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Abstract. Power Analysis has been deeply studied since 1998 in order
to improve the security of tamper resistant products such as Trusted
Platform Module (TPM). The study has evolved from initial basic tech-
niques like simple and differential power analysis to more complex models
such as correlation. However, works on correlation techniques have es-
sentially been focused on symmetric cryptography. We analyze here the
interests of this technique when applied to different smartcard coproces-
sors dedicated to asymmetric cryptography implementations. This study
leads us to discover and realize new attacks on RSA and ECC type al-
gorithms with fewer curves than classical attacks. We also present how
correlation analysis is a powerful tool to reverse engineer asymmetric
implementations.

Keywords: Public key cryptography, arithmetic coprocessors, exponen-
tiation, side-channel analysis, reverse engineering.

1 Introduction

Public key cryptography has been widely used since its introduction by Diffie and
Hellman [DH76] in 1976. Nowadays most famous applications are RSA [RSA78],
invented in 1978 by Rivest, Shamir, and Adleman, and elliptic curves cryptosys-
tems independly introduced by Koblitz [Kob87] and Miller [Mil86].Both kinds of
asymmetric schemes require arithmetic operations in finite fields. For instance
the use of modular arithmetic is necessary for exponentiation primitive in RSA
or DSA [NIS00], as well as for point multiplication in elliptic curves. Therefore
to obtain efficient computations, dedicated arithmetic coprocessors have been
introduced in embedded devices.

For years tamper resistant devices have been considered as secure until 1996
when Kocher introduced the first side-channel attack (SCA) based on execution
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time measurements [Koc96]. A few years later power analysis was introduced
by Kocher, Jaffe and Jun [KJJ99]. Their techniques, named simple power anal-
ysis (SPA) and differential power analysis (DPA), threaten any naive crypto-
graphic algorithm implementation. Because an electronic device is composed of
thousands of logical gates that switch differently depending on the executed op-
erations, the power consumption depends on the executed instructions and the
manipulated data. Thus by analyzing the power consumption of the device on an
oscilloscope it is possible to observe its behavior and then to deduce from this
power curve some secret data. Later, in 1999, Messerges, Dabbish and Sloan
[MDS99] applied DPA to modular exponentiation which is the heart of several
public key algorithms. In 2004, Brier, Clavier and Olivier [BCO04] introduced
correlation power analysis (CPA) with a leakage model. This method has proven
its efficiency on symmetric key algorithms, and needs very few curves to recover
a secret key compared to classical DPA.

In this paper, we focus on this technique for which application to asymmet-
ric algorithms has not been yet publicly reported. We introduce new attacks,
illustrated by concrete experiments, to apply CPA on these algorithms. Indeed
any arithmetic operation can be threatened by correlation analysis. For instance,
we show how to reveal on a single correlation curve the whole private exponent
during RSA exponentiation, and even during RSA CRT exponentiations. In ad-
dition we introduce a new case for CPA: the ability to realize precise reverse
engineering. Once secret implementation and component hardware design have
been recovered more powerful attacks can be envisaged.

The paper is organized as follows. Section 2 gives an overview of asymmet-
ric algorithms embedded implementations. Section 3 describes well-known SCA
techniques related to this article. New applications of correlation analysis on
public key algorithms are discussed in Section 4. Practical results on different
smartcard coprocessors are presented, they validate our attacks and their effi-
ciency compared to classical differential power analysis. In Section 5 we present
another application domain of correlation analysis by describing how it can be
used to realize reverse engineering. We conclude our research in Section 6.

2 Public Key Embedded Implementations

We introduce here principles used later in this paper: modular multiplication and
exponentiation, especially the ones designed by Montgomery that are particularly
suitable for embedded implementations, and the RSA public key cryptosystem.

2.1 Modular Multiplication

Chip manufacturers usually embed arithmetic coprocessors to compute modular
multiplications x × y mod n for long integers x, y and n.

Montgomery introduced in [Mon85] an efficient algorithm named Montgomery
Modular Multiplication. Other techniques exist: interleaved multiplication-
reduction with Knuth, Barrett, Sedlack or Quisquater methods [Dhe98].
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Montgomery modular multiplication
Given a modulus n and two integers x and y, of size v in base b, with gcd(n, b) = 1
and r = b�logb(n)�, MontMul algorithm computes:

MontMul(x, y, n) = x × y × r−1 mod n

Algorithm 2.1. MontMul: Montgomery modular multiplication algorithm
Input: n, 0 ≤ x = (xv−1xv−2 . . . x1x0)b, y = (yv−1yv−2 . . . y1y0)b ≤ n − 1 ,
n′ = −n−1 mod b
Output: x× y × r−1 mod n

Step 1. a = (av−1av−2 . . . a1a0)← 0

Step 2. for i from 0 to v − 1 do
ui ← (a0 + xi × y0)× n′ mod b
a← (a + xi × y + ui × n)/b

Step 3. if a ≥ n then a← a− n

Step 4. Return(a)

Refer to papers [Mon85] and [KAK96] for details of MontMul implementation.

2.2 RSA

RSA signature of a message m consists in computing the value s = md mod n.
Signature s is then verified by computing m = se mod n. Integers e and d are
named the public exponent and the private exponent, n is called the modulus.

Some of the attacks introduced in this paper aim at recovering this private
exponent d during decryption. Many implementations of the RSA algorithm rely
on the Chinese Remainder Theorem (CRT) as it greatly improves performance
in terms of execution speed, theoretically up to four times faster, cf. Alg. 2.2..

Algorithm 2.2. RSA CRT
Input: p, q, dp, dq, iq = q−1 mod p: the private elements, m: the message
Output: s: the signature

Step 1. Compute mp = m mod p and mq = m mod q

Step 2. Compute sp = m
dp
p mod p and sq = m

dq
q mod q

Step 3. Compute s = sq + ((sp − sq)× iq mod p)× q

Step 4. Return(s)

In this case SCA is applied either to exponentiations to recover dp and dq, or to
the recombination step to find q or to the initial reductions to recover p and q.

Modular exponentiation is the most time-consuming operation of RSA primi-
tives. It is then essential to use an efficient method for exponentiation. Alg. 2.3.
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below, based on MontMul, gives the Montgomery exponentiation algorithm and
is particularly suited for embedded RSA implementations.

For a given modulus n = (nv−1nv−2 . . . n1n0)b, we define r = b�logb(n)� and
the following function fn:

fn : [0, n − 1] −→ [0, n − 1]
x −→ x × r mod n

Let x and y be integers such that 0 ≤ x, y < n, we denote x = fn(x) and
y = fn(y). We have the following property: MontMul(x, y, n)=x×y×r mod n =
fn(x×y) which is very useful to define the Montgomery modular exponentiation,
cf. Alg. 2.3..

Algorithm 2.3. MontExp: Montgomery Square and Multiply from left to
right
Input: integers m and n such that m < n, k-bit exponent d = (dk−1dk−2 . . . d1d0)2
Output: MontExp(m,d,n)= md mod n

Step 1. a = r

Step 2. m = fn(m)

Step 3. for i from k − 1 to 0 do
a = MontMul(a,a,n)
if di = 1 then a = MontMul(a,m,n)

Step 4. a = a× r−1 mod n = MontMul(a,1,n)

Step 5. Return(a)

3 Power Analysis

Among the different side-channel analysis techniques, we present in this section
DPA applied to modular exponentiation and recall the principles of CPA based
on a Hamming distance linear model.

3.1 Differential Power Analysis on Exponentiation

We want to recover the secret exponent d during Alg. 2.3.. We explain here the
Zero-ExponentMultiple-Data (ZEMD) attack from Messerges,Dabbish and Sloan
[MDS99]. Suppose we know the u most significant bits of d; i.e. dk−1 . . . dk−u, and
we want to recover the (u + 1)st bit of d. We make the guess dk−u−1 = g with
g = 0 or 1, and we want to confirm this guess. We execute on the device to attack
t executions of the algorithm with input messages m1 . . . mt and collect the curves
C1 . . . Ct corresponding to the power consumption of these executions.

Let Sε be the integer Sε =
∑ε−1

j=0 dk−1−j .2ε−j−1. A selection function
D(mj , dk−u−1) is defined and used to split the set of curves into two subgroups
such as: G0,u+1 = {Cj such that D(mj , dk−u−1) = 0} and G1,u+1 = {Cj such
that D(mj , dk−u−1) = 1}. For instance D(mj , dk−u−1) could be equal to the least
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significant bit of fn(mSu+1
j ) = fn(m2Su+g

j ) (if the guess of g is correct). Then com-
pute the differential trace Tu+1:

Tu+1 =

∑
Cj∈G1,u+1

Cj

|G1,u+1| −
∑

Cj∈G0,u+1
Cj

|G0,u+1|
Finally if the guess of dk−u−1 is correct, the trace Tu+1 will have DPA peaks in
the part of the curve corresponding to the manipulation of data associated to
D(mj , dk−u−1), for instance in the next square. If the guess of dk−u−1 is wrong,
no peak should be visible on trace Tu+1. Once dk−u−1 is recovered, the same
analysis can be applied successively to the following secret bits of exponent d
with Tu+2, Tu+3 . . . This attack can be improved by multi-bit selection. In that
case, the function D(mj , dk−u−1) takes into consideration several bits of the
value fn(m2Su+dk−u−1

j ) [Mes00].
We refer the reader to Appendix C where differential trace results are pre-

sented.

3.2 Correlation Power Analysis

As published by Brier, Clavier and Olivier [BCO04], it is known that CPA can be
applied to obtain successful attacks on symmetric algorithms, for instance DES
and AES, with fewer messages than classical DPA. The power consumption of the
device is supposed to be linear in H(D ⊕R), the Hamming distance of the data
manipulated D, with respect to a reference state R. The linear correlation factor
is used to correlate the power curves with this value H(D ⊕ R). The maximum
correlation factor is obtained for the right guess of secret key bits.

Let W be the power consumption of the chip, its consumption model is:

W = μH(D ⊕ R) + ν.

The correlation factor ρC,H between the set of power curves C and values
H(D ⊕ R) is defined as: ρC,H = cov(C,H)

σCσH
.

The principle of the attack is then the following:

– Perform t executions on the chip with input data m1 . . . mt and collect the
corresponding power curves C1 . . . Ct.

– Predict some intermediate data Di as a function of mi and key hypothesis
g.

– Produce the set of the t predicted Hamming distances: {Hi,R = H(Di ⊕
R), i = 1 . . . t} .

– Calculate the estimated correlation factor:

ρ̂C,H =
cov(C, H)

σCσH
=

t
∑

(CiHi,R)−∑
Ci

∑
Hi,R

√
t
∑

C2
i − (

∑
Ci)2

√
t
∑

H2
i,R − (

∑
Hi,R)2

, i = 1 . . . t

When the attacker makes the right guesses for values of the reference state R
and secret leading to data D, the correlation factor ρ is maximum. It can also
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be seen graphically by tracing the correlation curve Cρ,g. Of course, peak(s) of
correlation is (are) visible on Cρ,g when the guess is correct. The attacker has
recovered a part of the secret value and a reference state during the execution.
R can be an opcode value or a look-up-table address for instance.

4 Correlation Power Analysis of Asymmetric
Implementations

Previous CPA publications were mainly focused on symmetric algorithms such as
DES and AES. The use of CPA against public key implementations has never been
publicly investigated, except for Joye who theoretically introduced its application
to a second order attack in ECC [Joy04]. This is the subject of this section where
we present new attacks based on CPA.

4.1 Correlation on Intermediate Value in Modular Exponentiation

When computing an RSA exponentiation, if a guess g (0 or 1) is made for a
bit dk−u−1 of the secret exponent, for a message mj you can aim to correlate
the power curve with the full data R ⊕ m2Su+g

j mod n. A more realistic choice
is to select, depending on the size b of the chip multiplier, only a part of the
intermediate data :

(R ⊕ (m2Su+g
j mod n)) ∧ ωb,s

where ωb,s = bs(b − 1) and s ∈ [0, v − 1], for instance choose s = 0. Thus from
ZEMD DPA we derive a ZEMD CPA (Alg. 4.4. with MontExp).

Algorithm 4.4. ZEMD CPA on Montgomery exponentiation
Input: n the modulus, m1, . . . , mt t messages
Output: the secret exponent d = (dk−1dk−2 . . . d1d0)2

Step 1. Choose s ∈ {0, .., v-1}
Step 2. for u from 0 to k − 1 do

Guess dk−1−u = 1

A1 =
{

H((R⊕ fn(m
2Su+dk−u−1
i )) ∧ ωb,s), i = 1, . . . , t

}

ρ1 = ρ̂C,A1

Conclude dk−1−u = 1 if Cρ1 has correlation peaks else dk−1−u = 0

Step 3. Return(d)

This attack can be optimized by simultaneously searching for many bits (α) of
d, kind of α-ary CPA. In that case you have to compare 2α−1 correlation values,
the maximum correlation value corresponding to the right guess of the α bits of d.

Reference state value: The difficulty in correlation analysis is the knowl-
edge of the reference state value R, which must be known or at least guessed by
the attacker. The natural choice is to take R = 0. In that case the correlation



116 F. Amiel, B. Feix, and K. Villegas

Fig. 1. ZEMD CPA on MontExp: correct
guess

Fig. 2. ZEMD CPA on MontExp: wrong
guess

model is reduced from the Hamming distance model to the Hamming weight
one. Indeed we can expect to have either a hardware erase operation on ini-
tial register(s) of the multiplication algorithm, or the combinatorial part of the
hardware modular multiplier to be in a stall state. If not, suppose b = 28 and
s = 0: if R is a constant value then try the whole 256 different possible values
for R. The correlation analysis will be successful only for right guess of dk−1−u

and R. A more complex case can be envisaged to evaluate H(R⊕D): it consists
in choosing for R previous intermediate data, for instance R = ui, and for the
newly obtained data D the value D = ui+1 at step 2 in Alg. 2.1. (Practical
results are shown in Fig. 1 and Fig. 2.)

The correlation peaks can appear either during the data handling of the
guessed intermediate value leading to the output result of the current operation,
or caused by setting this value as input operand of the next operation (for in-
stance, in the next square). Therefore, there are two different possible sources of
correlation.

4.2 Correlation on Multiplicand Data

The drawback of ZEMD CPA is that the attack must be iterated for each guessed
bit of d (or even l-bit per l-bit), we need then to compute k (or k/l) correlation
curves. A more efficient attack can be considered when the correlation peaks are
caused by the handling of the input operand. Indeed, during an exponentiation,
for each multiplication (as opposed to squarings), one of the multiplicands is
constant and equal to m (or fn(m) for Montgomery). Therefore, by computing
correlation on this multiplicand value we can expect to obtain CPA peaks each

Fig. 3. CPA on multiplicand partial size
during exponentiation, R = 0

Fig. 4. CPA on multiplicand full size
during exponentiation, R = 0
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time it is manipulated. Thus all the multiplications by m (or fn(m)) could be
seen on this single correlation curve. The full secret d is thus recovered with a
single correlation computation on all the curves. This attack has been realized
with success on different chips. Practical results for a partial and a full correlation
on the multiplicand value during an exponentiation are shown in Fig. 3 and Fig.
4. Indeed in Fig. 4 each multiplication can be seen on the correlation curve and
as result d can be easily deduced as it would be done in SPA.

Algorithm 4.5. CPA on Multiplicand Data in Montgomery exponentiation
Input: n the modulus, m1, . . . , mt t messages
Output: secret exponent d = (dk−1dk−2 . . . d1d0)2

Step 1. Choose s ∈ {0, .., v − 1}
Step 2. Compute A = {H((R⊕ fn(mi)) ∧ ωb,s), i = 1, . . . , t}
Step 3. Compute ρ = ρ̂C,A and its related correlation curve Cρ

Step 4. Detect on Cρ the peaks to identify all the multiplications and deduce d

Step 5. Return(d)

4.3 Correlation on RSA CRT

This section introduces new CPA attacks to recover the private key elements for
each step of the Algorithm 2.2..

Correlation during CRT modular exponentiations
During modular exponentiations of message mj ; sp = m

dp

j mod p and sq = m
dq

j

mod q, it is not possible to apply ZEMD because p and q are unknown to the
attacker.

However it is possible to do correlation on the multiplicand’s value to recover
dp when mj < p and dq when mj < q. Choose mj < min(p, q) to recover
simultaneously dp and dq. For instance if p and q are both k-bit primes, select
messages mj in [2, 2k−1].

Note that this attack is not applicable to RSA CRT using Montgomery expo-
nentiation as fp(mj) and fq(mj) are unpredictable. However it can be done on
other exponentiations, using different modular arithmetic such as Barrett.

Correlation during the CRT recombination
The recombination (Step 3 of Alg. 2.2.) gives the ability to guess bits of the
value of q by CPA as s is known. Indeed, one can observe that for the upper half
bits of s we have:

⌊
s

q

⌋

= ((sp − sq)× iq mod p) +

⌊
sq

q

⌋

= (sp − sq)× iq mod p

As (sp−sq)×iq mod p is an operand of the recombination step, it is then obvious
that for the right guess of q we should be able to obtain the best correlation
factor by estimating this operand value. In practice, the attack realization needs
to guess the value of q by groups of b bits starting from the most significant



118 F. Amiel, B. Feix, and K. Villegas

words. For instance take b = 28 and the right guess of b bits of q corresponds to
the highest correlation value obtained among the 256 guesses. For more details
please refer to Alg. 4.6..

Algorithm 4.6. CPA on RSA CRT recombination
Input: s1, . . . , st t signatures
Output: the secret element q = (qv−1qv−2 . . . q1q0)b

Step 1. q = 0

Step 2.
for i from v − 1 to 0 do

gmax = 0, ρmax = 0
for g from 0 to b− 1 do

q̂ = q + (g + 0.5) × bi

A =
{

H((R⊕
⌊

sj

q̂

⌋
) ∧ ωb,i), j = 1 . . . t

}

ρg = ρ̂C,A

if |ρg | > |ρmax| then gmax = g, ρmax = ρ
q = q + gmax × bi

Step 3. Return(q)

Choosing q̂ = q + (g + 0.5) × bi instead of q̂ = q + g × bi as estimator gives the
correct decision when the correct value belongs to

[
g × bi, (g + 1) × bi

]
+ q.

On our implementation based on a Montgomery multiplier, one should take
into account that the estimation of A will depend on fn (see Paragraph 2.2).

Correlation during the initial reductions
Attacks on the initial reductions m mod p and m mod q would aim at recov-
ering p and q. Previous studies have been presented by Boer, Lemke and Wicke
[BLW02] and Akkar [Akk04]. Contrary to those previous attacks, CPA works with
any messages and fewer curves on any arithmetic operation such as addition or
subtraction. Indeed, for message reduction and no matter what the algorithm is,
the first steps always require a subtraction and/or an addition between a part
of the message and the secret modulus p or q. Note that even if the implemen-
tation is supposed to be protected against SPA, like the secure shift and reduce
division algorithm [JV02], it is possible to perform CPA. For example, if p has k
bits and the messages used for CPA, m1, . . .mt, have 2k bits, the guesses will be
performed on operands

⌊
mi−mi mod 2k

2k

⌋
− p, for i = 1, . . . , t. All the bytes of p

or q from the least significant bytes to the most significant ones can be retrivied
using this technique.

4.4 Application to Elliptic Curves Cryptosystems

ECDSA and El Gamal are two of the most widely known elliptic curves schemes.
For details we suggest the reader refer to Appendix A and [ACD+06].
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Fig. 5. CPA on ECDSA, correct guess Fig. 6. CPA on ECDSA, wrong guess

CPA on El Gamal Decryption: This primitive can be vulnerable to CPA
during the scalar multiplication Pk = [d]Qk where d is the private key. Qk is
a point of the curve returned in the ciphertext. CPA targets d. If the scalar
multiplication is performed with the Double and Add algorithm (cf. Appendix
A), different processes are done whether a given bit of d is equal to 0 or 1. An
attacker could identify the addition part by correlating consumption curves with
g(xQ) a function of coordinate(s) of the point added according to the targeted
implementation. For instance g(xQ) can be xQ ∧ ωb,0.

CPA on ECDSA signature: here, d×r mod n operation, with d the private
key and r known as part of the signature, could be sensitive to CPA. On a mod-
ular multiplier based on Montgomery implementation (see Alg. 2.1 for further
details) such leakage could occur during xi × y0 or xi × y operations. Fig. 5
illustrates a successful attack, the most significant byte of d is recovered among
256 guesses. The attack algorithm is described in Appendix B.

4.5 Practical Results and Remarks

All the attacks presented have been tested with success on several smartcard
coprocessors using different modular arithmetic implementations, cf. Fig. 7. In

Chip Algorithm Attack Curves for DPA Curves for CPA

Coprocessor 1 RSA Exponentiation Intermediate value 1500 150
RSA Exponentiation Multiplicand value 2500 300

Coprocessor 2 RSA Exponentiation Intermediate value 500 100
RSA Exponentiation Multiplicand value 1500 250

RSA CRT Recombination step No success 150

Coprocessor 3 RSA CRT Recombination step No success 4000
ECDSA d× r mod n No success 4000

RSA Exponentiation Intermediate value No success 1000
RSA Exponentiation Multiplicand value No success 3000

Fig. 7. Practical results
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our experiments, the best results are obtained for b parameter in ωb,s equal to
the radix of the multi-precision multiplier. On the other hand, another important
parameter is the reference state value R. Successful results have been obtained
with R = 0, which confirms the hypothesis that either a hardware erase operation
is done on initial register(s) of the multiplication algorithm, or the combinatorial
part of the hardware modular multiplier is in a stall state.

5 Reverse Engineering

Side channel analysis has already been used by Novak [Nov03] and Clavier
[Cla04] to reverse engineer secret GSM A3/A8 algorithms. Later Daudigny, Ledig,
Muller and Valette processed similarly on a DES implementation [DLMV].

Previously we showed that each data manipulation by the coprocessor could
be observed by CPA. It has been used to recover secret keys and data in the
previous analysis. We now show how CPA can also be used to recover the design
of the coprocessor embedded in the chip.

In most software implementations, encryption and signature verification prim-
itives do not implement any countermeasure as they do not manipulate secret
data. Such primitives could then be used by an attacker to increase knowledge
about the hardware multiplier. It could be useful as in software implementations,
unsecure and secure primitives share the same hardware resources.

Fig. 8 gives the details of the leakage of a hardware multiplier during a square
operation in RSA exponentiation.

Fig. 8. Reverse engineering by CPA on Montgomery multiplication

By CPA, we are able to determine the precise implementation of the b-bit words
multiplications in the modular multiplication algorithm: the size b of the hard-
ware multiplier and the order in which the operands are used can be determined.
We can precisely localize the instant when each data xi, yi, xi × y, ui × n, etc.
in Alg. 2.1. is manipulated. The order of use of such intermediate values de-
pends on the algorithm supposed to be implemented (for instance FIOS, CIOS
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in [KAK96]). Thus, for each guessed implementation, we can observe if the ex-
pected intermediate values appear and their exact position on the correlation
curves. If not, the guess of the implementation is incorrect. Else, by combining
many correlation curves for the different consecutives intermediate values, the
exact implementation of the multiplication can be deduced. Fig. 8 illustrates
part of the analysis we made on a chip using a Montgomery multiplier. We suc-
cessfully recovered the size b of the hardware multiplier, the sequence and the
kind of operations processed and thus the algorithm implemented for MontMul.

With such a precise knowledge, more complex attacks can be considered and
achieved to defeat the classical DPA countermeasures. Indeed higher order power
analysis attacks can also be envisaged with more precision on the cycles to com-
bine together. In [Wal01] Walter introduced the Big Mac Attack to recover a
secret exponent d only with the single power curve of the executed exponentia-
tion. Such a reverse engineering by CPA gives the necessary knowledge required
to realize this attack in the best conditions.
Such information can also be used to recover secret variables in asymmetric algo-
rithms based on private specifications when the basic structure of the algorithm
is known. Of course this implies that the attacker also needs to learn about the
implementation done: the kind of coordinates that are used for elliptic curves
(projective, Jacobian), kind of modular arithmetic, etc.

Furthermore in a fault attack scenario, the benefit of such information can-
not be neglected as the effect of each fault injection during hardware multiplier
execution could become predictable and with a really precise effect.

To avoid risks of reverse engineering we advise randomizing public elements
during the computations using techniques such as described in [Cor99], [Koc96].

6 Conclusion

Several new attacks based on CPA have been presented in this paper. These at-
tack schemes threaten most of public key algorithms such as RSA, RSA CRT or
Elliptic Curves ones (ECES, ECDSA) if efficient countermeasures, such as blind-
ing technics, are not implemented. Through experiments, we have demonstrated
that CPA can detect and characterize leakages of arithmetic coprocessors. There-
fore it gave us the ability to successfully implement the attacks we present by
using the power consumption model based on the Hamming distance between
the handled data and a constant reference state. As results of these experiments,
we have proven also that the use of CPA is an improvement compared to classi-
cal attacks such as DPA. The efficiency of CPA has led us to proceed to reverse
engineering of the design of coprocessors and then it has given the knowledge
of the type of algorithm implemented (Montgomery, Barrett, . . . ), the size of
hardware multiplier, the way to interleave operations and words in the multipli-
cation algorithm etc. Furthermore, we have stressed that such precise knowledge
of an arithmetic coprocessors can make realistic high-order side channel attacks
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or even fault attack scenarios and improves their efficiency. Therefore, in order
to avoid any potential attacker gaining experience on a secure device, we sug-
gest using randomization techniques even for encryption or signature verification
primitives usually considered as not sensitive.
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A Elliptic Curves

A.1 Double and Add Algorithm

Algorithm A.7. Double and Add
Input: E the curve, Q = (xQ, yQ) a point of E, d = (dk−1dk−2 . . . d1d0) a
scalar of k bits
Output: value P = [d]Q

Step 1. P = Q

Step 2. for i from k − 2 to 0 do
P = 2P
if di = 1 then P = P + Q

Step 3. Return(P )
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A.2 ECDSA Signature

Let the knowledge of the domain parameters be D = (p, a, b, G, n, h), the key
pair be (d, Q) with Q = [d]G and the required hash function be h(.).

Algorithm A.8. ECDSA signature
Input: D, private key d = (dk−1dk−2 . . . d1d0)2, message m, h(.).
Output: m signature= (s, r).

Step 1. Select a random u, 1 ≤ u ≤ n− 1

Step 2. Compute R = [u]G = (xR, yR)

Step 3. Compute r = xR mod n, if r = 0 go to Step1

Step 4. Compute s = u−1 (h(m) + d× r) mod n, if s = 0 go to Step1

Step 5. Return(r, s)

B Algorithm for CPA on ECDSA

Algorithm B.9. CPA on ECDSA signature
Input: (s1, r1), . . . , (st, rt) t signatures
Output: the secret element d = (dk−1dk−2 . . . d1d0)b

Step 1. d = 0

Step 2.
for i from k − 1 to 0 do

gmax = 0, ρmax = 0
for g from 0 to b− 1 do

d̂ = d + (g + 0.5) × di

A =
{

H((R⊕ f(d̂× rj)) ∧ ωb,i), j = 1 . . . t
}

ρg = ρ̂C,A

if |ρg | > |ρmax| then gmax = g, ρmax = ρ
d = d + gmax × bi

Step 3. Return(d)
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C ZEMD DPA Practical Result

Fig. 9. ZEMD DPA: right guesses for
dn−2 and dn−4, single bit selection

Fig. 10. ZEMD DPA: wrong guess for
dn−2, single bit selection
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