abP ) and extracting
the second component solves CDH. �

The literature on the VDP seems to contain only three examples of suitable
groups. Precisely, Yoshida [23] suggests the supersingular elliptic curve y2 =
x3 + 1 (see Example 1 below) and Duursma-Kiyavash [9] suggest two non-
supersingular genus 2 curves. However, it is obvious that one could use any
pairing-friendly elliptic curve for applications based on the VDP.

We remark that VDP does not seem to trivially be random self-reducible. In
other words, if we have an algorithm A which solves VDP for some non-negligible
proportion of instances then it is not trivial to convert A into an algorithm which
solves VDP with overwhelming probability over all instances. However, we show
in Corollary 2 that one can obtain random self-reducibility for the VDP.

The following definition is the key concept which underlies most of the results
in the paper.

Definition 3. Let G be a group of exponent r and order r2. Let F : G → G be a
group isomorphism computable in polynomial time. A pair of elements S, T ∈ G
is an eigenvector base with respect to F if G = 〈S, T 〉 and if F (S) = λ1S and
F (T ) = λ2T for some distinct, non-zero λ1, λ2 ∈ Z/rZ.

In practice F will usually be the Frobenius map (more details are given later).
Hence we often abbreviate ‘eigenvector base with respect to F ’ by ‘eigenvector
base’.
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Example 1. A standard example of such a group is as follows: Let p ≡ 3 (mod 4)
be prime and let E : y2 = x3 + x over Fp. Then E is a supersingular elliptic curve
and #E(Fp) = p + 1. Let r > 3 be a prime such that r | (p + 1). Then we can let
G = E[r] ⊆ E(Fp2) be the group of all points on E of order r. Let S be a generator
for E(Fp)[r]. Denote by F the p-power Frobenius map F (x, y) = (xp, yp). Note
that F (S) = S so λ1 = 1. Consider the isomorphism φ defined by φ(x, y) = (x, iy)
where i ∈ Fp2 satisfies i2 = −1. Setting T = φ(S) we have G = 〈S, T 〉 and
F (T ) = −T . Hence (S, T ) is an eigenvector base with respect to F . (Indeed, this
is also a distortion eigenvector base, which will be defined later.)

Proposition 1. The VDP(P1,P2) with respect to a fixed base (P1, P2) is solvable
in polynomial time iff (P1, P2) is an eigenvector base.

Proof. For the proof of the “if” part of the result: let F : G → G be the
group isomorphism as in the definition of eigenvector base. Let α = (λ2 − λ1)−1

(mod r). For i = 1, 2 define the projection map ψi : G → 〈Pi〉 by

ψ1(R) = α(λ2R − F (R)) ; ψ2(R) = α(F (R) − λ1R).

These are efficiently computable group homomorphisms. Note that ψ1(P1) = P1
and ψ1(P2) = 0 and so ψ1 maps to 〈P1〉. Similarly, ψ2 maps to 〈P2〉. Since
Q = ψ1(Q)+ ψ2(Q) for all Q ∈ G and the maps ψ1, ψ2 are easily computable, it
follows that VDP with respect to (P1, P2) is easily solvable.

For the proof of the “only if” part of the result: suppose A is a polynomial
time algorithm to solve VDP(P1,P2). Define

ψ1(Q) = A(Q) and ψ2(Q) = Q − ψ1(Q).

Then ψi (i = 1, 2) are group homomorphisms to 〈Pi〉 which can be computed in
polynomial time. Any linear combination F = λψ1 + λ2ψ2 with distinct, non-
zero λ1, λ2 ∈ Z/rZ has the desired properties so that (P1, P2) is an eigenvector
base. �

The fact that there are easy instances of VDP(P1,P2) does not affect the VDP
conjecture for such curves. The conjecture is that the VDP should be hard for
a randomly chosen input triple from the set G3. In other words, it is permitted
that the VDP be easy for a negligible proportion of triples in G3.

2.1 Diffie-Hellman Problems and Relation with VDP

We recall the co-CDH problem as defined by Boneh, Lynn and Shacham [5].

Definition 4. Let G1 and G2 be cyclic groups of order r. The co-Computational
Diffie-Hellman problem co-CDH(G1, G2) is: Given P, aP ∈ G1 and Q ∈ G2,
compute aQ.

Note that having a perfect algorithm to solve co-CDH is equivalent to being able
to compute a group homomorphism ψ : G1 → G2 such that ψ(P ) = Q.
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Lemma 2. Let G1, G2 be cyclic groups of order r. Then CDH(G1) ≤ (co-
CDH(G1, G2) and co-CDH(G2, G1)).

Proof. Suppose we have oracles to solve both co-CDH problems which succeed
with probability at least ε. Let P, aP, bP be given. Choose a random Q ∈ G2
and a random x ∈ (Z/rZ)∗ and call the co-CDH(G1, G2) oracle on (xP, xaP, Q)
to get aQ with probability at least ε.

Now, choose random x1, x2 ∈ (Z/rZ)∗ and call the co-CDH(G2, G1) oracle on
(x1Q, x1aQ, x2bP ) to get x2abP with probability at least ε. Exponentiating by
x−1

2 gives abP as desired. The probability of success is at least ε2. �
In Lemma 4 we give a converse to the above result if additional conditions hold
(e.g., for supersingular elliptic curves). Note that if one can solve CDH(G1) and
one has a suitable auxiliary elliptic curve for the Maurer reduction [15,16] then
one can solve the DLP in G1 and hence solve co-CDH(G1, G2). Hence it is natural
to conjecture that CDH(G1) and co-CDH(G1, G2) are equivalent. However, it
could conceivably be the case that there exist groups such that (co-CDH(G1, G2)
and co-CDH(G2, G1)) is strictly harder than CDH(G1). It would follow from
Theorem 1 below that VDP is a strictly harder problem than CDH(G1) for
these groups.

The following computational problem is similar to the problem DCDH defined
by Bao et al [2], who also proved equivalence with CDH. For completeness we
give a trivial Lemma which is needed later.

Definition 5. The co-Divisional Computational Diffie-Hellman prob-
lem co-DCDH(G1, G2) is, given (S, aS, T ) for S ∈ G1, T ∈ G2, to compute
a−1T .

Lemma 3. co-DCDH(G1, G2) ≤ co-CDH(G1, G2).

Proof. Given a co-DCDH instance (S, aS, T ) choose uniformly at random x1, x2,
x3 ∈ (Z/rZ)∗ and return (x2x3)−1co-CDH(x1aS, x1x2S, x3T ). Hence, if we can
solve co-CDH with probability at least ε then one can solve co-DCDH with
probability at least ε. �
Yoshida [22,23] showed that CDH ≤ VDP for supersingular elliptic curves hav-
ing endomorphisms satisfying certain conditions. Theorem 1 below gives a major
extension of Yoshida’s result, since it has much weaker conditions and can be
applied to ordinary curves (we give more discussion of this later). Also note that
Yoshida’s result requires a perfect oracle to solve VDP (i.e., one which always
succeeds) whereas our proof allows an oracle with only some non-negligible prob-
ability of success (this is a non-trivial improvement since VDP does not seem to
trivially have random self-reducibility).

Theorem 1. Let G have an eigenvector base (S, T ) and define G1 = 〈S〉, G2 =
〈T 〉. Then VDP is equivalent to (co-CDH(G1, G2) and co-CDH(G2, G1)).

More precisely, if one can solve VDP with probability at least ε then one can
solve (co-CDH(G1, G2) and co-CDH(G2, G1)) with probability at least ε. If one
can solve (co-CDH(G1, G2) and co-CDH(G2, G1)) with probability at least ε then
one can solve VDP with probability at least ε9.
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Proof. First we show that co-CDH(G1, G2) ≤ VDP (the full statement follows
by symmetry). We assume that we have a VDP oracle which succeeds with
probability ε and show that one can solve co-CDH(G1, G2) with probability ε.

Let S, aS, T be given. Choose uniformly at random x1, x2, y1, y2 ∈ (Z/rZ)
such that x1x2 − y1y2 	≡ 0 (mod r). Then (P1 = x1S + y1T, P2 = y2S + x2T )
is a uniformly random base for G. There exist λ, μ ∈ (Z/rZ) such that aS =
λP1 + μP2. One has

aS = λ(x1S + y1T ) + μ(y2S + x2T ) = (λx1 + μy2)S + (λy1 + μx2)T

and so (
x1 y2
y1 x2

)(
λ
μ

)
=

(
a
0

)
. (1)

Calling a VDP oracle on (P1, P2, aS + u1P1 + u2P2) for uniformly random
u1, u2 ∈ (Z/rZ) and subtracting u1P1 from the output gives λP1 = λx1S +λy1T
with probability ε. Using Proposition 1 one can compute R = λy1T .

Equation (1) implies that λ ≡ (x1x2 − y1y2)−1x2a (mod r). It follows that
one can compute aT as

aT = (x1x2 − y1y2)(y1x2)−1R.

This completes the first part of the proof.
For the second part, we assume oracles to solve co-CDH(G1, G2) and co-

CDH(G2, G1) which work with probability at least ε. By Lemma 2 we can also
solve ordinary CDH in 〈S〉 and 〈T 〉 with probability at least ε2. We will show
how to solve VDP with probability at least ε9.

Let (P1, P2, Q) be the input instance of the VDP. Then

Q = aP1 + bP2

for unknown integers (a, b). Our goal is to compute aP1.
There exist (unknown) integers ui,j for 1 ≤ i, j ≤ 2 such that

Pi = u1,iS + u2,iT (2)

and integers (v1, v2) such that Q = v1S+v2T . By Proposition 1, we can compute
u1,iS, u2,iT , v1S and v2T .

Write

U =
(

u1,1 u1,2
u2,1 u2,2

)
.

Since {S, T } and {P1, P2} both generate G, it follows that U is invertible. Clearly,

v1S + v2T = Q = aP1 + bP2 = (au1,1 + bu1,2)S + (au2,1 + bu2,2)T (3)

and so

U

(
a
b

)
=

(
v1
v2

)
.
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Hence, (
a
b

)
= (u1,1u2,2 − u1,2u2,1)−1

(
u2,2 −u1,2

−u2,1 u1,1

)(
v1
v2

)

and so

aP1 = (u1,1u2,2 − u1,2u2,1)−1(u2,2v1 − u1,2v2)(u1,1S + u2,1T ).

Compute u2,2v1T, u1,1u2,2S and u1,2u2,1S using 3 calls to co-CDH oracles
and u1,2v2T using one call to a CDH oracle for 〈T 〉 (which is achieved using 2
calls to co-CDH oracles). Then solve co-DCDH(S, (u1,1u2,2−u1,2u2,1)S, (u2,2v1−
u1,2v2)T ) using Lemma 3 to get aT .

Given S, u1,1S, aT and u2,1T one can compute aP1 with one call to a CDH
oracle for 〈T 〉 and one call to a co-CDH oracle. It follows that we require 5 co-
CDH queries and 2 CDH queries, which means that the algorithm succeeds with
probability at least ε9. �

Corollary 1. Let G be as above and suppose G has an eigenvector base (S, T ).
Let G1 = 〈S〉. Then CDH(G1) ≤ VDP.

More precisely, if one has an oracle to solve VDP with probability at least ε
then one can solve CDH(G1) with probability at least ε2.

Proof. This is immediate from Theorem 1 and Lemma 2. �

Corollary 2. Suppose G has an eigenvector base. Then the VDP has random
self-reducibility.

Proof. The second part of the proof of Theorem 1 shows how to convert a VDP
instance into a number of co-CDH instances. The first part of the proof of Theo-
rem 1 shows how to convert a co-CDH instance into a uniformly random instance
of the VDP in G. Hence, a specific VDP instance in G is reduced to a number
of uniformly random VDP instances in G. �

2.2 Distortion Eigenvector Bases and Equivalence of VDP and
CDH

Definition 6. An eigenvector base (S, T ) is said to be a distortion eigenvec-
tor base if there are group homomorphisms φ1 : 〈S〉 → 〈T 〉 and φ2 : 〈T 〉 → 〈S〉
computable in polynomial time and if an integer d 	≡ 0 (mod r) is given such
that φ2(φ1(S)) = dS.

In Section 3 we will show that the commonly used pairing-friendly supersingular
elliptic curves all have a distortion eigenvector base.

Lemma 4. Let G be as above and suppose G has a distortion eigenvector base
(S, T ). Let G1 = 〈S〉 and G2 = 〈T 〉. Then CDH(G1) is equivalent to co-
CDH(G1, G2) and co-CDH(G2, G1). Moreover, the reductions in both directions
are tight.
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Proof. Suppose we have an oracle to solve CDH with probability at least ε. Given
a co-CDH instance (S, aS, T ) we want to compute aT . Note that φ2(T ) = cS
for some (not necessarily explicitly known) integer c and that φ1(cS) = dT for
known d. Since CDH(S, aS, cS) = acS it follows that the solution to the co-CDH
problem is given by

(d−1 (mod r))φ1(CDH(S, aS, φ2(T ))).

Hence, we can solve co-CDH with probability at least ε (note that CDH and
co-CDH are clearly random self-reducible).

For the converse, suppose S, aS, bS is an instance of CDH(G1). Then one
obtains the co-CDH instance (S, aS, φ1(bS)) and the solution to the CDH is
(d−1 (mod r))φ2(co-CDH(S, aS, φ1(bS))). �

This allows a refinement of Corollary 1.

Corollary 3. Suppose G has a distortion eigenvector base (S, T ) and let G1 =
〈S〉. Suppose one has an oracle to solve VDP with probability at least ε. Then
one can solve CDH(G1) with probability at least ε.

We then obtain one of the main results in the paper, that VDP is equivalent
to CDH in many cases. This is a significant sharpening of Yoshida’s result, and
gives a complete understanding of VDP for supersingular curves.

Corollary 4. Let (S, T ) be a distortion eigenvector base for G. Then VDP is
equivalent to CDH(〈S〉).

Proof. Let G1 = 〈S〉 and G2 = 〈T 〉. Theorem 1 showed VDP equivalent to
co-CDH(G1, G2) and co-CDH(G2, G1) and so the result follows by Lemma 4. �

Note that when given a CDH oracle then the probability of success in Theorem 1
is ε7 instead of ε9.

2.3 An Application of Trapdoor VDP

Proposition 1 shows that VDP is easy for certain bases while Theorem 1 indicates
that VDP is hard in general. Hence it is natural to ask if there is a way to set
up a trapdoor VDP system. We now explain how to do this.

Proposition 2. Let (S, T ) be a distortion eigenvector base for G normalised
such that T = φ1(S). Let u1,1, u1,2, u2,1, u2,2 ∈ Z/rZ be such that u1,1u2,2 −
u1,2u2,1 	≡ 0 (mod r). Let P1 = u1,1S + u2,1T and P2 = u1,2S + u2,2T . Given
any Q ∈ G, if one knows the ui,j then one can solve the VDP of Q to the base
(P1, P2).

Proof. We have T = φ1(S) and replacing φ2 by (d−1 (mod r))φ2 we have
φ2(T ) = S.

Write Q = aP1 + bP2. We are required to compute aP1. Since (S, T ) is an
eigenvector base we can compute v1S and v2T such that Q = v1S+v2T . Using φ1
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and φ2 we can compute v1T and v2S. By the same arguments as in Theorem 1,
writing w = (u1,1u2,2 − u1,2u2,1)−1 (mod r), it follows that

aP1 = w(u2,2v1 − u1,2v2)(u1,1S + u2,1T )
= w(u2,2u1,1v1S + u2,2u2,1v1T − u1,1u1,2v2S − u1,2u2,1v2T )

which is easily computed. �
Note that we do not have a full trapdoor which allows solving any instance
(P1, P2, Q) of the VDP. Instead, we construct an easy base (P1, P2) for the VDP
from an existing easy base (S, T ).

This idea has several cryptographic applications. For example, one can obtain
a public key encryption scheme (having OW-CPA security depending on VDP)
with public key (S, Q = u1,2S +u2,2T ) and where the private key consists of the
ui,j . A message M ∈ 〈S〉 is encrypted as C = M + bQ for random 1 ≤ b < r.

2.4 The Decision Vector Decomposition Problem

As suggested by an anonymous referee, one can consider a decision variant of
the VDP.

Definition 7. The decision vector decomposition problem (DVDP) is:
given (P1, P2, Q, R) to test whether R ∈ 〈P1〉 and (Q − R) ∈ 〈P2〉.

Hence the DVDP is just testing subgroup membership, which is a computational
problem in cyclic groups rather than in G and which may or may not be easy
depending on the groups in question. For example, if G = E[r] for an elliptic
curve then one can test subgroup membership using the Weil pairing (namely,
R ∈ 〈P1〉 if and only if er(P1, R) = 1). Also, if (S, T ) is an eigenvector base with
respect to F then testing subgroup membership is easy (P ∈ 〈S〉 if and only if
F (P ) = λ1P where λ1 is the eigenvalue of F on S).

The decision version of the co-CDH problem is defined as follows [5].

Definition 8. Let G1 and G2 be distinct cyclic groups of order r. The co-
decision Diffie-Hellman problem co-DDH(G1, G2) is: Given S, aS ∈ G1
and T, T ′ ∈ G2 to determine whether or not T ′ = aT .

Note that co-DDH(G1, G2) is trivially equivalent to co-DDH(G2, G1).

Lemma 5. If G1 and G2 are distinct cyclic subgroups of G then co-DDH(G1, G2)
≤ DVDP in G.

Proof. Suppose we have an oracle to solve DVDP and let (S, aS, T, T ′) be the
input co-DDH instance. We assume that 〈S〉∩ 〈T 〉 = {0} and that T ′ ∈ 〈T 〉. Let
b ∈ (Z/rZ) be such that T ′ = bT .

Choose random x1,1, x1,2, x2,1, x2,2, z ∈ (Z/rZ)∗ such that x1,1x2,2−x1,1x2,1 	≡
0 (mod r). Let P1 = x1,1S +x2,1T , P2 = x1,2S +x2,2T , Q = x1,1aS +x2,1T

′ +
zP2 and R = x1,1aS+x2,1T

′ and call the DVDP oracle on (P1, P2, Q, R). If b ≡ a
(mod r) then R ∈ 〈P1〉 and the oracle should answer ‘true’. If b 	≡ a (mod r)
then R 	∈ 〈P1〉 and the oracle should answer ‘false’. �
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One can verify that for the case G = E[r], where DVDP is easily solved using the
Weil pairing, the proof of Lemma 5 leads to the standard method for solving co-
DDH using pairings (note that if G1 and G2 are distinct in E[r] then er(S, T ) 	= 1).

Theorem 2. Let G have an eigenvector base (S, T ) and define G1 = 〈S〉, G2 =
〈T 〉. Then DVDP is equivalent to co-DDH(G1, G2).

Proof. Lemma 5 gives co-DDH(G1, G2) ≤ DVDP. To prove the converse we
show how to solve the subgroup membership problem for any subgroup H =
〈R〉 ⊂ G. If H = 〈S〉 or H = 〈T 〉 then, as mentioned, we can efficiently solve
membership. Hence, we may assume that the projections ψ1(R) and ψ2(R) in
the proof of Proposition 1 are non-trivial. Let P ∈ G. Then P ∈ 〈R〉 if and only
if (ψ1(R), ψ1(P ), ψ2(R), ψ2(P )) is a valid co-DDH(G1, G2) instance. The result
follows. �

One might expect a version of the Theorem 2 without the requirement to have
an eigenvector base. In fact, the ability to test subgroup membership (and hence
solve DVDP) is essentially implicit in the statement of co-DDH: How does one
know that S, aS ∈ G1 and T, T ′ ∈ G2? What is the behaviour of a co-DDH
oracle if any of these conditions does not hold?

3 Existence of Distortion Eigenvector Bases

We have shown that VDP is equivalent to CDH when G has an distortion eigen-
vector base. The goal of this section is to show that all the supersingular elliptic
curves used in practice have a distortion eigenvector basis. The restriction to
“curves used in practice” is because for the case of elliptic curves over Fp we use
an algorithm from [14] whose complexity is exponential in the class number h

of the CM field Q(
√

t2 − 4p). Although this algorithm has exponential complex-
ity in general, it has polynomial complexity if the class number is bounded by a
polynomial in log(p) (for the purposes of this paper let’s insist that h ≤ log(p)2).
Hence the algorithm runs in polynomial time for all curves which can be con-
structed in polynomial time using the CM method (which is all supersingular
curves used in practice).1 See [14] for more discussion of this issue.

We summarise some standard examples of supersingular elliptic curves and
distortion maps φ in Table 1. The triple (α1, α2, α3) in the table means that for
S ∈ E(Fq) and π the q-power Frobenius map we have π(S) = α1S and π(φ(S)) =
α2S + α3φ(S) (this is the notation of Yoshida [23]). Using Proposition 3 below
we can obtain from the table the maps φ1 and φ2 required in Definition 6.
Specifically, for the first row of Table 1 one can take (see Theorem 4 for details)
φ1 = m + φ and φ2 = m + φ2 where m ≡ 2−1 (mod r) (giving d ≡ m2 − m + 1
(mod r), where d is such that φ2(φ1(S)) = dS), for the last row take φ1 = φ and

1 One can construct E such that End(E) is not the maximal order in Q(
√

t2 − 4p).
However, one can use isogenies to reduce to the case where End(E) is maximal, so
throughout the paper we assume this is the case.
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Table 1. Suitable elliptic curves for the Yoshida conditions

E q k φ(x, y) (α1, α2, α3)
y2 = x3 + 1 p 2 (ζ3x, y) where (1, −1, −1)

p ≡ 2 (mod 3) ζ2
3 + ζ3 + 1 = 0

y2 = x3 + x p 2 (−x, iy) where (1, 0, −1)
p ≡ 3 (mod 4) i2 = −1

y2 + y = x3 + x + b 2m 4 (x + ζ2
3 , y + ζ3x + t) (1, 0, −1)

gcd(m, 2) = 1 ζ2
3 + ζ3 + 1 = 0, t2 + t = ζ3

y2 = x3 − x + b 3m 6 (ρ − x, iy) where (1, 0, −1)
gcd(m, 6) = 1 ρ3 − ρ = b, i2 = −1

y2 = x3 + A where p2 3 (γ2xp, uyp) where (1, 0, λ) where
A ∈ Fp2 is a square p ≡ 2 (mod 3) u2 = A/Aq, u ∈ Fp2 λ2 + λ + 1 ≡ 0
but not a cube γ3 = u, γ ∈ Fp6 (mod r)

φ2(x, y) = ((x/γ2)p, (y/u)p) (so d = 1) and for the other three entries one can
take φ1 = φ2 = φ (so d = −1). This shows that all the elliptic curves in Table 1
have a distortion eigenvector base.

A corollary of Theorem 3 below is that for every supersingular elliptic curve
used in practice there are (P, φ, F ) satisfying the Yoshida conditions. Recall
that Duursma and Kiyavash showed that if E is an elliptic curve over a finite
field with a point P and maps φ, F which satisfy the Yoshida conditions (see
Section 4 below) then E is supersingular. Hence our corollary gives a complete
classification of elliptic curves used in practice satisfying the Yoshida conditions.

The restriction to supersingular curves is not surprising: If E is an elliptic
curve with a distortion eigenvector base and if F and the group homomorphisms
φ1, φ2 are endomorphisms of the elliptic curve, then E must be supersingular (F
and φ1 do not commute, so the endomorphism ring is non-commutative).

The case of embedding degree 1 is more subtle. Frobenius acts as the identity,
so for an eigenvector base one must take F to be an endomorphism which is
not in Z[π] (where π is the q-power Frobenius) but which has (at least) two
eigenspaces. Such endomorphisms may or may not exist (see Charles [7]). Dis-
tortion eigenvector bases do not exist when k = 1 since a further endomorphism
is required which does not commute with F or π, and for elliptic curves there
can be no such maps.

We begin with three lemmas to deal with the case of embedding degree 3 (i.e.,
r | #E(Fq) has r | (q3 − 1)). For background in this section see [4,8,19]

Lemma 6. Let E be an elliptic curve over Fq2 with #E(Fq2) = q2 ±q+1. Then
j(E) = 0.

Proof. Let π be the q2-power Frobenius map, which has degree q2 and is purely
inseparable. Since E is supersingular (q divides the trace of Frobenius) it follows
that [q] is also purely inseparable of degree q2. Therefore (see Silverman [19]
Corollary II.2.12), [q] = φπ where φ ∈ End(E). Taking degrees implies that
deg(φ) = 1 and, since π and [q] are defined over Fq2 , it follows that φ is also
defined over Fq2 and so πφ = φπ.
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Substituting q = φπ into the characteristic polynomial of Frobenius gives

0 = π2 ± qπ + q2 = (φ2 ± φ + 1)π2

and hence the automorphism φ satisfies φ2 ± φ + 1 = 0. It follows that ±φ ∈
End(E) is an automorphism of order 3. This implies (see [19] Theorem III.10.1)
that j(E) = 0. �

Lemma 7. Let EA : y2 = x3 +A be an elliptic curve over Fq2 with q = pm such
that p > 3. Then #EA(Fq2) = q2 ± q + 1 if and only if p ≡ 2 (mod 3) and A
is not a cube.

Proof. We sketch the proof; see the full version of the paper for all the details.
It is a standard fact [19] that E is supersingular if and only if p ≡ 2 (mod 3).

Let g be a primitive element of Fq2 . Then EA is isomorphic over Fp2 to one of
the curves Egi : y2 = x3 + gi for 0 ≤ i < 6. We will determine which of these
curves has q2 ± q + 1 points.

It is easy to check that E1 : y2 = x3 + 1 over Fq has q + 1 = pm + 1 points
if m is odd, (pd + 1)2 points if m = 2d where d is odd, and (pd − 1)2 points if
m = 2d where d is even. Hence the characteristic polynomial of Frobenius over
Fq2 is (T ± q)2 and #E1(Fq2) = (q ± 1)2. The quadratic twist Eg3 : y2 = x3 + g3

has (q ∓ 1)2 points over Fq2 .
We consider Eg : y2 = x3 + g over Fq2 . Let φ : Eg → E1 be the isomorphism

φ(x, y) = (αx, βy) where α ∈ Fq6 and β ∈ Fq4 satisfy α3 = g and β2 = g. Let π
be the q2-power Frobenius on Eg and π′ be the q2-power Frobenius on E1. Then
π′ = ∓[q] and so φ−1π′φ = ∓[q]. One can show that π satisfies T 2 ± qT + q2 = 0
and so #Eg(Fq2) = q2 ± q + 1. It then follows that Eg2 , Eg4 and Eg5 also have
q2 ± q + 1 points. �

Lemma 8. Let E be a supersingular elliptic curve over Fq (characteristic > 3).
Let r | #E(Fq) with r > 3 have security parameter 3/2 or 3. Then there is a
distortion map φ on E, with easily computed inverse, such that if P ∈ E(Fq)[r]
then φ(P ) ∈ E(Fq3)[r] is a q-power Frobenius eigevector with eigenvalue q.

Proof. Let π be the q-power Frobenius. Then security parameter 3/2 or 3 implies
that π satisfies π2 ± qπ + q = 0. Waterhouse [21] implies q = p2m where p ≡ 2
(mod 3). Hence, by Lemma 6, E is of the form y2 = x3+A. Further, by Lemma 7,
E is of the form y2 = x3 + A where A ∈ Fq2 is not a cube.

We now define a distortion map on E. Note that A may or may not be a
square, but in either case A/Aq is a square. Denote by u a square root of A/Aq,
and note that u is not a cube. Let γ ∈ Fq6 satisfy γ3 = u and note that γq2

= ζ3γ
for ζ3 ∈ Fq2 such that ζ2

3 + ζ3 + 1 = 0.
Define

φ(x, y) = (γ2xq, uyq).

One can check that if P ∈ E(Fq2) then φ(P ) ∈ E(Fq6 ). Clearly φ and φ−1 are
easily computed.
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It remains to prove that φ(P ) is a Frobenius eigenvector, which we do in
two stages. Let P ∈ E(Fq2)[r], let Q ∈ E(Fq6)[r] be a non-trivial point in the
q-eigenspace of Frobenius, and let π be the q2-power Frobenius on E. One can
show (see the full version of the paper for details) that

πφ(P ) = ζ2
3φ(P ) (4)

where ζ3(x, y) = (ζ3x, y) and ζ2
3 (x, y) = ζ3 ◦ ζ3(x, y) = (ζ2

3x, y). One can then
show that

(π2 + π + 1)(φ(P )) = (ζ2
3 + ζ3 + 1)(φ(P )) = 0

and so φ(P ), ζ3φ(P ) ∈ 〈Q〉 and φ(P ) is a Frobenius eigenvector. �

Theorem 3. Let E be a supersingular elliptic curve over a finite field Fq suitable
for pairing-based cryptography (i.e., with embedding degree 2 ≤ k ≤ 6 and such
that the class number of the field Q(

√
t2 − 4q) is at most log(q)2). Let r > 3 be

prime and coprime to q. Suppose that r | #E(Fq) and that not all points in E[r]
are defined over Fq. Let k be the smallest positive integer such that r | (qk − 1).
Let π be the q-power Frobenius map. Then E[r] has a distortion eigenvector basis
with respect to F = π.

Proof. Let π be the q-power Frobenius. Since r | #E(Fq) and E[r] 	⊆ E(Fq) it
follows from Balasubramanian and Koblitz [1] that k > 1. Hence q 	≡ 1 (mod r).
Furthermore, E[r] has a basis {P, Q} such that π(P ) = P (i.e., P ∈ E(Fq)) and
π(Q) = qQ. It remains to prove the existence of a homomorphism φ : 〈P 〉 → 〈Q〉
for which φ and φ−1 can be computed in polynomial time.

In characteristic 2, there are only finitely many Fq-isomorphism classes of su-
persingular elliptic curves and we have k ≤ 4 (see Menezes [18]). For applications
we take k = 4, in which case we may assume that E is the elliptic curve

E : y2 + y = x3 + x + b

over F2m where b = 0 or 1 and m is odd. The field F24m has elements s, t such
that s2 = s + 1 and t2 = t + s. Following [3] we consider the distortion map
φ(x, y) = (x + s2, y + sx + t). Note that φ and φ−1 are easily computed. It is
immediate that if P ∈ E(F2m) then π2(φ(P )) = −φ(P ). Hence, (P, φ(P )) is a
distortion eigenvector base with respect to F = π2.

To prove the result for F = π suppose π(φ(P )) = aP + bφ(P ) for some
0 ≤ a, b < r. Then −φ(P ) = π(π(φ(P ))) = a(b+1)P +b2φ(P ) and so a(b+1) ≡ 0
(mod r) and b2 ≡ −1 (mod r). It follows that a = 0 and φ(P ) is an eigenvector
for Frobenius (with eigenvalue ±q (mod r)).

In characteristic 3, there are also only finitely many Fq-isomorphism classes of
supersingular elliptic curves and we have k ≤ 6. For cryptographic applications
we take k = 6 and so we may assume that

E : y2 = x3 − x + b

over F3m where b = ±1 and gcd(m, 6) = 1. We consider the distortion map
φ(x, y) = (ρ − x, σy) where σ, ρ ∈ F36 satisfy σ2 = −1 and ρ3 = ρ + b. It
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is easy to check that if P ∈ E(F3m) and if π is the 3m-power Frobenius then
π3(φ(P )) = −φ(P ) so (P, φ(P )) is a distortion eigenvector base with respect to
F = π3. The result also follows for F = π using the same method as used in the
case of characteristic 2: write π(φ(P )) = aP +bφ(P ), then −φ(P ) = π3(φ(P )) =
a(b2 + b + 1)P + b3φ(P ) and so a = 0 and b ≡ q (mod r).

The case k = 3 is of interest when p > 3 satisfies p ≡ 2 (mod 3). The result
is proved in Lemma 8.

Finally, we consider the case k = 2. Galbraith and Rotger [14] have given an
algorithm to construct a distortion map φ for any supersingular elliptic curve E
over Fq where q = pm with k = 2. The running time of the algorithm is poly-
nomial in the running time of the CM method for constructing such an elliptic
curve (and all known constructions of elliptic curves for pairing applications have
small class number CM). Proposition 6.1 of [14] constructs the distortion map
φ =

√
−d in End(E) where d may be taken to be square-free. Then φ is an

isogeny of degree d which may be computed using Algorithm 1 of [14]. If E has
been constructed in polynomial time then we may assume that d is bounded by
a polynomial in log(p) and so this algorithm is polynomial time and it follows
that φ may be computed in polynomial time.

Similarly, the dual isogeny φ̂ (see [19]) can be computed in polynomial time
using an analogous algorithm. Recall that φ̂φ = [d].

Finally, the statement that φ(P ) is a Frobenius eigenvector follows from the
proof of Proposition 6.1 of [14]. The q-power Frobenius lifts to the Galois element
σ in the proof, and φ lifts to an endomorphism Φ satisfying Φσ = −Φ. This
implies πφ(P ) = −φ(P ) = qφ(P ) as required. �

A significant case not covered by the above theorem is the non-supersingular
genus 2 curves proposed by Duursma and Kiyavash [9]. They consider the curves
y2 = x6 −ax3 +1 and y2 = x6 −ax3 −3 over Fp (where p ≡ 2 (mod 3)). Define
the isomorphism φ(x, y) = (ζ3x, y) where ζ3 ∈ Fp2 is a primitive cube root
of 1. Note that φ2 + φ + 1 = 0 in End(Jac(C)). Duursma and Kiyavash show
that these curves satisfy the Yoshida conditions (see below). In particular, if
S ∈ Jac(C)(Fp) is a divisor class of order r and if F is the p-power Frobenius
then F (S) = S and F (φ(S)) = −S − φ(S).

Theorem 4. Let C be one of the Duursma-Kiyavash curves and let notation be
as above. Let m = 2−1 (mod r) and define φ′ = m + φ. Then (S, φ′(S)) is a
distortion eigenvector base.

Proof. It is easy to check (see Proposition 3 below) that Fφ′(S) = −φ′(S). Hence
(S, φ′(S)) is an eigenvector base. Note also that φ′ is an efficiently computable
group homomorphism.

To show that (S, φ′(S)) is a distortion eigenvector base it remains to prove
that there is an efficiently computable homomorphism φ′′ such that φ′′φ = d on
〈S〉. Consider the dual isogeny

m̂ + φ = m + φ̂.
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Since φ̂ = φ2 we have

(m + φ̂)(m + φ) = m2 + m(φ + φ̂) + φ̂φ = m2 − m + 1.

Hence, define d = (m2−m+1) (mod r) and φ′′ = m+φ2 so that φ′′ is efficiently
computable and φ′′φ′ = d on 〈S〉. �

Corollary 4 can therefore be applied to deduce that VDP is equivalent to CDH
for the Duursma-Kiyavash curves.

4 Relation with the Yoshida Conditions

Yoshida showed that CDH ≤ VDP when certain conditions on G are satisfied.
We have shown that CDH ≤ VDP when the group G has an eigenvector base.
In this section we show that Yoshida’s result is a subcase of ours, by showing
that if G satisfies the Yoshida conditions then it has an eigenvector base. First
we recall the conditions introduced by Yoshida in [23].

Definition 9. We say that G satisfies the Yoshida conditions for S ∈ G if
there exist group isomorphisms φ, F : G → G such that:

1. φ and F can be computed in polynomial time;
2. (S, φ(S)) is a base for G
3. Constants α1, α2, α3 ∈ Z/rZ are given, such that α1α2α3 	= 0 and

F (S) = α1S, F (φ(S)) = α2S + α3φ(S).

We remark that we have been unable to find any groups satisfying the Yoshida
conditions with α1 = α3. Indeed, all known examples of groups satisfying the
Yoshida conditions are when G is a subgroup of a divisor class group of a curve
over Fq, P is an element of prime order r defined over the ground field Fq, F is a
Frobenius map and φ is a non-Fq-rational endomorphism of the curve. It follows
that α1 = 1.

Proposition 3. If G satisfies the Yoshida conditions for S then one can calcu-
late T ∈ G such that (S, T ) is an eigenvector base.

Proof. Suppose S, F, φ satisfy the Yoshida conditions.
First suppose that α1 	= α3. Let m = (α3 − α1)−1α2 (mod r) and let φ′ =

m + φ. Then

F (φ′(S)) = F (mS + φ(S)) = α1mS + α2S + α3φ(S)
= (α1m + α2 − α3m)S + α3φ

′(S)
= α3φ

′(S).

It follows that (S, φ′(S)) is an eigenvector base.
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Now we deal with the case α1 = α3 (which possibly never occurs in practice).
Set θ = α−1

2 (mod r), γ = α−1
2 α1 (mod r) and define

ψ(R) = θF (R) − γR

for R ∈ G. It follows that

ψ(S) = (θα1 − γ)S = 0

and
ψ(φ(S)) = θα2S + (θα3 − γ)φ(S) = S.

Consequently, if we take ψ′ = φ ◦ ψ we get that ψ′(S) = 0 and ψ′(φ(S)) = φ(S).
That is, ψ′ is the projection on 〈φ(S)〉 w.r.t. the base (S, φ(S)). So R − ψ′(R)
is the projection of R on 〈S〉 w.r.t. the base (S, φ(S)). Consequently if we take
F ′(R) = λ2ψ

′(R) + λ1(R − ψ′(R)) for any distinct non-zero λ1, λ2 ∈ Z/rZ it
easily follows that (S, φ(S)) is an eigenvector base for F ′ and φ. �

Note that in many cases the above proof yields a distortion eigenvector base.
However, we cannot prove this in all cases since the Yoshida conditions contain
no requirement that the dual isogeny of φ be efficiently computable.

For completeness we show how to transfrom a distortion eigenvector base to
satisfy the Yoshida conditions.

Lemma 9. Let G be a group with homomorphisms φ, F and an eigenvector base
(S, φ(S)). Let φ′ = 1 + φ. Then G together with φ′, F satisfies the Yoshida
conditions.

Proof. Clearly the first two Yoshida conditions hold. For the third, one checks
that

F (φ′(S)) = F (S + φ(S)) = λ1S + λ2φ(S) = (λ1 − λ2)P + λ2φ
′(P )

which completes the proof �

Corollary 5. Let E be any supersingular elliptic curve used in practice as above.
Then one can construct a triple (P, F, φ) satisfying the Yoshida conditions.

5 Non-cyclic Groups

The VDP is defined for any group G of exponent r and order r2. In this sec-
tion we very briefly recall some non-cyclic groups which might be suitable for
cryptography. Recall that the main groups of interest in discrete-logarithm based
cryptography are the multiplicative group of a finite field (which is always cyclic)
and elliptic curves or divisor class groups of curves (which can be non-cyclic).
For background on elliptic curves in cryptography (and pairings) see [4,8].

1. Direct products G = G1 × G2 where G1, G2 are cyclic subgroups of finite
fields, elliptic curves or divisor class groups.
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2. Elliptic curves E over Fq such that the group of points of order r (called
the r-torsion subgroup) is defined over a small degree extension Fqk . Such
curves are automatically ‘pairing-friendly’. There are two cases:
(a) Supersingular curves.
(b) Ordinary curves. There are many methods to generate pairing-friendly

ordinary curves (see [11] for a survey).
3. Subgroups of exponent r and order r2 of the divisor class group of a curve

of genus g ≥ 2 over Fqk . In this case, the full r-torsion is not necessarily
defined over Fqk and so the divisor class group is not necessarily pairing-
friendly. Again, there are two cases.
(a) Supersingular. These curves are necessarily pairing-friendly. There are

many examples of supersingular hyperelliptic curves given in the litera-
ture (see [13]).

(b) Non-supersingular. For example the curves with complex multiplication
presented by Duursma and Kiyavash [9].

4. The subgroup of order r2 in (Z/nZ)∗ where n = pq is a product of two
primes such that r | (p − 1) and r | (q − 1). Care must be taken that r is not
too large, or else it is easy to factor n (see McKee and Pinch [17]).
This case has a very different flavour to the other groups described above,
and the methods of the paper do not seem to apply in this case.

Note that not all of the above groups will necessarily have an eigenvector base.

6 Generalised Discrete Logarithm Problems

We have proved that VDP is equivalent to CDH in a cyclic group for all examples
proposed in the literature. But one might consider VDP in a more general context
where distortion maps φ are not available. Hence we give some results relating
VDP to generalisations of the discrete logarithm problem. As always, G denotes
a group of order r2 and exponent r where r is prime. Due to lack of space, many
of the proofs in this section have removed; they can be found in the full version
of the paper.

We recall the discrete logarithm problem (DLPG1) for a cyclic group G1:
Given P, Q ∈ G1, compute an integer a (if it exists) such that Q = aP . The
discrete logarithm problem has been generalized by many authors in different
ways. For example, if G1 is a cyclic group of prime order and P1, P2 ∈ G1 then
Brands [6] defined the representation problem: Given Q ∈ G1 find (a, b) such
that Q = aP1 + bP2. It is easy to show that the the representation problem in
the cyclic group G1 is equivalent to the DLP in G1.

For groups G of exponent r and order r2 we define the following generalisation
of the discrete logarithm problem.

Definition 10. The computational problem 2-DL is: Given P1, P2, Q ∈ G such
that G = 〈P1, P2〉 compute a pair of integers (a, b) such that Q = aP1 + bP2.

The following three results are straightforward.
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Lemma 10. The computational problem 2-DL is random self-reducible.

Lemma 11. Let G1 be a cyclic subgroup of G. Then DLPG1 ≤ 2-DL.

Theorem 5. Let G be as above. Then VDP ≤ 2-DL.

The computational problems VDP and 2-DL are both defined for non-cyclic
groups. Computational problems in non-cyclic groups have not been studied as
closely as those in cyclic groups. The remainder of this section relates the 2-
DL problem in non-cyclic groups to discrete logarithm problems in one or more
cyclic groups.

Let G1, G2 be cyclic groups of order r. We say that two group homomorphisms
ψi : G → Gi, for i = 1, 2, are independent if kerψ1 ∩kerψ2 = {0}. An example
of independent group homomorphisms are the projection maps in the proof of
Proposition 1.

Theorem 6. Let G and G1 be as above and suppose there are two independent
group homomorphisms ψ1, ψ2 : G → G1 which can be computed in polynomial
time. Then 2-DL is equivalent to DLPG1 .

This result is a special case of the following.

Theorem 7. Let G be as above and let G1, G2 be cyclic groups of order r.
Suppose there are two independent group homomorphisms ψi : G → Gi for
i = 1, 2 which can be computed in polynomial time. Then 2-DL is equivalent to
(DLPG1 and DLPG2).

Proof. It is trivial from Lemma 11 that (DLPG1 and DLPG2) ≤ 2-DL. One can
prove the opposite using essentially the same ideas as those used in the proof of
Theorem 1. �

Corollary 6. If G has an eigenvector base (S, T ) then 2-DL is equivalent to
(DLP〈S〉 and DLP〈T 〉).

Corollary 7. Let G be a group which has a distortion eigenvector base (S, T ).
Let G1 = 〈S〉. Then 2-DL is equivalent to DLPG1 .

Proof. We let ψ1 be as in the proof of Proposition 1 and let ψ2(Q) = ψ1(φ(Q)).
One can check that these are independent homomorphisms to 〈S〉, and so the
result follows from Theorem 6. �

Direct products (case 1 of Section 5) are easy to handle.

Corollary 8. Let G be a direct product of two cyclic groups G1, G2 of prime
order r. Then 2-DL ≤ (DLPG1 and DLPG2).

On ordinary pairing-friendly elliptic curves (i.e., case 2(b) of Section 5) we do
not have distortion maps and so it is not possible to have a distortion eigenvector
base. We now state the obvious fact that the 2-DL can be reduced to the DLP
in a finite field using pairings.
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Theorem 8. Let G be a subgroup of E(Fqk) of exponent r and order r2. Then
r | (qk − 1). Let G1 be the subgroup of r-th roots of unity in F

∗
qk . Then 2-DL ≤

DLPG1 .

In the ordinary genus 2 case (again, case 3(b) of Section 5) there is another
way to potentially attack the 2-DL. One natural approach to constructing a
curve C over Fq whose Jacobian has non-cyclic group order is to choose C such
that there are rational maps ψi : C → Ei (for i = 1, 2) over Fq where Ei are
elliptic curves over Fq. Then the Jacobian of C is isogenous over Fq to E1 × E2
and if r | #Ei(Fq) for i = 1, 2 then r2 divides the order of Jac(C)(Fq). This
approach was used by Duursma and Kiyavash [9]. Since the rational maps ψi

induce explicit isogenies

ψi : Jac(C)(Fq) → Ei(Fq)

for i = 1, 2 one can apply Theorem 7 to reduce the 2-DL to two DLPs in cyclic
groups.

7 Conclusion

We present a thorough analysis of the vector decomposition problem (VDP). We
have shown that, for all the supersingular elliptic curves which could be used in
practice, VDP is equivalent to CDH in a cyclic group. We have also related VDP
to various co-CDH problems and a generalised discrete logarithm problem 2-DL
which in turn is often related to discrete logarithm problems in cyclic groups.
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