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Abstract. Hamiltonicity, book embeddability, and point-set embedda-
bility of planar graphs are strictly related concepts. We exploit the in-
terplay between these notions to describe colored sets of points and to
design polynomial-time algorithms to embed k-colored planar graphs on
these sets such that the resulting drawings have O(k) bends per edge.

1 Introduction

Let G be a planar graph with n vertices whose vertex set is partitioned into
subsets Vy, ..., Vi1 for some positive integer 1 < k < n and let S be a set of n
distinct points in the plane partitioned into subsets S, . .., Sx—1 with |V;| = |S;]
(0 < i < k—1). We say that each index 7 is a color, G is a k-colored planar
graph, and S is a k-colored set of points compatible with G. This paper studies
the problem of computing a k-colored point-set embedding of G on 5, i.e. a
crossing-free drawing of G such that each vertex of V; is mapped to a distinct
point of S;. The problem has received considerable interest in the literature(see,
e.g., [IIBIEI6IRIG]), also motivated by the observation that these types of draw-
ings naturally model semantic constraints about the placement of the vertices.
Particular attention has been devoted to the curve complexity of the computed
drawings, i.e. the maximum number of bends along each edge. Namely, reducing
the number of bends along the edges is a fundamental optimization goal when
computing aesthetically pleasing drawings of graphs (see, e.g., [2/T]).

Two key references about k-colored point-set embeddings are the works by
Kaufmann and Wiese [§] and by Pach and Wenger [9]. Kaufmann and Wiese [§]
study the monochromatic version of the problem (i.e. the case when k = 1) and
prove that a planar graph with n vertices always admits a point-set embedding
with at most two bends per edge on any set of n distinct points in the plane;
they also proved that two bends per edge are necessary for some planar graphs
and some configurations of points. Pach and Wenger [9] study the n-chromatic
version of the problem and show that a linear number of bends is always sufficient
to compute an n-colored point-set embedding of an n-colored planar graph G
on any n-colored set of points compatible with G; also they show that (2(n)
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bends per edge may be necessary even for n-colored paths when the points are
in convex position.

The gap between constant curve complexity for k£ = 1 and linear curve com-
plexity for k = n motivates the study of other values of k. In [5] it has been
proved that there exists a 2-colored planar graph G and a 2-colored set of points
S compatible with G such that any 2-colored points set embedding of G on S has
at least one edge with (2(n) bends. This result has been extended in [I], where
it is proved that for k-colored point set embeddings such that 3 < k < n, there
may be cases requiring {2(n) bends on 2(n) edges. The two counterexamples
presented in [5] and [I] are either tri-connected or have outerplanarity O(n),
and thus a natural research direction is concerned with the curve complexity of
k-colored point set embeddings for (sub)-families of planar graphs that have a
simpler structure. In [3] it is proved that the curve complexity of 3-colored point-
set embeddings may not be constant even for 3-colored outerplanar graphs.

These negative results suggest two different research directions, both devoted
to studying k-colored point-set embeddings with curve complexity that does not
depend on the input size. From one side, instead of restricting the classes of
graphs to be drawn one can focus on special configurations of k-colored sets
of points that make it possible to compute k-colored point-set embeddings with
constant curve complexity for any k-colored planar graph. On the other side, one
can ask what is the size of a universal k-colored set of points that guarantees
curve complexity independent of n for any k-colored planar graph. This last
question can be asked both in the case that the points have real coordinates or
by restricting them to form an integer grid. The main results in this paper can
be outlined as follows.

e We study a special type of k-colored point-sets. Namely, let G be any k-
colored planar graph with n vertices (2 < k <n) and let S be a k-colored set of
n points compatible with GG. We show that if S is ordered, i.e. for each color all
points of that color are consecutive along the x-direction, then there exists an
O(nlogn + k n)-time algorithm that computes a k-colored point-set embedding
of G on S with curve complexity at most 3k + 7. This result generalizes to all
k-colored planar graphs a similar result presented in [3] for k-colored outerplanar
graphs and makes it possible to improve a related result of [I].

e We show the existence of k-colored sets of points having linear size and
supporting k-colored point-set embeddings of O(k) curve complexity. Namely,
let Fj be the family of all k-colored planar graphs with n vertices (1 < k < n).
For any G € Fj, and for any k-colored set of points S such that S contains
k n—k?+1 points for each color, there exists an O(nlogn+k n)-time algorithm
that computes a k-colored point-set embedding of G on S with curve complexity
at most 3k + 7. We recall that, even for 2-colored simple paths, a universal 2-
colored set of points that supports straight-line 2-colored point-set embeddings
may need a quadratic number of points [0].

e Since the above result implies a total number of k*n — k3 + k points in S, one
can ask whether n + o(n) points are sufficient to guarantee a curve complexity
that does not depend on n. We give a negative answer to this question for k = 2.
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Namely, let ¢ be any constant such that ¢ > 1. We prove that for k = 2 there exists
aset S of n + 7 points and a 2-colored planar graph G such that any 2-colored
point set embedding of G on S has an edge requiring at least £2(n) bends.

e Finally, we show that every k-colored planar graph with n vertices admits
a k-colored points-set embedding with curve complexity 6k + 5 on a k-colored
grid whose size is O(k n?) x O(k n?). Such k-colored points-set embedding can
be computed in O(k n) time.

The above results are all based on a novel approach to the problem of com-
puting k-colored point-set embeddings of planar graphs. Namely we exploit the
notion of simultaneous k-colored book embedding of a k-colored planar graph and
a k-colored path and show how this notion can be used to compute a suitable
Hamiltonian circuit on the graph; in turn, we use the Hamiltonian circuit to com-
pute a point-set embedding with O(k) curve complexity. For reasons of space
some proofs have been sketched or omitted.

2 Preliminaries

Let G = (V, E) be a graph. A k-coloring of G is a partition {Vo, V1,..., Vi_1}
of V where the integers 0,1, ...,k — 1 are called colors. In the rest of this section
the index i is 0 < ¢ < k — 1 if not differently specified. For each vertex v € V; we
denote by col(v) the color i of v. A graph G with a k-coloring is called a k-colored
graph. Let S be a set of distinct points in the plane. We always assume that the
points of S have distinct z-coordinates (this condition can always be satisfied
by means of a suitable rotation of the plane). For any point p in the Euclidean
plane we denote by x(p) and y(p) the - and y-coordinates of p, respectively. A
k-coloring of S is a partition {Sp, S1,...,Sk—1} of S. A set S of distinct points
in the plane with a k-coloring is called a k-colored set of points. For each point
p € S; col(p) denotes the color i of p. A k-colored set of points S is compatible
with a k-colored graph G if |V;| = |S;| for every i. Let G be planar. We say
that G has a k-colored point-set embedding on S if there exists a planar drawing
of G such that: (i) every vertex v is mapped to a distinct point p of S with
col(p) = col(v), (ii) each edge e of G is drawn as a polyline; a point shared by
any two consecutive segments of the polyline is called a bend of e. The curve
complexity of a drawing is the maximum number of bends per edge. Given a
vertex v of G we denote by p, the point representing v in the drawing. A k-
colored sequence o is a linear sequence of (possibly repeated) colors ¢, c1, ...,
¢n—1 such that 0 <¢; <k —1 (0 <j <n-—1). We say that o is compatible with
a k-colored graph G if, for every i color i occurs |V;| times in o. Let S be a k-
colored set of points and let pg, p1, ..., pn—1 be the points of S ordered according
to their z-coordinates. Let P = (vg, v1,...,v,—1) be a path with n vertices such
that c¢(v;) = ¢(p;). We say that P is the path induced by S and denote it as
path(S). We also say that o = ¢(po), ¢(p1), - - -, c(pn—1) is the k-colored sequence
induced by S and denote it as seq(.S).

A graph G has a Hamiltonian path if it has a simple path that contains all the
vertices of G. G has a Hamiltonian cycle if it has a simple cycle that contains all
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the vertices of G. If G is a k-colored graph and ¢ = ¢y, c1, ..., ¢,—1 is a k-colored
sequence compatible with G, a k-colored Hamiltonian path of G consistent with
o is a Hamiltonian path vg, v1,...,v,—1 such that col(v;) = ¢; (0 <i<n—1).

A Ek-colored Hamiltonian cycle of G consistent with o is a Hamiltonian cycle
V0, V1, -« ., Up—1 such that col(v;) = ¢; (0 <i<mn—1). A k-colored planar graph
G can always be augmented to a (not necessarily planar) k-colored graph G’
by adding to G a suitable number of dummy edges and such that G’ has a
k-colored Hamiltonian cycle C consistent with ¢ and that includes all dummy
edges. If G’ is not planar, we can apply a planarization algorithm (see, e.g., [2])
to G’ with the constraint that only crossings between dummy edges and edges
of G — C are allowed. Such a planarization algorithm constructs an embedded
planar graph G” where each edge crossing is replaced with a dummy vertex,
called division vertex. By this procedure each edge e of C can be transformed
into a path whose internal vertices are division vertices: let C’ be the resulting
cycle. Let e be an edge of C' (notice that the endvertices of e are either vertices
of G or division vertices). The path H = C’\ e is called an augmenting k-colored
Hamiltonian path of G consistent with o. The graph G”\e is called the augmented
Hamiltonian form of G and is denoted as Ham(G). If every edge e of G is crossed
at most d times in G’ (which implies that e is split by at most d division vertices
in Ham(G)), H is said to be an augmenting k-colored Hamiltonian path of G
consistent with o and inducing at most d division vertices per edge. If G is
planar, then Ham(G) = G’ and H is defined as C \ e, where e is any edge of C.
Notice that the endvertices of H are on the same face f of Ham(G); we may
assume that f is the external face (if not we can choose an embedding of Ham(G)
such that f is the external face).

Let vq be a division vertex for an edge e of . Since a division vertex corre-
sponds to a crossing between e and an edge of C, there are four edges incident on
vg in G”; two of them are dummy edges that belong to C’, the other two are two
“pieces” of edge e obtained by splitting e with vg. Let (u,v4) and (v,v4) be the
latter two edges. We say that vy is a flat division vertez if it is encountered after
u and before v while walking along H; vg is a pointy division vertex otherwise.
Notice that there are exactly four edges incident on vg in G”, but there can be
only three edges incident on vy in Ham(G) (this happens if the edge removed
from G” to obtain Ham(G) has vg as an endvertex, i.e. if vy is one of the two
endvertices of H). However the edge incident on vy that is removed is neither
(u,vq), nor (v,vq) because the removed edge is an edge of C'. It follows that the
definition of flat and pointy division vertex apply to vy also in the case when vy
is an endvertex of H. The following theorem has been proved in [I].

Theorem 1. [I] Let G be a k-colored planar graph, let o be a k-colored sequence
compatible with G, and let H be an augmenting k-colored Hamiltonian path of
G compatible with o inducing at most d division vertices per edge, d, of which
are pointy division vertices. Then G admits a k-colored point set embedding I’
on any set of points that induces o such that the curve complezity is d 4 dp, + 1.
Furthermore, there exists an O(nlogn)-time algorithm that computes I'.



Drawing Colored Graphs with Constrained Vertex Positions 319

A spine is an horizontal line. Let ¢ be a spine and let p, ¢ be two points of £.
An arc is a circular arc passing through p and gq. We say that the arc is in the
top (bottom) page if it belongs to the half plane above (below) the spine. Let
G = (V,E) be a planar graph. A topological book embedding of G is a planar
drawing such that all vertices of G are represented as points of a spine ¢ and
each edge can be either above the spine, or below the spine, or it can cross the
spine. Each crossing between an edge and the spine is called a spine crossing.
It is also assumed that in a topological book embedding every edge consists of
one or more arcs such that no two consecutive arcs are in the same page. An
edge e is said to be in the top (bottom) page of the spine if it consists of exactly
one arc and this arc is in the top (bottom) page. A monotone topological book
embedding is a topological book embedding such that each edge crosses the spine
at most once. Also, let e = (u,v) be an edge of a monotone topological book
embedding that crosses the spine at a point p; e is such that if u precedes v in
the left-to-right order along the spine then p is between u and v, the arc with
endpoints u and p is in the bottom page, and the arc with endpoints u and v
is in the top page. The edges that do not cross the spine are called wu-shaped
edges, while edges that cross the spine are called s-shaped edges. The following
theorem has been proved in [4].

Theorem 2. [] Every planar graph admits a monotone topological book em-
bedding. Also, a monotone topological book embedding can be computed in O(n)
time, where n is the number of the vertices in the graph.

Let I" be a topological book emebedding of a planar graph G. A point p of the
spine £ of I' is accessible from the top (bottom) page of I' if the vertical half-line
¢ starting at p that is in the half-plane above (below) ¢ does not cross any arc
of I'. If ¢/ crosses an arc a, we say that a covers p. The local top (bottom) page
width of I' on p lwy (I, p) (lwy (I, p)) is the number of arcs in the top (bottom)
page of I that cover p. The cumulative local page width of I' on p is clw(I',p) =
lwy (I, p) + lwy (I, p). The cumulative width of I' is cw(I") = mazpei{clw(l,p)}.
The top page width of I' is wy(I") = mazpei{lw(I,p)}, and analogously the
bottom page width of I is wy,(I") = mazpei{lwp (I, p)}. Finally the width of I’
is w(I') = maz{w(I"),w,(I")}. Notice that the following inequality is always
satisfied w(I") < cw(I") < w (L") +wp (1) < 2w(I).

3 Overview of the Approach

In this section we give a high-level description of the approach followed through-
out the paper. We need some additional definitions. Let I" be a topological book
embedding of a k-colored planar graph G and let vy, vy, ...,v,—1 be the vertices
of G in the order they appear along the spine of I'. The k-colored sequence
c(vg), c(v1), ..., c(vy—1) is called the k-colored sequence induced by I'. Let P be
a path and let vg,v1,...,v,—1 be the vertices of P in the order they appear
along P; the k-colored sequence c(vg),c(v1),...,c(v,—1) is called the k-colored
sequence induced by P. Let I'p be a topological book embedding of P. I'p is
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external if both the endvertices of P are accessible either from the top page or
from the bottom page. Let G; = (Ui:ol Vi, Er) and Go = (Uf;ol Va.i, E2) be two
planar k-colored graphs. We say that Gy and Gy are compatible if |Vy ;| = |Va |
for every i =0,...,k—1. A simultaneous k-colored book embedding of two com-
patible planar graphs G and G is a pair of drawings < I, I'; > such that: (i)
I; is a topological book embedding (i = 1,2); (ii) I and I use the same points
to represent the vertices; and (iii) the k-colored sequences induced by Iy and I
coincide. We are now ready to describe our approach:

Step 1: Let P = path(S). Compute a simultaneous k-colored book embedding
< I'g,I'p > of G and P, such that I's is a monotone topological book embedding
of G and I'p is external;

Step 2: By using < I'g, I'p >, compute a k-colored point-set embedding of G
on S. The curve complexity of the computed drawing is bounded by the width
of Fp.

The idea behind the above described approach is based on Theorem [ and
on the following lemma, that shows how to compute an augmenting k-colored
Hamiltonian path by using < I'c, I'p >. An illustration of such an idea is shown
in Figure[dl

______

(a) (b)

Fig. 1. (a) A monotone topological book embedding I'¢ of a planar 3-colored graph G.
(b) An external topological book embedding I'p of a path P. Notice that < I'g,I'p >
is a simultaneous k-colored book embedding of G and P and that w(I'p) = 3. (c) An
augmenting k-colored Hamiltonian path of G consistent with the k-colored sequence
induced by P and inducing at most 5 division vertices per edge.

Lemma 1. Let G and P be a k-colored planar graph and a k-colored path that
are compatible. Let < I'g,I'p > be a simultaneous k-colored book embedding
of G and P, such that I'c is a monotone topological book embedding and I'p
1s external. Let o be the k-colored sequence induced by P. Then G admits an
augmenting k-colored Hamiltonian path consistent with o that induces at most
2w(I'p)+cew(l'p)+2 division vertices for every s-shaped edge of I'c; and at most
2w(I'p) + 1 division vertices for every u-shaped edge of I'.
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Sketch of Proof: Consider the simultaneous k-colored book embedding < I'g,I['p >.
Since I'p is external the two endvertices u and v of P are accessible either from
the top page or from the bottom page. Vertices u and v can be connected by
means of an edge €’ consisting of at most two arcs. Namely, if they are both
accessible from the same page, say the top one, then we connect them with an
arc in the top page; if they are accessible from different pages, assume that u
is accessible from the top page and v is accessible from the bottom page (the
other case is symmetric). We create an arc connecting v to a point p of the
spine that is to the right of the rightmost point (vertex or spine crossing) of
I'p; then we add an arc connecting p to u. I = I' U I'p U e’ is a (possibly
non-planar) drawing of a (possibly non-planar) graph G’ such that C = PUe’ is
a k-colored Hamiltonian cycle consistent with the k-colored sequence o induced
by P. If G’ is not planar, since both I'¢ and I'p are planar, a crossing in I
is possible only between the edges of I'¢ and the edges of I'p. We replace each
crossing with a division vertex. It may happen that edge e’ is also subdivided
(this happens if the endvertices of P are not on the same face of I'). In all cases,
there exists a portion of ¢’ that is contained in a face of I'g. The graph obtained
by removing this portion (possibly coincident with ¢’ itself) is the augmented
Hamiltonian form of G. The concatenation of P with the portion of €’ that is
not removed forms an augmenting k-colored Hamiltonian path of G consistent
with the k-colored sequence induced by P. In order to compute the number
of division vertices on each edge of G, we first count the number of crossings
between an edge of G and the edges of P, and then we count the extra division
vertices introduced when adding edge ¢’. Let e = (u,v) be an u-shaped edge of
I'g. Assume that e is in the top page of I'¢. The number of crossings between
e and the edges of P is ¢ = wy(I'p,py) + Iwi(I'p,py) < 2w(I'p). Let e = (u,v)
be an s-shaped edge and let a; and as be the two arcs that form e. Arc a; has
p. and d as its endpoints, where d is the point where e crosses the spine. Arc as
has d and p, as its endpoints. The number of crossings between e and the edges
of Pisc=Iwi(I'p,py)+cw(lp,d)+Iwy(I'p,py) <w(Ip)+cw(Ip)+w(lp)=
2w(I'p) + cw(I'p). Since €’ consists of at most two arcs in different pages, each
arc of I'cz can have one additional division vertex caused by the addition of
€’. Therefore an u-shaped edge (s-shaped edge) can have at most 2w(I'p) + 1
(2w(I'p) + cw(I'p) + 2) division vertices per edge. O

4 Ordered k-Colorings

Let S be a k-colored set of points such that for every pair of points p; and
p2 with the same color, there is no point ¢ such that z(p1) < z(q) < x(p2) and
c(q) # c(p1) = c(p2). We say that S is an ordered k-colored set of points. In other
words, an ordered k-colored set of points is such that all points of each color are
consecutive according to the x-coordinate ordering. Analogously, we define an
ordered k-colored path P to be a path where all vertices of the same color appear
consecutively walking along P, and an ordered k-colored sequence to be a k-
colored sequence where all elements with the same color appear consecutively
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in the sequence. The technique behind this proof is a variant of the algorithm
used in [3] to compute an augmenting k-colored Hamiltonian cycle of a k-colored
simple cycle.

Lemma 2. Let G and P be a planar k-colored graph and an ordered k-colored
path that are compatible. There exists a simultaneous k-colored book embedding
<Ig,I'p > of G and P, such that I'c is a monotone topological book embedding,
I'p is external and cw(I'p) < k. Furthermore, < I'¢,I'p > can be computed in
O(k n) time.

Theorem 3. Let G be a planar k-colored graph, and let o be an ordered k-
colored sequence. Then G admits an augmenting k-colored Hamiltonian path H
consistent with o that induces at most 3k+2 division vertices per edge; at most 4
of these are pointy division vertices. Furthermore, H can be computed in O(k n)
time.

Sketch of Proof: Let P be an ordered k-colored path that is compatible with
G and such that the k-colored sequence induced by P coincides with o. By
Lemma [[I G admits an augmenting k-colored Hamiltonian path H consistent
with ¢ and inducing at most 2w(I'p) + cw(I'p) + 2 division vertices for every s-
shaped edge of I'; and at most 2w(I'p) + 1 division vertices for every u-shaped
edge of I'g. Since by Lemma [ cw(I'p) < k and since w(I'p) < cw(Ip), it
follows that H induces at most 3k + 2 division vertices for every s-shaped edge
and at most 2k + 1 division vertices for every u-shaped edge. We now count
the number of pointy division vertices. We first recall (see Lemma [I]) that an
edge can have one or two division vertices caused by the addition of an edge
¢’ that transforms P into a cycle. Such division vertices are necessarily pointy
division vertices. Namely, since a portion of €’ is removed to obtain H, then all
the division vertices caused by the addition of ¢’ appear at the beginning of H
or at its end. Let Vd’ be the set of these division vertices and let v4y be one of
them. Let (u/,v4) and (vg,v’) be the two edges incident to vy that are not in H.
Vertices (either real or division vertices) ' and v’ are not in V] and therefore
they are encountered both after vg or both before vgy when walking along H’,
i.e. vg is a pointy division vertex. Concerning the division vertices that are not
created by the addition of ¢/, it can be proved that at most one, in the case of
u-shaped edges, or two, in the case of s-shaped edges, of these division vertices
are pointy. It follows that an u-shaped edge can have at most two pointy division
vertices and an s-shaped edge can have at most four pointy division vertices. 0O

A consequence of Theorem [3] and Theorem [ is the following.

Theorem 4. Let G be a k-colored planar graph with n vertices and let S be an
ordered k-colored set of points compatible with G. There exists an O(nlogn +
k n)-time algorithm that computes a k-colored point-set embedding of G on S
having curve complezity at most 3k + 7.

Theorem [3] can be applied also to another special k-coloring. Namely, let G =
(Uf;ol Vi, E) be a k-colored planar graph; we say that the coloring of G is an
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unbalanced k-colorings if |V;| =1 (i =0,1,...,k —2) and |Vp—1| =n —k + 1.
In [I] it has been proved that if a k-colored planar graph G has an unbalanced
k-colorings, then G admits a k-colored point-set embedding on any given set
of points compatible with G with curve complexity at most 9% — 1. We use
Theorem [3] to improve this bound.

Theorem 5. Let G be an n-vertex k-colored planar graph with an unbalanced
coloring and let S' be a k-colored set of points compatible with G. There exists an
O(nlogn + k n)-time algorithm that computes a k-colored point-set embedding
of G on S having curve complezity at most 6k + 4.

5 h-Bend k-Colored Universal Sets and Grids

Let F be a family of k-colored planar graphs such that every element of F has
n vertices and 1 < k < n; let S be a k-colored set of points. We say that S is an
h-bend k-colored universal set for F if, for every G € F, G has a k-colored point-
set embedding on S having at most i bends per edge. In this section we shall use
Theorem [3] to describe h-bend k-colored universal sets of points that can either
have real coordinates (Subsection [5.1]) or form an integer grid (Subsection [5.2).

5.1 h-Bend k-Colored Universal Sets

Let Fj be the family of all k-colored planar graphs with n vertices (1 < k < n).
In this section we show that there exist h-bend k-colored universal sets for Fy
such that the number of points in the sets is O(n) and h does not depend on n;
we also show a lower bound on the size of such sets for the family F,. We start
with a lemma that shows an h-bend k-colored universal set for a sub-family of
all k-colored planar graphs with n vertices. Let Fj, be the family of k-colored
planar graphs such that every graph of Fj, has n vertices and every two graphs
of the family have the same number of vertices with color ¢ (1 < ¢ < k). It is
known that every k-colored set S of n points compatible with the graphs in F,
is an h-bend k-colored universal set for F}, with h = O(n) [1I9]. The next lemma
shows that by adding O(n) extra points to S, the curve complexity can become
independent of n.

Lemma 3. Let G = (Ui:ol Vi, E) be a k-colored planar graph with n vertices
(1<k<n)with|V;|=n; (i=0,1,....,k—1); let S = Ui:ol S; be any k-colored
set of points such that |S;| = k(n; — 1)+ 1. There exists an O(nlogn+k n)-time
algorithm that computes a k-colored point-set embedding of G on S having curve
complezity at most 3k + 7.

Sketch of Proof: We prove the statement by showing that it is possible to remove
(k — 1)(n; — 1) points from S; (i = 0,1,...,k — 1) in such a way that the
remaining n = Zf:_ol n; points form a set S’ which induces an ordered k-colored
sequence compatible with G. This, along with Theorem [B] implies that G admits
an augmenting k-colored Hamiltonian path consistent with o = seq(S’) that
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induces at most 3k + 2 division vertices; at most 4 of these division vertices
are pointy division vertices. Such an augmenting k-colored Hamiltonian path
can be computed in O(k n). By Theorem [ there exists an O(nlogn)-time
algorithm that computes a k-colored point-set embedding of G' on S’ having
curve complexity at most 3k + 7. Since there is a one-to-one mapping between
the points of S and the elements of o5, = seq(5), in the rest of this proof we
concentrate on the sequence o and prove that elements can be removed from
o) in order to obtain an ordered k-colored sequence o}, compatible with G. More
precisely, we prove that given a k-colored sequence oy, such that the number of
elements colored i is at least k(n; — 1)+ 1, it is possible to remove some elements
from oy, in order to create an ordered k-colored sequence o}, compatible with
G. The proof is by induction on the number of colors k. If k = 1 it is sufficient
to arbitrarily remove (k — 1)(ng — 1) points (i.e. to remove no point) and the
obtained sequence is an ordered 1-colored sequence compatible with G. If & > 1,
let o, = co, .+ Ch(n—k+1)—1- We denote as o; ; the subsequence ¢;, ¢iy1,. .., ¢; of
ok. Let j; = min{j | 0¢ ; contains n; elements whose valueisi } fori = 0,...,k—1
and let j = min;{j;}. Without loss of generality, assume that j = jy. The
sequence o ; contains ng elements whose value is 0 and at most n; — 1 elements

whose value is 7 (i = 1,2,...,k—1). Therefore 011 jn—r+1)—1 contains at least
(k—1)(n; — 1) + 1 elements whose value is ¢ (i = 1,2,...,k — 1). The sequence
O(k—1) = Oj41k(n—k+1)—1 \ 1¢j | ¢; = 0} is a (k — 1)-colored sequence such

that the number of elements colored ¢ is at least (k — 1)(n; — 1) + 1. Thus, by
induction, one can remove elements from o(;_;) in order to obtain an ordered
(k — 1)-colored sequence o},_, compatible with G \ {v € V | col(v) = 0}. It
follows that the sequence o}, = 0o ; \ {¢; | ¢; # 0} Uo},_, is an ordered k-colored
sequence compatible with G. g

Theorem 6. Let Fj be the family of all k-colored planar graphs with n vertices
(1 <k <n). Any k-colored set of points S such that S contains k n—k2+1 points
for each color is a (3k+7)-bend k-universal set for Fy,. Furthermore, there exists
an O(nlogn+k n)-time algorithm that computes a k-colored point-set embedding
on S of any G € Fy, with curve complexity at most 3k + 7.

Sketch of Proof: Let G be a graph of Fj. For each color i, G has at most n—k+1
vertices of color i. Since S has k(n — k) + 1 points of color 4, the result follows
from Lemma O

The total number of points in a k-colored set of points that satisfies the statement
of Theorem [ is k?n — k3 + k. One can ask whether n + o(n) points are sufficient
to guarantee a curve complexity that does not depend on n. As the next theorem
shows, this question has a negative answer for the case k = 2.

Theorem 7. Let ¢ be a constant such that ¢ > 1. For every integer n > 2 _°©,
there exists a 2-colored planar graph G = (Vo UV4, E) and a 2-colored set of
points S = So U Sy consisting of n+ " points such that: (i) |[Vo| = |V1| = 5 ; (ii)
|So| = [S1| = 5 + [4.1; and (iii) any 2-colored point-set embedding of G on S

has one edge with at least g LC;CI nJ — 1 bends.
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5.2 h-Bend k-Colored Universal Grid

Let Fj be the family of all k-colored planar graphs with n vertices (1 < k < n).
An h-bend k-colored universal grid for Fy, is a k-colored set of points S such
that: (i) S is an integer grid; (ii) any element of Fj has a k-colored point-set
embedding I" on S with curve complexity at most h; and (iii) the bends of I" are
at grid points. The drawing I" is called a k-colored point-set grid embedding. In
this section we study the size of an h-bend k-colored universal grid that supports
k-colored point-set grid embeddings whose curve complexity does not depend on
the input size. Let S be the k-colored set of points that contains points p = (z,y)
such that z,y € Z and 0 < z,y < 2kN where N = (n —k+1)(3n —5). Let each
point p = (z,y) of S have color col(p) = | 5, |. We call S the (n, k)-strip grid.

Theorem 8. Let Fi be the family of all k-colored planar graphs with n vertices
(1 <k <n). The (n,k)-strip grid is a (6k + 5)-bend k-universal grid for Fy.
Furthermore, there exists an O(k n)-time algorithm that computes a k-colored
point-set grid embedding on S of any G € Fy, with curve complexity at most
6k + 5.

Sketch of Proof: Let G be a k-colored planar graph with n vertices and m edges.
Let o be an ordered k-colored sequence compatible with G and such that ele-
ments colored ¢ appear before than elements colored i +1 (i =0,...,k —2). By
Theorem [3 G admits an augmenting k-colored Hamiltonian path H consistent
with o. Since the (n, k)-strip grid S contains more than n points for each color we
can arbitrarily choose a subset S” of S such that seq(S) = o and use Theorem!/[Il
to compute a k-colored point-set embedding of G on S. However, the technique
behind Theorem [I] does not guarantee that the division vertices are at grid point
even if the point in S’ are grid points. We describe in the following a variant of
this technique that places bends at grid points. Let wq, w1, ..., w,  be the ver-
tices (either division vertices or real vertices) of H in the order they appear in
‘H. Since o is ordered we have that the real vertices of G in H are ordered along
‘H except for the presence of the division vertices, i.e. if we ignore the division
vertices then all vertices of the same color appear consecutively walking along H.
Define the following indices: j; = max{ j | col(w;) = }. All the division vertices
w; such that j;_; < j < j; are given color ¢, where we set j_; = —1. With this
coloring of the division vertices, we have that H is an ordered k-colored path,
i.e. it consists of a set of vertices (either division vertices or real vertices) colored
o, followed by a set of vertices colored c1, etc. Since o has been chosen so that
elements colored ¢ appear before than elements colored i +1 (i =0,...,k — 2),
then ¢; =i (0 < i<k —1),ie. H consists of a set of vertices colored 0 followed
by a set of vertices colored 1, etc. The number of real vertices of a given color
i is at most n — k + 1 (because at least one vertex for any other color must
exist), and the number of division vertices between a pair of consecutive real
vertices is at most m (because each edge of H is crossed at most once by an edge
connecting two real vertices), which, in turn, is at most 3n — 6 since the graph is
planar. It follows that we have at most (n — k4 1)(m 4+ 1) < N vertices of each
color. Let w; be a vertex (either a real or a division vertex) whose color is 1,
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then ji—1 < j < j;. Vertex w; is drawn at point having coordinates (2z,2z)
where z = iN + (j — ji—1) — 1. Since 0 < 2((j — ji—1) — 1) < 2N, then | 2% | =1,
i.e. point (2z,2x) is colored i. Let e = (wj, ,w;,) be an edge (either a real edge
of G or a portion of an edge of GG). Since the endvertices of H are on the same
face of Ham(G), there exists a planar embedding of Ham(G) such that wy and
wy,—1 are on the external face. In such an embedding every edge not in H is
either on the left-hand side of H or on the right-hand side of H when walking
from wg to wy,—1. If e belongs to H, it is drawn as a straight-line segment. If
e is to the left of H, then it is drawn with only one bend whose coordinates
are (2z, + 1,2z, — 1), where (2z,4,2x,) is the point representing vertex w;, and
(2xp,2p) is the point representing vertex wj,. If e is to the right of H, then it
is drawn with only one bend whose coordinates are (2z, — 1,2z, + 1). O

Corollary 1. Every n-vertex planar graph admits a k-colored point-set grid em-
bedding with curve complexity 6k +5 on a grid whose size is O(k n?) x O(k n?).
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