Skip to main content

Abstract:

Fatty acids are the building blocks of diverse membrane lipids and therefore are essential for the viability of all cells, except the Archaea where side chains of membrane lipids are isoprenoids. There are multiple examples of fatty acid-derived molecules as signal compounds for communication of cell-to-cell among prokaryotes in one species, interspecies, or even interkingdom (i.e., between prokaryotes and eukaryotes). Fatty acid biosynthesis is catalyzed in most bacteria by a group of highly conserved proteins known as the type II fatty acid synthase (FASII) system. A key protein in this system is the acyl carrier protein (ACP) which acts as carrier of growing acyl chains during biosynthesis and as donor of acyl chains during transfer to target molecules. The Escherichia coli FAS II system is the model pathway of fatty acid biosynthesis in bacteria and mainly the same set of enzymes is present in different bacteria. Variations of the basic set give rise to the diversity of fatty acid composition of each organism. The intrinsic specificity of the acyltransferases is largely responsible for the fatty acid composition of complex lipids and signals molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aguilar PS, de Mendoza D (2006) Control of fatty acid desaturation: A mechanism conserved from bacteria to humans. Mol Microbiol 62: 1507–1514.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez H, Steinbüchel MA (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biot 60: 367–376.

    Article  CAS  Google Scholar 

  • Basu SS, Karbarz MJ, Raetz CR (2002) Expression cloning and characterization of the C28 acyltransferase of lipid A biosynthesis in Rhizobium leguminosarum. J Biol Chem 277: 28959–28971.

    Article  PubMed  CAS  Google Scholar 

  • Choi KH, Kremer L, Besra GS, Rock CO (2000) Identification and substrate specificity of beta-ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. J Biol Chem 275: 28201–28207.

    PubMed  CAS  Google Scholar 

  • Demont-Caulet N, Maillet F, Tailler D, Jacquinet JC, Promé JC, Nicolaou KC, Truchet G, Beau JM, Dénarié J (1999) Nodule-inducing activity of synthetic Sinorhizobium meliloti nodulation factors and related lipo-chitooligosaccharides on alfalfa. Importance of the acyl chain structure. Plant Physiol 120: 83–92.

    Article  PubMed  CAS  Google Scholar 

  • Geiger O, López-Lara IM (2002) Rhizobial acyl carrier proteins and their roles in the formation of bacterial cell-surface components that are required for the development of nitrogen-fixing root nodules on legume hosts. FEMS Microbiol Lett 208: 153–162.

    Article  PubMed  CAS  Google Scholar 

  • Geiger O, Sohlenkamp C, López-Lara IM (2009) Formation of bacterial membrane lipids: pathways, enzymes, reactions. This book, Chapter 70.

    Google Scholar 

  • Gibbons HS, Reynolds CM, Guan Z, Raetz CR (2008) An inner membrane dioxygenase that generates the 2-hydroxymyristate moiety of Salmonella lipid A. Biochemistry 47: 2814–2825.

    Article  PubMed  CAS  Google Scholar 

  • Gould TA, Schweizer HP, Churchill ME (2004) Structure of the Pseudomonas aeruginosa acyl-homoserinelactone synthase LasI. Mol Microbiol 53: 1135–1146.

    Article  PubMed  CAS  Google Scholar 

  • Gunstone FD, Herslöf BG (1992) A lipid glossary. Great Britain : The Oily Press.

    Google Scholar 

  • Holtwick R, Meinhardt F, Keweloh H (1997) Cis-trans isomerization of unsaturated fatty acids: Cloning and sequencing of the cti gene from Pseudomonas putida P8. Appl Environ Microbiol 63: 4292–4297.

    PubMed  CAS  Google Scholar 

  • Jenni S, Leibundgut M, Boehringer D, Frick C, Mikolásek B, Ban N (2007) Structure of fungal fatty acid synthase and implications for iterative substrate shuttling. Science 316: 254–261.

    Article  PubMed  CAS  Google Scholar 

  • Kato JY, Funa N, Watanabe H, Ohnishi Y, Horinouchi S (2007) Biosynthesis of gamma-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. Proc Natl Acad Sci USA 104: 2378–2383.

    Article  PubMed  CAS  Google Scholar 

  • López-Lara IM, Sohlenkamp C, Geiger O (2003) Membrane lipids in plant-associated bacteria: their biosyntheses and possible functions. Mol Plant Microbe Interact 16: 567–579.

    Article  PubMed  Google Scholar 

  • Massengo-Tiassé RP, Cronan JE (2008) Vibrio cholerae FabV defines a new class of enoyl-acyl carrier protein reductase. J Biol Chem 283: 1308–1316.

    Article  PubMed  Google Scholar 

  • Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: Structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev 67: 686–723.

    Article  PubMed  CAS  Google Scholar 

  • Osterhout GJ, Shull VH, Dick JD (1991) Identification of clinical isolates of gram-negative nonfermentative bacteria by an automated cellular fatty acid identification system. J Clin Microbiol 29: 1822–1830.

    PubMed  CAS  Google Scholar 

  • Paoletti L, Lu YJ, Schujman GE, de Mendoza D, Rock CO (2007) Coupling of fatty acid and phospholipid synthesis in Bacillus subtilis. J Bacteriol 189: 5816–5824.

    Article  PubMed  CAS  Google Scholar 

  • Pappas KM, Weingart CL, Winans SC (2004) Chemical communication in proteobacteria: Biochemical and structural studies of signal synthases and receptors required for intercellular signalling. Mol Microbiol 53: 755–769.

    Article  PubMed  CAS  Google Scholar 

  • Pugh EL, Kates M (1994) Acylation of proteins of the archaebacteria Halobacterium cutirubrum and Methanobacterium thermoautotrophicum. Biochim Biophys Acta 1196: 38–44.

    Article  PubMed  CAS  Google Scholar 

  • Raetz CR, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in Gram-negative bacteria. Annu Rev Biochem 76: 295–329.

    Article  PubMed  CAS  Google Scholar 

  • Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71: 635–700.

    Article  PubMed  CAS  Google Scholar 

  • Rezwan M, Grau T, Tschumi A, Sander P (2007) Lipoprotein synthesis in mycobacteria. Microbiology 153: 652–658.

    Article  PubMed  CAS  Google Scholar 

  • Ryan RP, Fouhy Y, Garcia BF, Watt SA, Niehaus K, Yang L, Tolker-Nielsen T, Dow JM (2008) Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol Microbiol 68: 75–86.

    Article  PubMed  CAS  Google Scholar 

  • Rock CO (2008) Fatty acids and phospholipids metabolism in prokaryotes. In Biochemistry of lipids, lipoproteins, and membranes, 5th edn. DE Vance, JE Vance (eds.). Amsterdam: Elsevier, pp 59–96.

    Chapter  Google Scholar 

  • Schweizer E, Hofmann J (2004) Microbial type I fatty acid synthases (FAS): Major players in a network of cellular FAS systems. Microbiol Mol Biol R 68: 501–517.

    Article  CAS  Google Scholar 

  • Steinbüchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: Metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1: 1–24.

    Article  Google Scholar 

  • Wang H, Cronan JE (2004) Functional replacement of the FabA and FabB proteins of Escherichia coli fatty acid synthesis by Enterococcus faecalis FabZ and FabF homologues. J Biol Chem 279: 34489–33495.

    Article  PubMed  CAS  Google Scholar 

  • Watson WT, Minogue TD, Val DL, Beck von Bodman S, Churchill MEA (2002) Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol Cell 9: 685–694.

    Article  PubMed  CAS  Google Scholar 

  • White SW, Zheng J, Zhang YM, Rock CO (2005) The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem 74: 791–831.

    Article  PubMed  CAS  Google Scholar 

  • Williams AH, Raetz CR (2007) Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase. P Natl Acad Sci USA 104: 13543–13550.

    Article  CAS  Google Scholar 

  • Zhang YM, Marrakchi H, White SW, Rock CO (2003) The application of computational methods to explore the diversity and structure of bacterial fatty acid synthase. J Lipid Res 44: 1–10.

    Article  PubMed  Google Scholar 

  • Zhang YM, White SW, Rock CO (2006) Inhibiting bacterial fatty acid synthesis. J Biol Chem 281: 17541–17544.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

López-Lara, I.M., Geiger, O. (2010). Formation of Fatty Acids. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_26

Download citation

Publish with us

Policies and ethics