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Abstract. An abstract topological graph (briefly an AT-graph) is a pair
A = (G, R) where G = (V, E) is a graph and R ⊆

(
E
2

)
is a set of pairs

of its edges. An AT-graph A is simply realizable if G can be drawn in
the plane in such a way that each pair of edges from R crosses exactly
once and no other pair crosses. We present a polynomial algorithm which
decides whether a given complete AT-graph is simply realizable. On the
other hand, we show that other similar realizability problems for (com-
plete) AT-graphs are NP-hard.

1 Introduction

A topological graph T = (V (T ), E(T )) is a drawing of an (abstract) graph G in
the plane with the following properties. The vertices of G are represented by a
set V (T ) of distinct points in the plane and the edges of G are represented by
a set E(T ) of simple curves connecting the corresponding pairs of points. We
call the elements of V (T ) and E(T ) vertices and edges of T . The edges cannot
pass through any vertices except their end-points. Any intersection point of two
edges is either a common end-point or a crossing, a point where the two edges
properly cross (“touching” of the edges is not allowed). We also require that
any two edges have only finitely many intersection points and that no three
edges pass through a single crossing. A topological graph is simple if every two
edges have at most one common point (which is either a common end-point or a
crossing). A topological graph is complete if it is a drawing of a complete graph.

An abstract topological graph (briefly an AT-graph), a notion established in [7],
is a pair (G, R) where G is a graph and R ⊆

(
E(G)

2

)
is a set of pairs of its edges.

For a topological graph T which is a drawing of G we define RT as a set of pairs
of edges having at least one common crossing and we say that (G, RT ) is an AT-
graph of T . A topological graph T is called a realization of (G, R) if RT = R.
If RT ⊆ R, then T is called a weak realization (or also a feasible drawing)
of (G, R). If (G, R) has a (weak) realization, we say that (G, R) is (weakly)
realizable. We say that (G, R) is simply (weakly) realizable if (G, R) has a simple
(weak) realization, that is, a drawing which is a simple topological graph. We
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say that (G, R) is weakly rectilinearly realizable if it has a weak realization T
with edges drawn as straight-line segments (such drawing T is called a weak
rectilinear realization of (G, R)).

Complete topological graphs are one of the most studied classes of topo-
logical graphs [5,11,12,13,15], especially in connection to the crossing number
problems [1,4,16,19,20].

We study the complexity of various realizability problems for AT-graphs and
also for complete AT-graphs. For example, the realizability problem is defined
as follows: the instance is an AT-graph A and the question is whether A is
realizable. Similarly the weak realizability, the simple realizability, the simple
weak realizability and the weak rectilinear realizability problems are defined.

Kratochv́ıl [9] proved that the realizability and the weak realizability are NP-
hard problems (for the class of all AT-graphs). For a long time, the decidability
of these problems was an open question. Pach and Tóth [14] and Schaefer and
Štefankovič [18] independently found a first recursive algorithm for the recogni-
tion of string graphs, which is polynomially equivalent to the realizability [9] and
the weak realizability [6]. Later Schaefer, Sedgwick and Štefankovič [17] showed
that the recognition of string graphs and the weak realizability are in NP, which
implies the following corollary.

Theorem 1. [9,17] The weak realizability and the realizability of AT-graphs are
NP-complete problems.

We extend these results by finding the complexities of the other mentioned prob-
lems, for the class of all AT-graphs and also for the class of complete AT-graphs.
All these results are summarized in the following table.

Theorem 2

AT-graphs complete AT-graphs
realizability NP-complete [9,17] NP-complete
weak realizability NP-complete [9,17] NP-complete
simple realizability NP-complete polynomial
simple weak realizability NP-complete NP-complete
weak rectilinear realizability NP-hard NP-hard

The weak realizability of AT-graphs is polynomially equivalent to the simulta-
neous drawing problem [3]. The instance of this problem is a graph G given as a
union of planar graphs G1, G2, . . . , Gk sharing some common edges. The question
is whether G can be drawn in the plane so that each of the subgraphs Gi is drawn
without crossings. The simultaneous drawing of three planar graphs is known
to be NP-complete [3]; this gives an alternative proof of the NP-completeness
of the weak realizability. The complexity of simultaneous drawing of two planar
graphs remains open.

The rest of this paper is devoted to the proof of Theorem 2.
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2 Additional Definitions

A face of a topological graph T is a connected component of the set R
2 \ E(T ).

A rotation of a vertex v ∈ V (T ) is the clockwise cyclic order in which the edges
incident with v leave the vertex v. A rotation system of the topological graph T is
the set of rotations of all its vertices. Similarly we define a rotation of a crossing
c as the clockwise order in which the four portions of the two edges crossing at
c leave the point c (note that each crossing has exactly two possible rotations).
An extended rotation system of a topological graph is the set of rotations of all
its vertices and crossings.

Assuming that T and T ′ are drawings of the same abstract graph, we say that
their (extended) rotation systems are inverse if for each vertex v ∈ V (T ) (and
each crossing c in T ) the rotation of v and the rotation of the corresponding
vertex v′ ∈ V (T ′) are inverse cyclic permutations (and so are the rotations of c
and the corresponding crossing c′ in T ′). For example, if T ′ is a mirror image of
T , then T and T ′ have inverse (extended) rotation systems.

Topological graphs G and H are weakly isomorphic if there exists an incidence
preserving one-to-one correspondence between V (G), E(G) and V (H), E(H)
such that two edges of G cross if and only if the corresponding two edges of
H do. In other words, two topological graphs are weakly isomorphic if and only
if they are realizations of the same abstract topological graph.

Topological graphs G and H are isomorphic if (1) G and H are weakly iso-
morphic, (2) for each edge e of G the order of crossings with the other edges
of G is the same as the order of crossings on the corresponding edge e′ in H ,
and (3) the extended rotation systems of G and H are the same or inverse. This
induces a one-to-one correspondence between the faces of G and H such that the
crossings and the vertices incident with a face f of G appear along the boundary
of f in the same (or inverse) cyclic order as the corresponding crossings and
vertices in H appear along the boundary of the face f ′ corresponding to f .

Assuming that the topological graphs G and H are drawn on the sphere, it
follows from Jordan-Schönflies theorem that G and H are isomorphic if and only
if there exists a homeomorphism of the sphere which transforms G into H .

Unlike the isomorphism, the weak isomorphism can change the faces of the
involved topological graphs, as well as the order in which one edge crosses other
edges.

3 The NP-Hard Problems

In this extended abstract, we give only a sketch of the reduction for the NP-hard
problems, the details are postponed to the Appendix.

Our proof is based on the Kratochv́ıl’s [9] reduction from planar 3-connected
3-SAT (P3C3-SAT), which is known to be an NP-complete problem [10]. The
question is the satisfiability of a CNF formula φ with a set of clauses C and a
set of variables X , such that each clause consists of exactly 3 distinct variables
and the bipartite graph Gφ = (C ∪ X, {cx; x ∈ X, c ∈ C, x ∈ c}) is planar and
3-connected.
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The main idea is essentially the same as in Kratochv́ıl’s proof [9]—given the
formula φ, we construct an AT-graph Aφ, which consists of vertex and clause
gadgets connected by joining edges. The only variation is that we use different
clause and vertex gadgets for different problems.

The evaluation of each vertex gadget is encoded by one of the two possible
orders of joining vertices (two for each neighbor in Gφ). These orders are trans-
lated by the pairs of joining edges onto the orders of joining vertices of clause
gadgets. For each clause gadget there are, theoretically, eight possible orders of
the joining vertices, but only those seven corresponding to the satisfying evalu-
ation can occur in the drawing. An example of variable and clause gadgets for
the simple realizability problem is in the Figure 1. The set R of pairs of edges
in the corresponding AT-graph is precisely the set of crossing pairs of edges in
the drawing.

TRUE FALSE

TRUE TRUE

FALSE

Fig. 1. Variable and clause gadgets for the simple realizability problem

4 Recognition of Simply Realizable Complete AT-Graphs

In this section we present a polynomial algorithm which decides whether a given
complete AT-graph A is simply realizable. In the affirmative case, it also provides
a description of the isomorphism class of one simple realization of A. For the sake
of simplicity, we do not try to optimize the order of the polynomial bounding
the computing time of the algorithm.

We need the following key observation.

Proposition 3. (1) If two simple complete topological graphs are weakly iso-
morphic, then their extended rotation systems are either the same or inverse.

(2) For each edge e of a simple complete topological graph G and for each pair
of edges f, f ′ ∈ E(G) which have a common end-point and cross e, the AT-
graph of G determines the order of crossings of e with the edges f, f ′.

The proof is postponed to the Appendix.
We will denote the rotation system of a topological graph G as R(G) and we

will represent it as a sequence of rotations of its vertices. The rotation R(v) of a
vertex v will be represented by a cyclic sequence of the labels of the remaining
vertices.

Now we introduce a star-cut representation of the graph G. Choose an arbi-
trary vertex v and denote by w1, w2, . . . , wn−1 the remaining vertices of G so
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that R(v) = (w1, w2, . . . , wn−1). Let S(v) denote the union of all the edges vwi

of G (S(v) is a “topological star” with the central vertex v). If we consider G
drawn on the sphere S2, the set S2\S(v) is mapped by a homeomorphism Φ onto
an open regular 2(n − 1)-gon D in the plane. We can visualize this by cutting
the sphere along the edges of the star S(v) and then unpacking the resulting
surface in the plane. The map Φ−1 can be continuously extended to the closure
of D, giving a natural correspondence between the vertices and edges of D and
the vertices and edges in S(v): each vertex wi corresponds to one vertex w′

i of
D and the vertex v of G corresponds to n − 1 vertices v′1, v

′
2, . . . , v

′
n−1 of D.

If Φ preserves the orientation, the counter-clockwise order of the vertices of D
is v′1, w′

1, v
′
2, w

′
2, . . . , v

′
n−1, w

′
n−1. Each edge vwi ∈ E(G) splits into two adjacent

edges v′iw
′
i and v′i+1w

′
i; see Figure 2. During the cutting operation every edge

ek of G not incident with v can be cut into several pieces. Since ek crosses each
edge of S(v) at most once, it is cut into at most n pieces ek,j . Every crossing
of the edge ek with an edge vwi corresponds to two end-points of two different
pieces ek,j ,ek,j′ lying on the edges v′iw

′
i and v′i+1w

′
i.

v

w1w2

w3

w4
v′1

v′4

v′3

v′2
w′

1
w′

2

w′
3

w′
4

Fig. 2. A simple drawing of K5 and its star-cut representation

The Algorithm

Suppose that we are given a complete AT-graph A with the vertex set {1, 2, . . .,
n}. The first step of the algorithm is the computation of the (abstract) rotation
system R(A), i.e., the rotation system of a simple realization of A, if it exists:

– In order to R(A) being determined uniquely, we assume that R(1), the
(abstract) rotation of the vertex 1, contains a subsequence (2, 3, 4).

– Order the quintuples of the vertices of A lexicographically and denote them
by Q1, Q2, . . . , Q(n

5).

– For every induced subgraph Bk = A[Qk], k = 1, 2, . . . ,
(
n
5

)
, check if it is one

of the five simply realizable 5-vertex AT-graphs (their drawings are in the
Figure 10). If not, the algorithm terminates and answers “NO”, i.e., that A
is not simply realizable. Otherwise we determine the rotation system R(Bk):
we choose one of the two possible mutually inverse rotation systems, which
is compatible with the rotation systems R(B1),R(B2), . . .,R(Bk−1). (By the
choice of the ordering of the quintuples Qi, there exists k′ < k such that
|Qk ∩Qk′ | = 4. If u, v, w, z are the vertices of the intersection Qk ∩Qk′ , then
R(Bk) determines the order of the elements v, w, z in the rotation of u in
Bk′ , which then determines R(Bk′ ).)
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– For each vertex v ∈ V (A), compute the rotation R(v) from the rotation
systems R(Bk), such that v ∈ Qk: we choose a “reference vertex” u �= v and
consider all subsequences of elements u, w, z (w, z ∈ V (A) \ {u, v}, w �= z)
in the rotations of v in the rotation systems R(Bk). These ordered triples
determine a complete oriented graph Gu,v on the set V (A) \ {u, v}. The
rotation of v is then determined by the topological order of the vertices of
Gu,v, which can be found in linear time. If Gu,v has an oriented cycle, the
algorithm terminates and answers “NO”.

At this stage we know that if A is simply realizable, then it has a simple
realization with the computed rotation system R(A). But it may still happen
that R(A) is not realizable as a rotation system of a simple complete topolog-
ical graph. To decide this, we try to find an isomorphism class of some simple
realization of A by constructing its star-cut representation.

By Proposition 3, we can determine the order of crossings of each edge with
an arbitrary star S(v), and also the rotation of all crossings on the edges of S(v).

– Fix an arbitrary vertex v ∈ V (A) and denote the other vertices of A by
w1, w2, . . . , wn−1, such that R(v) = (w1, w2, . . . , wn−1).

– Fix an orientation for each edge wiwj , i < j, by choosing wi as an initial
vertex.

– For every edge e = wiwi′ and every two edges vwj , vwj′ which cross e,
determine the order Oe(j, j′) of crossings of e with vwj and vwj′ from the
AT-graph A[{v, wi, wi′ , wj , wj′}].

– For every edge e = wiwi′ , the orders Oe(j, j′) define a complete oriented
graph on the sv(e) edges incident with v and crossing e. If this graph has an
oriented cycle, terminate and answer “NO”, otherwise construct a topological
order Oe of its vertices (i.e., the order in which e crosses the edges incident
with v). If e crosses one (or no) edge incident with v, then Oe is a one-element
(or an empty) sequence.

– For every crossing cj
e of the edges e = wiw

′
i and vwj determine its rotation

R(cj
e), from the rotation system R(A[wi, wi′ , wj , v]).

Now we are ready to start a construction of a star-cut representation of a
possible simple realization of A, which would be obtained by cutting the sphere
along the edges of the star S(v).

– Draw a convex 2(n − 1)-gon D and denote its boundary cycle as C. Denote
the vertices of C counter-clockwise by v1, w1, v2, w2, . . . , vn−1, wn−1. For i =
1, 2, . . . , n−1, denote by f2i−1 the open edge viwi, and by f2i the open edge
wivi+1 (where vn = v1).

– Denote the edges of A not incident with v by e1, e2, . . . , e(n−1
2 ). For each edge

ei define sv(ei)+1 pseudochords ei,1, ei,2, . . . , ei,sv(ei)+1. We interpret ei,j as
a portion of the edge ei between the (j − 1)-th and the j-th crossing of ei

with some edge incident with v (where the 0-th and (sv(ei) + 1)-th crossing
is the initial and the terminal vertex of ei), and we consider ei,j oriented
consistently with ei. Denote the initial vertex of ei,j by ai,j and the terminal
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vertex by bi,j . Note that ai,j+1 and bi,j correspond to the same crossing (the
j-th crossing of the edge ei with some edge incident with v), which we denote
by ci,j .

– From the orders Oei and from the rotations of the crossings ci,j determine,
for each k = 1, 2, . . . , 2(n−1), the set of the end-points ai,j , bi,j lying on the
edge fk.

– For each k = 1, 2, . . . , n − 1, construct a sequence Owk
of the one-element

sets {ai,1}, {bi,sv(ei)+1} containing the end-points lying at wk, such that
their order in Owk

is the same as the clockwise order of the corresponding
pseudochords incident with wk, which is determined by the rotation R(wk).
Note that we consider the end-points of the distinct pseudochords as distinct
objects, even if they are all identical with wk.

– Construct a cyclic sequence OC , as a concatenation of the sequences {f1},
Ow1 , {f2, f3}, Ow2 , {f2, f3}, . . ., Own−1 , {f2(n−1)}.

– For every pseudochord ei,j , construct its type t(ei,j) which is defined as a pair
(X, X ′) such that the sets X, X ′ are elements of OC and ai,j ∈ X , bi,j ∈ X ′.
Note that if (X, X ′) is a type of some pseudochord ei,j , then X �= X ′.

We claim that the knowledge of the types t(ei,j) now suffices to determine the
realizability of the AT-graph A (in a polynomial time).

We say that the types (X, X ′) and (Y, Y ′) are

interlacing if all the sets X, X ′, Y, Y ′ are distinct and if one of the cyclic
sequences (X, Y, X ′, Y ′), (X, Y ′, X ′, Y ) is a subsequence of OC ,

avoiding if they are not interlacing and all the sets X, X ′, Y, Y ′ are distinct,
parallel if (X, X ′) = (Y, Y ′) or (X, X ′) = (Y ′, Y ), and
adjacent otherwise, i.e., if exactly one of the following equalities holds: X = Y ,

X = Y ′, X ′ = Y or X ′ = Y ′.

See Figure 3 for examples.

w2 w1

w4w3

v1

v2

v3

v4
interlacing avoiding parallel adjacent

Fig. 3. Pairs of pseudochords with four different pairs of types

Clearly, if the types of two pseudochords ei,j , ei′,j′ are interlacing, then ei,j

and ei′,j′ are forced to cross (if drawn inside D), and if the types t(ei,j), t(ei′,j′)
are avoiding, then the pseudochords ei,j and ei′,j′ have no common crossing.
The crossing status of two pseudochords with parallel or adjacent types is not
uniquely determined, it depends on the order of their end-points on the edge(s)
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fk, containing an end-point of both pseudochords. However, we can deduce some
information about these pseudochords if we group them into larger structures.

Let ei,e′i be two fixed edges. We define a positive (i, i′)-ladder as an inclusion-
maximal sequence ((ei,j , ei′,j′), (ei,j+1, ei′,j′+1), . . ., (ei,j+k, ei′,j′+k)), such that
k ≥ 1 and for each l ∈ {0, 1, . . . , k − 1} the two end-points bi,j+l and bi′,j′+l

(ai,j+l+1 and ai′,j′+l+1) lie on a common edge fp of C. It means that for each
l ∈ {1, . . . , k − 1}, the edges ei,j+l and ei′,j′+l have parallel types, and the
edges ei,j and ei′,j′ have adjacent types, as well as the edges ei,j+k and ei′,j′+k.
Similarly we define a negative (i, i′)-ladder as an inclusion-maximal sequence
((ei,j , ei′,j′), (ei,j+1, ei′,j′−1), . . ., (ei,j+k, ei′,j′−k)), such that k ≥ 1 and for each
l ∈ {0, 1, . . . , k−1} the two end-points bi,j+l and ai′,j′−l (ai,j+l+1 and bi′,j′−l−1)
lie on a common edge fp of C. Each (positive or negative) (i, i′)-ladder corre-
sponds to two maximal portions of the edges ei, ei′ which cross the same edges
incident with v in the same order and from the same direction.

We call the (i, i′)-ladder crossing if the two corresponding portions of edges
are forced to cross, and non-crossing otherwise; see Figure 4. We can deter-
mine whether the (i, i′)-ladder is crossing or not from the types of its pairs of
pseudochords (we show that only for positive ladders, the other case is similar).

ei

ei′

ei

ei′

Fig. 4. A crossing and a non-crossing (i, i′)-ladder (the fat lines represent distinct edges
of the star S(v))

Lemma 4. Let L = ((ei,j , ei′,j′ ), (ei,j+1, ei′,j′+1), . . . , (ei,j+k, ei′,j′+k)) be a pos-
itive (i, i′)-ladder, let t(ei,j) = (X, Z), t(ei′,j′ ) = (Y, Z), t(ei,j+k) = (P, Q), and
t(ei′,j′+k) = (P, R). Define t(L) as a number from {0, 1} such that t(L) = 0 if and
only if the sequences (X, Y, Z) and (P, Q, R) have the same orientation in OC ,
i.e., either (X, Y, Z) and (P, Q, R) are both subsequences of OC or both (X, Z, Y )
and (P, R, Q) are subsequences of OC . Then L is non-crossing if k+t(L) is even,
and crossing if k + t(L) is odd.

Proof. The proof is quite straightforward; the statement follows from the fact
that for each l ∈ {0, 1, . . . , k − 1} the order of the end-points bi,j+l, bi′,j′+l on
the common edge fk of the cycle C is opposite to the order of the end-points
ai,j+l+1, ai′,j′+l+1 on the edge fk+o (o ∈ {−1, 1}) adjacent to fk and representing
the same edge of the star S(v). �	

Clearly, every pair (ei,j , ei′,j′) of pseudochords with adjacent or parallel types be-
longs to exactly one (i, i′)-ladder. It follows that the set Pi,i′ = {(ei,j , ei′,j′); 1 ≤
j ≤ sv(ei) + 1, 1 ≤ j′ ≤ sv(ei′) + 1} can be uniquely partitioned into (i, i′)-
ladders and one-element sets consisting of pairs of pseudochords with interlacing
or avoiding types. For each set Q from this partition, we are able to determine the
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parity of the total number of crossings between the pairs of pseudochords from
Q. Hence, we are able to determine the parity of the total number of crossings
between the edges ei and ei′ , and also a lower bound for this number.

We are now ready to describe the last steps of the recognition algorithm.

– For every two edges ei, ei′ (1 ≤ i < i′ ≤
(
n−1

2

)
) do the following:

• determine the partition of Pi,i′ into (i, i′)-ladders and pairs with in-
terlacing or avoiding types. For each (i, i′)-ladder from this partition,
determine whether it is crossing or non-crossing.

• Compute cr(ei, ei′), the sum of the number of crossing (i, i′)-ladders and
the number of pairs of pseudochords from Pi,i′ with interlacing types.

• Define crA(ei, ei′) ∈ {0, 1} such that crA(ei, ei′) = 0 if the edges ei, ei′

form a non-crossing pair in the abstract graph A and crA(ei, ei′) = 1 if
the edges ei, ei′ form a crossing pair in A.

– If there exist edges ei, ei′ such that cr(ei, ei′) �= crA(ei, ei′), terminate and
answer “NO”. Otherwise answer “YES”.

Clearly, if the algorithm answers “NO”, the abstract graph A is not re-
alizable. It remains to prove that if for every two edges ei, ei′ the equality
cr(ei, ei′) = crA(ei, ei′) holds, then there exists a choice of the counter-clockwise
orders Ofk

of the end-points of the pseudochords on the edges fk, such that the
induced number of crossings between any two edges ei, ei′ attains the lower
bound cr(ei, ei′). The orders Ofk

, together with the orders Owk
, determine a

counter-clockwise (perimetric) order POC of all the end-points ai,j , bi,j on the
cycle C. For each pair of the pseudochords, POC determines whether they cross
or not. Note that for every given perimetric order POC the arrangement of the
pseudochords can be realized, e.g., the pseudochords can be drawn as straight-
line segments (i.e., as actual chords of the polygon D).

For every k = 1, 2, . . . , (n − 1), the edges f2k−1 and f2k represent the same
edge, vwk, of the graph A. Thus, the order Of2k

is an almost-inverse of Of2k−1 ,
i.e., Of2k

is the inverse of the order, which we obtain from Of2k−1 by replacing
each end-point ai,j (bi,j) with the end-point bi,j−1 (ai,j+1) corresponding to the
same crossing on the edge vwk. Hence, POC is now uniquely determined by the
orders Of2 , Of4 , . . . , Of2(n−1) .

Lemma 5. Let Of2 , Of4 , . . . , Of2(n−1) be the orders which minimize the total
number of crossings between pseudochords induced by POC . Then for every two
edges ei, ei′ , the order POC induces exactly cr(ei, ei′) crossings together on all
the pairs of pseudochords from Pi,i′ .

Proof. Suppose that it is not the case. Then for some two edges ei, ei′ , there exists
an (i, i′)-ladder L with at least two crossings induced by POC . Suppose, with-
out loss of generality, that L is a positive ladder ((ei,j , ei′,j′), (ei,j+1, ei′,j′+1), . . .,
(ei,j+k, ei′,j′+k)). Let q < r be the least integers such that POC induces a cross-
ing cq between ei,j+q and ei′,j′+q, and a crossing cr between ei,j+r and ei′,j′+r.
In the topological graph G represented by this pseudochord arrangement, the
two portions e′i, e

′
i′ of the edges ei, ei′ between the crossings cq and cr form an
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empty lens Lq,r, i.e., a region bounded by the curves e′i, e
′
i′ , which contains no

vertex of G. Hence, the total number of crossings of every other edge of G with
the curves e′i and e′i′ is even. Assume that the lens Lq,r is inclusion-minimal
(over all pairs of edges ei, ei′). Then every connected component of every edge
intersecting Lq,r has one end-point on e′i and the other end-point on e′i′ . Hence,
every edge of G has the same number of crossings with e′i as with e′i′ . It follows
that by redrawing e′i along the curve e′i′ , we decrease the total number of cross-
ings in G by two (we get rid of the crossings cq and cr) and we do not change the
type of any pseudochord in the corresponding star-cut representation of G; see
Figure 5. The redrawing of the curve e′i corresponds to the translations of the
end-points bi,j+q, bi,j+q+1, . . ., bi,j+r−1 (ai,j+q+1, ai,j+q+2, . . ., ai,j+r) next to the
end-points bi′,j′+q, bi′,j′+q+1, . . ., bi′,j′+r−1 (ai′,j′+q+1, ai′,j′+q+2, . . ., ai′,j′+r) in
the corresponding orders Ofk

(the translated end-point is moved “just behind”
the other end-point). We have constructed a perimetric order PO′

C which in-
duces less crossings than POC , a contradiction. �	

ei′

ei

cq cr

ei′

ei

Fig. 5. An empty lens allows us to decrease the number of crossings by 2

Corollary 6. If the algorithm answers “YES”, then the abstract graph A is
realizable. �	

The proof of Lemma 5 also gives an idea of an algorithmic construction of the
perimetric order of a star-cut representation of a simple realization of A:

– Choose an arbitrary set of orders Of2 , Of4 , . . ., Of2(n−1) and compute the
related orders Of1 , Of3 , . . . , Of2n−3 .

– while there exists some (i, i′)-ladder with at least two induced crossings, find
an inclusion-minimal lens Lq,r and change the orders of the corresponding
end-points in the corresponding orders Ofk

, as in the proof of Claim 5.
– Return the resulting perimetric order POC .

It is quite straightforward to verify that each step of the algorithm can be
performed in polynomial time. Using a bounded number of quantifications over
subsets (of vertices, edges, etc.) of bounded size, each step can be decomposed
into a polynomial number of elementary tasks; either those solvable in constant
time, or simple subroutines such as searching in a polynomial list or topological
sorting of a partially ordered set. More concrete estimates on running time would
require to describe the particular implementation and data structures in much
more detail, and it would only increase the technical complexity of the paper.
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The algorithm can be extended so that it finds some isomorphism class of
the arrangement with the perimetric order POC . That is, it finds the order of
crossings of the pseudochords with the other pseudochords. It is then an easy
task to compute the orders of the crossings on the edges of the simple realization
of A represented by the constructed arrangement.

Some difficulties with the computation of the orders may occur if the pseu-
dochords were drawn as straight-line segments, because we could obtain pairs of
crossings very close to each other (closer than the precision of our representation
of real numbers), and they would become indistinguishable for the algorithm. So
we choose a different approach and compute the orders recursively:

– Choose an arbitrary pseudochord p and from the perimetric order POC

identify the set {p1, p2, . . . , pk} of all pseudochords that cross p.
– Cut the circle C into two arcs, C1 and C2, by the end-points of p and define

two circles C′
1 = C1 ∪p and C′

2 = C2 ∪p. Partition the perimetric order POC

into two orders OC1 and OC2 of the end-points on the arcs C1 and C2.
– Cut each pseudochord pi, i = 1, 2, . . . , k, into two portions with one end-point

on p and the second end-point on C. Define two mutually almost-inverse
orders O1

p and O2
p of these new end-points on p such that the portions of the

pseudochords pi between p and C1 do not cross (O1
p is a counter-clockwise

order with respect to the circle C′
1 and it can be deduced from OC1).

– Define POC′
1
as a concatenation of OC1 and O1

p, and POC′
2
as a concatenation

of OC2 and O2
p.

– Recursively compute the orders of crossings on the pseudochords in the two
arrangements with the perimetric orders POC′

1
, POC′

2
and merge the com-

puted orders for the portions of pseudochords pi together.

Since we cut along each pseudochord at most once, this procedure also runs
in polynomial time.
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7. Kratochv́ıl, J., Lubiw, A., Nešetřil, J.: Noncrossing subgraphs in topological lay-
outs. SIAM Journal on Discrete Mathematics 4(2), 223–244 (1991)

8. Kratochv́ıl, J.: String graphs I: The number of critical nonstring graphs is infinite.
Journal of Combinatorial Theory Ser. B 52, 53–66 (1991)

9. Kratochv́ıl, J.: String graphs II: Recognizing string graphs is NP-hard. Journal of
Combinatorial Theory Ser. B 51, 67–78 (1991)

10. Kratochv́ıl, J.: A special planar satisfiability problem and a consequence of its
NP-completeness. Discrete Applied Mathematics 52, 233–252 (1994)
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A Appendix

A.1 Reduction from P3C3-SAT

First we describe the main idea of the reduction and then we show the specific
modifications for each of the considered problems.

Let φ be a given instance of P3C3-SAT with the set of clauses C and the set
of variables X . Chrobak and Payne [2] proved that it is possible to construct a
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rectilinear planar drawing Dφ of Gφ on the integer (2n − 4) × (n − 2) grid in
time O(n) (where n is the number of vertices of Gφ).

Based on the drawing Dφ, we construct an abstract topological graph Aφ =
((Vφ, Eφ), Rφ) as follows. We replace every clause vertex c ∈ C by an AT-
graph Hc = ((Vc, Ec), Rc) and each variable vertex x ∈ X by an AT-graph
Hx = ((Vx, Ex), Rx). Each graph Hc will have six joining vertices L

xi(c)
c , R

xi(c)
c ,

i ∈ {1, 2, 3}, where x1(c), x2(c), x3(c) are the neighbors of c in the drawing Dφ

in clockwise order. Similarly, each graph Hx will have 2 · deg(x) joining ver-
tices L

ci(x)
x , R

ci(x)
x , i ∈ {1, 2, . . . , deg(x)}, where deg(x) is the number of clauses

containing x and c1(x), c2(x), . . . , cdeg(x)(x) are these clauses ordered clockwise
according to the drawing Dφ. Then, for each clause c and variable x ∈ c (i.e.,
for each edge in Dφ) we add a joining AT-graph Jc,x = ((Vc,x, Ec,x), Rc,x)
on four vertices (Vc,x = {Rx

c , Lx
c , Rc

x, Lc
x}) and with two (joining) edges: if x

has a positive occurrence in c, then Ec,x = {{Rx
c , Rc

x}, {Lx
c , Lc

x}}, otherwise
Ec,x = {{Rx

c , Lc
x}, {Lx

c , Rc
x}}. We do not allow these two edges to intersect, so

we put Rc,x = ∅. Note that we neither allow two edges from two different graphs
Hc, Hx, Jc,x to intersect.

Now, let A′
φ = ((V ′

φ, E′
φ), R′

φ), where

V ′
φ =

⋃

c∈C

Vc ∪
⋃

x∈X

Vx,

E′
φ =

⋃

c∈C

Ec ∪
⋃

x∈X

Ex ∪
⋃

c∈C,x∈X,x∈c

Ec,x,

R′
φ =

⋃

c∈C

Rc ∪
⋃

x∈X

Rx.

In case of non-complete graphs we put Aφ = A′
φ, in case of complete graphs

we well need to add all the missing edges and allow (or force) them intersect
some other edges; we will specify this later.

The graphs Hc and Hx may be different for each of the considered problems,
but we require that they satisfy the following common conditions (where the
term “drawing” is a substitution for “realization”, “simple realization”, “weak
realization”, “simple weak realization” or “weak rectilinear realization”):

(C1) Every drawing of the graph Hc is connected (i.e., Hc need not be connected
itself, but the union of the points and arcs in its drawing in the plane must
be a connected set).

(C2) Suppose that Hc has a drawing where the vertices L
xi(c)
c , R

xi(c)
c , i∈{1, 2, 3},

are all incident with the outer face and their clockwise cyclic order Oc is
(Y1, Z1, Y2, Z2, Y3, Z3), where for each i ∈ {1, 2, 3}, we have {Yi, Zi} =
{L

xi(c)
c , R

xi(c)
c }. There are exactly 8 such possible orders. Hc does not

have a drawing with Oc = (Lx1(c)
c , R

x1(c)
c , L

x2(c)
c , R

x2(c)
c , L

x3(c)
c , R

x3(c)
c ) and

has a drawing with all the 7 remaining orders.
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(X1) Every drawing of the graph Hx is connected.
(X2) Suppose that Hx has a drawing where the vertices L

ci(x)
x , R

ci(x)
x , for i ∈ {1,

2, . . ., deg(x)}, are all incident with the outer face and their clockwise
cyclic order Ox is (Y1, Z1, Y2, Z2, . . . , Ydeg(x), Zdeg(x)), where for each i ∈
{1, 2, . . . , deg(x)}, we have {Yi, Zi} = {L

ci(x)
x , R

ci(x)
x }. Then Ox = (Lc1(x)

x ,
R

c1(x)
x , L

c2(x)
x , R

c2(x)
x , . . ., L

cdeg(x)(x)
x , R

cdeg(x)(x)
x ) or Ox = (Rc1(x)

x , L
c1(x)
x ,

R
c2(x)
x , L

c2(x)
x , . . ., R

cdeg(x)(x)
x , L

cdeg(x)(x)
x ). On the other hand, Hx has a

drawing with both these cyclic orders of the joining vertices.

We claim that these conditions imply that A′
φ has a drawing if and only if φ is

satisfiable (the only exception is the backward implication in the “weak rectilin-
ear realization” case, with which we will deal separately, using more constraints
on the graphs Hx and Hc):

Suppose that φ is satisfiable and let f : X → {TRUE, FALSE} be the satisfy-
ing evaluation of the variables. We replace each vertex x ∈ X in the drawing Dφ

by a small drawing of Hx such that the joining vertices of Hx lie on the outer face
and their cyclic clockwise order is (Lc1(x)

x , R
c1(x)
x , L

c2(x)
x , R

c2(x)
x , . . . , L

cdeg(x)(x)
x ,

R
cdeg(x)(x)
x ) if f(x) = TRUE and (Rc1(x)

x , L
c1(x)
x , R

c2(x)
x , L

c2(x)
x , . . . , R

cdeg(x)(x)
x ,

L
cdeg(x)(x)
x ) if f(x) = FALSE. Similarly, we replace each vertex c ∈ C by a small

drawing of Hc such that the joining vertices of Hc lie on the outer face and their
clockwise cyclic order is Y1, Z1, Y2, Z2, Y3, Z3 where {Yi, Zi} = {L

xi(c)
c , R

xi(c)
c },

and Yi = R
xi(c)
c if and only if the evaluation f(xi(c)) satisfies the clause c. Then

we draw the edges of the graphs Jc,x along the edges of the drawing Dφ (from
the construction it is clear that we can draw them without crossings).

Now suppose that A′
φ has a drawing. The 3-connectivity of Gφ and the condi-

tions (C1) and (X1) imply that the drawing of each of the graphs A′
φ[V ′

φ \Vc] and
A′

φ[V ′
φ \Vx] is connected. Since the joining edges (Ex,c) are without crossings, for

each graph Hc and Hx its joining vertices lie on the boundary of a common face,
which is without loss of generality the outer face. After contracting the edges
of the graphs Hc and Hx and replacing each pair of parallel joining edges by
a single edge we get a planar drawing of Gφ. The 3-connectivity of Gφ implies
that this drawing has the same or the inverse rotation system as the drawing
Dφ (and so we can assume that they are the same). This allows only 8 possi-
ble clockwise cyclic orders of the joining vertices of the graphs Hc and, by the
condition (X2), only two such possible orders for the graphs Hx. According to
the orientation of the pairs L

ci(x)
x , R

ci(x)
x in the drawings of the graphs Hx we

define an evaluation f of the variables such that f(x) = TRUE if and only if
Ox = (Lc1(x)

x , R
c1(x)
x , L

c2(x)
x , R

c2(x)
x , . . . , L

cdeg(x)(x)
x , R

cdeg(x)(x)
x ). These orders are

uniquely “translated” by the joining edges into the cyclic clockwise orders Oc of
the joining vertices of the graphs Hc. Since each of these graphs has a drawing,
the cyclic order Oc corresponds to some of the 7 satisfying evaluations of the 3
variables contained in c; see Figure 6.

Now we construct the clause and variable gadgets Hc and Hx for each of the
considered types of realization.
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Hc

Hx1(c)

Hx2(c)

Hx3(c)

TRUE
TRUE

FALSE

c = (x1(c) ∨ ¬x2(c) ∨ ¬x3(c))

R
ci(x)
x

L
ci(x)
xL

x1(c)
c

R
x1(c)
c

Fig. 6. Variables x1(c) and x2(c) satisfy the clause c

A.2 Realizability

For this problem we use almost the same variable and clause gadget as Kra-
tochv́ıl [9]. For every c ∈ C let

Vc =
3⋃

i=1

{Di
c, L

xi(c)
c , Kxi(c)

c , Rxi(c)
c , P xi(c)

c },

di
c = {Di

c, D
i+1
c }, lic = {Lxi(c)

c , Kxi(c)
c }, ri

c = {Rxi(c)
c , P xi(c)

c },

Ec =
3⋃

i=1

{di
c, l

i
c, r

i
c},

Rc =
3⋃

i=1

{{di
c, l

i
c}, {di

c, r
i
c}, {lic, l

i+1
c }, {ri

c, r
i+1
c }, {lic, r

i+1
c }}

(the indices are taken modulo 3). For every x ∈ X let

Vx =
deg(x)⋃

i=1

{Ai
x, Bi

x, Lci(x)
x , Rci(x)

x },

lix = {Lci(x)
x , Ai

x}, ri
x = {Rci(x)

x , Bi
x},

Ex =
deg(x)⋃

i=1

{{Ai
x, Bi

x}, {Bi
x, Ai+1

x }, lix, ri
x},

Rx =
⋃

2≤i�=j≤deg(x)

{{lix, ljx}, {ri
x, rj

x}, {lix, rj
x}}.
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The conditions (C1) and (X1) are obviously satisfied. The existence of the
realizations of Hc for the 7 cyclic orders of the joining vertices from the condition
(C2) is proved in [9] and the non-realizability of Hc with the cyclic order Oc =
(Lx1(c)

c , R
x1(c)
c , L

x2(c)
c , R

x2(c)
c , L

x3(c)
c , R

x3(c)
c ) is proved in [8]. The condition (X2)

for the realizability of the graph Hx is proved in [9]. Note that we cannot use
this variable gadget for the simple realizability problem, since for the order Ox

corresponding to the positive evaluation of the variable x some pairs of edges in
the realization of Hx have to cross an even number of times. However, we will
use this AT-graph as the variable gadget for all three considered weak versions
of realizability.

To obtain a complete AT-graph Aφ, we add all the missing edges to the graph
A′

φ and force them to intersect all the other edges, i.e., we put

Vφ = V ′
φ, Eφ =

(
Vφ

2

)
,

Rφ = R′
φ ∪ {{e, f}; e ∈ Eφ \ E′

φ, f ∈ Eφ, e �= f}.

Clearly, if Aφ is realizable, then A′
φ is realizable too, since it is an induced

subgraph of Aφ. On the other hand, every realization of A′
φ can be extended

into a realization of Aφ by drawing the remaining edges such that they intersect
every other edge (although some pairs of edges may have to cross many times).
This proves that the realizability is NP-hard for complete AT-graphs. The NP-
completeness then follows from the fact that the realizability of AT-graphs is in
NP [17].

A.3 Simple Realizability

We use the same clause gadget Hc as in the realizability case, since Hc can be
simply realized for any satisfying evaluation of its variables [9]. We define Hx as
follows:

Vx = {C} ∪
deg(x)⋃

i=1

{Lci(x)
x , Rci(x)

x , P i
x},

lix = {Lci(x)
x , C}, ri

x = {Rci(x)
x , P i

x},

Ex =
deg(x)⋃

i=1

{lix, ri
x},

Rx =
deg(x)⋃

i=1

⋃

1≤j≤deg(x),j �=i

{rj
x, lix}.

Figure 7 shows simple realizations of Hx with the two cyclic orders Ox from
condition (X2). It remains to show that these two orders are the only possible.
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TRUE FALSE

L
c1(x)
x R

c1(x)
x

L
c2(x)
x

R
c2(x)
x

L
c3(x)
xR

c3(x)
x

L
c4(x)
x

R
c4(x)
x

L
c1(x)
xR

c1(x)
x

L
c2(x)
x

R
c2(x)
xL

c4(x)
x

R
c4(x)
x

L
c3(x)
x R

c3(x)
x

Fig. 7. A variable gadget for the simple realizability problem

Let Dx be a realization of Hx satisfying the assumptions of (X2). We may assume
that all the joining vertices of Dx lie on a circle q and all the edges of Dx lie
inside q. The edges lix form a topological star which divides the interior of q
into deg(x) regions. For each edge rj

x there are exactly two possible orders in
which it crosses the edges lix, i �= j, either the clockwise or the counter-clockwise
order. The order also uniquely determines the position of the vertex R

cj(x)
x on

q (according to the vertices L
ci(x)
x ). Now if the edge rj

x crosses the edges of the
star in clockwise order, then so does the edge rj+1

x , since rj
x and rj+1

x must be
disjoint. By induction, all the edges rj

x cross the edges lix in the same direction,
so there are only two possible orders Ox. This finishes the proof of the NP-
completeness of the simple realizability problem (it is trivially in NP, since the
simple realizations have polynomial number of crossings).

A.4 Weak Types of Realizability

We use the same clause and variable gadgets for the weak realizability, the sim-
ple weak realizability and the weak rectilinear realizability. As we mentioned
before, the variable gadget will be the same AT-graph Hx as for the realizability
problem. It is easy to see that the weak realizations of Hx satisfying the as-
sumptions of the condition (X2) can have only two possible orders of the joining
vertices (depending on the orientation of the cycle A1

x, B1
x, . . . , Bdeg x

x ). On the
other hand, Hx has a weak rectilinear realization with both these orders; see
Figure 8. It follows that (X2) is satisfied for all three weak versions of realiz-
ability. However, we will need weak rectilinear realizations of Hx with another
restrictions.

We define Hc as follows:

Vc =
3⋃

i=1

{Lxi(c)
c , Rxi(c)

c } ∪ {X, Y, Z},

Ec = {a, b, e, f, u, v, x, y}
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TRUE

FALSE

L
c1(x)
xR

c1(x)
xL

c2(x)
xR

c2(x)
xL

cdeg(x)(x)
x

R
cdeg(x)(x)
x

L
c1(x)
x R

c1(x)
xL

c2(x)
x R

c2(x)
x

L
cdeg(x)(x)
x

R
cdeg(x)(x)
x

Fig. 8. A variable gadget for the weak realizability problem

where

a = {Lx3(c)
c , Y }, b = {Rx2(c)

c , Y }, e = {Lx1(c)
c , Y }, f = {Rx1(c)

c , Y },

u = {Rx1(c)
c , X}, v = {Lx1(c)

c , Z}, x = {Rx3(c)
c , X}, y = {Lx2(c)

c , Z},

Rc = {{x, y}, {x, b}, {y, a}, {u, a}, {u, b}, {v, a}, {v, b}}.

Suppose that Hc has a weak realization satisfying the assumptions of the
condition (C2) and that the order of the joining vertices is (Lx1(c)

c , R
x1(c)
c , L

x2(c)
c ,

R
x2(c)
c , L

x3(c)
c , R

x3(c)
c ). We can assume that all the six joining vertices lie on a

common circle q and that Hc is contained inside q. All the four edges starting
at the vertex Y are disjoint, hence they divide the interior of q into four regions;
see Figure 9. The vertex R

x3(c)
c lies between L

x3(c)
c and L

x1(c)
c and the edge x can

not intersect edges a and e, so x lies in the region bounded by the edges a and
e. Similarly, y lies in the region bounded by b and f . It implies that x and y are
disjoint. According to the order of the vertices L

x1(c)
c , R

x1(c)
c , L

x2(c)
c , R

x3(c)
c on

q, the paths xu and yv must have at least one crossing. But the only pair of the
edges x, u, y, v which is allowed to intersect, is the pair {x, y}; a contradiction.

For each satisfying evaluation of the clause c, the AT-graph Hc has a weak
rectilinear realization with the corresponding order of the joining vertices. See
Figure 9 for the five non-symmetric cases.

The proof of the NP-hardness of the weak realizability and the simple weak
realizability of AT-graphs is now finished. In case of the weak rectilinear realiz-
ability we must ensure that the edges of the joining graphs Jc,x can be drawn as
straight-line segments.

First, for each vertex v of the drawing Dφ, we choose a line tv going through
v such that tv is not parallel to any edge of Dφ. This line determines a direction
in which the corresponding gadget Hv will be oriented. For each variable vertex
x we choose a line tx such that the edge xc1(x) is the first in the clockwise order
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Fig. 9. A clause gadget for the weak realizability problem

of the edges xci(x) in one of the half-planes determined by tx. For each clause
vertex c we choose a line tc such that among the three edges incident with c
one edge, {c, x(c)}, is separated from the other two edges. Then we change the
labeling of the neighbors of c such that x1(c) = x(c).

Figure 9 certifies the validity of the following condition for Hc:

(C3) For each of the 7 orders of the joining vertices from condition (C2) there
exists a weak rectilinear realization Dc of Hc which lies inside a rectangle
Mc, and all the joining vertices of Dc lie on the perimeter of Mc on two
opposite (parallel) edges, such that L

x1(c)
c and R

x1(c)
c lie on one edge, e(Mc),

and the other four joining vertices lie on the opposite edge, f(Mc).

When drawing the AT-graph A′
φ, we place each clause gadget Hc over the

original vertex c of Dφ such that e(Mc) is parallel with tc and lies in the same
half-plane as the vertex x1(c), while f(Mc) lies in the opposite half-plane. Then
each neighbor xi(c) can be connected by a straight-line segment with the corre-
sponding joining vertices L

xi(c)
c and R

xi(c)
c without crossing.

We deal similarly with the variable gadgets. We require the following condition
to be satisfied:

(X3) For both orders of the joining vertices from condition (X2) and for every
integer k ∈ {0, 1, . . . , deg(x)} there exists a weak rectilinear realization
Dx of Hx which lies inside a rectangle Mx, and all the joining vertices of
Dx lie on the perimeter of Mx on two opposite (parallel) edges, such that
the vertices {L

ci(x)
x , R

ci(x)
x ; i ≤ k} lie on one edge, e(Mx), and the other

2(deg(x) − k) joining vertices lie on the opposite edge, f(Mx).
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If (X3) holds for each variable x, we place each variable gadget Hx over the
vertex x of Dφ such that e(Mx) is parallel with tx and lies in the same half-
plane as the vertex c1(x), while f(Mc) lies in the opposite half-plane. Then it is
safe to add all the joining edges as straight-line segments and we obtain a weak
rectilinear realization of A′

φ.
Examples of the drawings satisfying condition (X3) for k = 0 are in the

Figure 8. But it is not hard to transform them into the drawings satisfying (X3)
for other values of k: all the intersections of the half-lines Ai

xL
ci(x)
x , Bi

xR
ci(x)
x lie

inside the rectangle Mx and their directions are changing monotonously with i.
For a given k ∈ {0, 1, . . . , deg(x)}, we choose a direction α between the directions
of the k-th and the (k + 1)-th pair of the half-lines. We choose two lines e(α)
and f(α) with the direction α such that the rectangle Mx lies inside the strip
bounded by these two lines and the half-line A1

xL
c1(x)
x intersects e(α). Then the

half-lines Ai
xL

ci(x)
x , Bi

xR
ci(x)
x , where i ≤ k, intersect e(α) and the other half-lines

intersect f(α). We prolong the half-lines by translating the joining vertices to
the corresponding intersections with the border lines e(α) and f(α). We obtain
a drawing of Hx which satisfies (X3) with a given parameter k. The proof of the
NP-hardness of the weak rectilinear realizability is now finished.

For the case of complete AT-graphs, we put

Vφ = V ′
φ, Eφ =

(
Vφ

2

)
,

Rφ = R′
φ ∪ {{e, f}; e ∈ Eφ \ E′

φ, f ∈ Eφ, e �= f}.

It is now easy to prove that the resulting complete AT-graph Aφ = ((Vφ, Eφ),
Rφ) is weakly (simply, rectilinearly) realizable if and only if the AT-graph A′

φ is.
Indeed, we have proved that all the three weak versions of the realizability are
equivalent for the AT-graph A′

φ, the weak realizability of Aφ implies the weak
realizability of its induced subgraph A′

φ, and every weak rectilinear realization of
A′

φ can be extended to a weak rectilinear realization of Aφ by slightly perturbing
the vertices into a general position and adding all the remaining edges as straight-
line segments. This finishes the proof of the NP-hardness of all the three versions
of the weak realizability of complete AT-graphs.

Since the weak realizability and the simple weak realizability are in NP, they
are NP-complete problems for the class of AT-graphs and also for the class of
complete AT-graphs.

A.5 Proof of Proposiotion 3

(1) Let G and G′ be two weakly isomorphic simple complete topological graphs
on n vertices. First we prove that the rotation systems R(G) and R(G′) are
either the same or inverse.

For n ≤ 3 it is trivial, for n = 4 and n = 5 it follows from the fact
that for the simple complete topological graphs with 4 or 5 vertices the
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Fig. 10. All five non-isomorphic simple drawings of K5 [5]

isomorphism classes coincide with the weak isomorphism classes: there are
two non-isomorphic simple drawings of K4 and five non-isomorphic simple
drawings of K5 (see [5] or Figure 10) and each of them is a realization of a
different AT-graph.

Now we use the case n = 5 to extend the statement to graphs with
more than five vertices. Let A be a simply realizable complete AT-graph
with the vertex set {1, 2, . . . , n}, where n ≥ 6. We know that each complete
5-vertex subgraph of A has only two possible rotation systems. Suppose that
the rotation system of A[{1, 2, 3, 4, 5}], the induced subgraph of A with the
vertices 1, 2, 3, 4, 5, is fixed (in some simple realization of A). We show that
then the rotation system of every other 5-vertex complete subgraph of A is
uniquely determined.

Lemma. Let B and C be two 5-vertex complete subgraphs of A with exactly
4 common vertices. Then the rotation system R(B) uniquely determines the
rotation system R(C).

Proof of lemma. Without loss of generality, let V (B) = {1, 2, 3, 4, 5}, V (C) =
{1, 2, 3, 4, 6} and let the rotation of the vertex 1 in R(B) be (2, 3, 4, 5). Then
the rotation of 1 in A[{1, 2, 3, 4}] is (2, 3, 4) and it must be a subsequence
of a rotation of 1 in R(C). But this always happens for exactly one of the
pair of inverse cyclic permutations of the set {2, 3, 4, 6}. It follows that the
rotation of 1 in C is uniquely determined and so is the whole rotation system
of C. �	

By repeated use of this lemma we obtain that the rotation system of every
complete subgraph of A on 5 (and also 4) vertices is uniquely determined by
R(A[{1, 2, 3, 4, 5}]). It remains to show that this also uniquely determines
the rotation of each vertex in A. But this easily follows from the fact that
a cyclic order of a finite set X is uniquely determined by the cyclic order
of all 3-element subsets of X (actually, it suffices to know the orders of the
triples containing one fixed vertex). It follows that a simple realization of A
can have only two possible rotation systems.

Since G and its mirror image have inverse extended rotation systems,
it remains to prove that R(G) uniquely determines the rotation R(c) of
each crossing c of G. Let uv, wz be the edges that cross at c. Then R(c)
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is determined by the drawing of the induced subgraph H = G[{u, v, w, z}].
Since every two weakly isomorphic simple drawings of K4 are isomorphic,
and an isomorphism preserves or inverts the extended rotation system, it
follows that R(c) is determined by R(H), which is trivially determined
by R(G).

(2) The edges e, f, f ′ are contained in a complete 5-vertex subgraph H of G, so
the order of crossings of e with f and f ′ is determined by the isomorphism
class of H , which is determined by the AT-graph of H . �	
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