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Abstract. Cache based attacks (CBA) exploit the different access times
of main memory and cache memory to determine information about in-
ternal states of cryptographic algorithms. CBAs turn out to be very
powerful attacks even in practice. In this paper we present a general
and strong model to analyze the security against CBAs. We introduce
the notions of information leakage and resistance to analyze the secu-
rity of several implementations of AES. Furthermore, we analyze how
to use random permutations to protect against CBAs. By providing a
successful attack on an AES implementation protected by random per-
mutations we show that random permutations used in a straightforward
manner are not enough to protect against CBAs. Hence, to improve upon
the security provided by random permutations, we describe the property
a permutation must have in order to prevent the leakage of some key bits
through CBAs.

Keywords: cache attacks, AES, threat model, countermeasures, ran-
dom permutations.

1 Introduction

Modern computers use a hierarchical organization of different types of memories
among them fast but small cache memory and slow but large main memory.
In 2002 Page [14] presented a theoretical attack on DES that exploited timing
information to deduce information about cache accesses, which in turn reveal
information about secret keys being used. In the sequel we call attacks that
exploit information about the cache behavior cache based attacks or CBAs. In
particular, it turned out that large tables such as sboxes render an encryption
algorithm susceptible to CBAs. Tsunoo et al. [I7] published a practical CBA
against DES. Further publications of Page [15], Percival [16], Bernstein [3], Osvik
et al. [13] and Brickell et al. [7] disclosed the full power of CBAs. See [AIT0T2/T2]
for further improvements of CBAs. In particular, the fast AES implementation
[]] is susceptible to CBAs. Note that the fast implementation is used in virtually
all crypto libraries. It is susceptible to CBAs since it depends heavily on the
usage of 5 large shboxes Ty, ..., T4 each of the size of 1024 bytes.
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In this paper we present a strong model for CBAs. Within this model we
propose and analyze countermeasures that although they are quite general we
describe in detail only for AES. As was pointed out by Bernstein in [3], the
threat model that is often implicitly used for CBAs may not be strong enough. In
particular, often it is assumed that the adversary A only can extract information
from the cache before and after the encryption. This assumption is wrong from
the theoretical point of view due to the process switching of the operating system.
Moreover, it also has been practically disproved in [I1I]. Hence, several of the
countermeasures proposed in the literature so far may not be effective. In this
paper, we take into account powerful adversaries that are able to obtain cache
information even during the encryption. Within this model we show that using
random permutations to mitigate the leakage of information as proposed in [7] is
not an effective countermeasure for CBAs against AES. On one hand, we present
a CBA that shows that random permutations do not increase the complexity of
CBAs as much as one might expect. On the other hand, the same attack shows
that a random permutation does not prevent the leakage of the complete secret
key. We also consider a modified countermeasure based on so called distinguished
permutations that hedge a certain number of bits of the last round key in AES.
By this we mean, that using our countermeasure a CBA on the last round of
AES, say, will only reveal about half the bits of the last round key. As one
can see, this is the least amount of leaking information that can be provably
protected by permutations. To determine the remaining bits, an attacker has to
combine the CBA with another attack, for example a CBA on the next to last
round. We give a mathematical precise description and analysis of the property
of permutations that we need for our countermeasure. This analysis also sheds
some light on the difference between the CBA by Osvik et al. on the first two
rounds of AES [I3] and the attack of Brickell et al. on the tenth round of AES
[7]. We give a more detailed comparison of these two attacks in [6]. Finally, we
analyze the security of several implementations of AES against CBAs. One of
these implementations is provably secure within our model and can also be used
to protect the applications of permutations that are realized as table lookups.
How to apply permutations securely has not been considered before.

The paper is organized as follows. In Section Pl we introduce our threat model.
After that we introduce our main security measures, information leakage and
resistance in Section Bl We use our security measures to analyze the security
of several different implementations of AES in Section Ml In Section [l first we
consider random permutations as a countermeasure and describe a CBA on
this countermeasure. Then, we present and discuss an improved countermeasure
using so called distinguished permutations.

2 Threat Model

We consider computers with a single processor, fast but small cache memory and
large but slow main memory. Every time a process wants to read a word from
the main memory a portion of data in the size of a cache line is transferred to the
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cache. An AES encryption or decryption process is running on that computer
that takes as input a plaintext (or ciphertext) and computes the corresponding
AES ciphertext (or plaintext) with a fixed secret key k. To define our threat
model we make the following assumptions about an adversary A.

1. A knows all technical details about the underlying cryptographic algorithm
and its implementation, i.e., the position of sbox tables in memory.

2. A can feed the AES process with chosen plaintexts (or ciphertexts) and gets
the corresponding ciphertexts (or plaintexts).

3. A can determine the indices of the cache lines that were accessed during the
encryption (decryption). To do so A could use a similar method as described
in [9). In the sequel, we call the set of indices of accessed cache lines cache
information. The plaintext or ciphertext together with the cache information
is called a measurement.

4. A can restrict the cache information to certain rounds of the encryption. As
mentioned in [3] that this assumption might be realistic and the authors of
[7] practically proved its correctness.

5. A cannot distinguish between the elements of a single cache line.

A more detailed description of our threat model, i.e., further explanations and
justifications of our assumptions, can be found in [6].

3 Information Leakage and Resistance

The threat model described above is stronger than the threat models published
so far. The adversary is more powerful because A can restrict the cache infor-
mation to a smaller interval of encryption operations. This reduces the number
of accessed cache lines per measurement and increases the efficiency of CBAs.
The main questions when analyzing the security against CBAs are information
leakage and complexity of a CBA. After giving a formal definition of information
leakage we introduce the notion of the so called resistance of an implementation
as a measure that allows to estimate the complexity of a CBA.

Information leakage. The most important aspect of an implementation regarding
the security against access driven CBAs is to determine the maximal amount
of information that leaks via access driven CBAs. As we will see, the amount
of leaking information about the secret key varies depending on the details of
the CBA and the implementation of the cryptographic algorithm. We make the
following definition:

Definition 1 (information leakage). We consider an adversary who can
mount a CBA using an arbitrary number of measurements as described in Assump-
tion[d Let KC; be the set of remaining key candidates for a key byte k° at the end

of the attack on AES. Then the leaking information is 8 — log, (|l€z|> bits.

The amount of leaking information allows to estimate the uncertainty of an at-
tacker about the secret key that remains after an access driven CBA. To quantify
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the maximal amount of information A can obtain about the secret key by access
driven CBAs, we define |C'L| to be the size of a cache line in bits, |S| the number
of entries of the sbox and s the size of a single sbox element in bits. Hence, the
number of elements that fits into a cache line is '“*! and the cache information

of a single measurement leaks at most log,(|S]) — log, (l(’;”) = log, (|IC§LI| . s)
bits. Depending on the exact nature of an attack, the sets of measurements
let the attacker reduce the number of remaining key candidates after the attack.
The information leakage varies between 0 and 8 bits of information per byte. For
example, the attack on the first round of [I3] mounted on the fast implementa-
tion can determine at most 4 bits of every key byte regardless of the number of
measurements. In contrast, the attack of [7] based on the last round allows an
adversary to determine all key bits. In Section ] we present an implementation
that does not leak any information in our model.

Complexity of a CBA. The information leakage as defined above measures the
maximal amount of information a CBA can provide using an arbitrary number of
measurements. Determining the expected number of measurements an attacker
needs to obtain the complete leaking information depends on the details of the
implementation and on details of the CBA. For simplification we introduce the
notion of so called resistance. It is a general measure to estimate the complexity
of CBAs on different implementations.

Definition 2 (resistance). The resistance of an implementation is the expected
number E, of key candidates that are proven to be wrong during a single mea-
surement that is based on T rounds of the encryption.

The larger F, the more susceptible is the implementation to access driven CBAs.
In particular, if an implementation does not leak any information, then an adver-
sary cannot rule out key candidates and hence the resistance is 0. To compute
E, we always assume that all sbox lookups are independently and uniformly
distributed. This assumption is justified because an attacker A usually does not
have any information about the distribution of the sbox lookups. Hence, the best
he can do in an attack is to choose the parts of the plaintexts/ciphertexts that
are not relevant for the attack uniformly at random.

Let m be the number of cache lines needed to store the complete sbox. Each
cache line can store v elements of an sbox. Furthermore, let w be the number
of sbox lookups per round and let r be the number of rounds the attack focuses
on. In an access driven CBA a key candidate is proven to be incorrect if it
causes an access of a cache line that was not accessed during a measurement.
Assuming that all sbox lookups are uniformly distributed the expected number
of key candidates that can be sorted out after a single measurement is

B (m—l)r'w,m.v (1)

m

However, the maximal amount of information an arbitrary number of measure-
ments can reveal is limited by the information leakage. Further measurements will
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not reveal additional information. We verified by experiments that the number of
measurements needed to achieve the full information leakage only depends on E,..

In the sequel, we focus on methods to counteract CBAs. In general, there are
two approaches to counteract such a side channel. The first approach is to use
some kind of randomization to ensure that the leaking information does not re-
veal information about the secret key. Using randomization is a general strategy
that protects against several kinds of side channel attacks, see for example [5].
In Section Bl we analyze a more efficient method based on random permutations.
Before that, we consider the second approach, that is methods to reduce the
bandwith of the side channel. We present several implementations of AES and
examine their information leakage and their resistance.

4 Countermeasure 1: Modify Implementation

As Bernstein pointed out in [3] to thwart CBAs it is not sufficient to load all sbox
entries into the cache before accessing the sbox in order to compute an inter-
mediate result because A can get cache information at all times. Hence, loading
the complete sbox into the cache does not suffice to hide all cache information.
Therefore, he advises to avoid the usage of table lookups in cryptographic al-
gorithms. Computing the AES SubBytes operation according to its definition
f:{0,1}® = {0,1}%, 2 — a-INV(z) ® b would virtually cause no cache accesses
and hence seems to be secure against CBAs. However, implementing SubBytes
like this would result in a very inefficient implementation on a PC. To achieve
a high level of efficiency people prefer to use precomputed tables. In the sequel,
we analyze the security of some well known and some novel variations of im-
plementations of AES. First, we explain the different implementations of AES.
See [8] for a detailed description of AES. After that we examine the information
leakage and the resistance as defined in (I]) against CBAs:

the standard implementation as described in Section 3 of [g].

the fast implementation as described in Section 4.2 of [g].

fastV1 is based on the fast implementation. The only difference is that the sbox
T4 of round 10 is replaced by the standard sbox as proposed in [7].

fastV2 is also based on the fast implementation but uses only sbox Ty. The
description of the fast implementation of AES shows that the ith entry of the
sboxes Ty, ..., T3 is equal to the ith entry of the sbox Ty cyclically shifted by
1,2 and 3 bytes to the right respectively (see [8]). Hence, we propose to use only
sbox T in the encryption and shift the result as needed to compute the correct
AES encryption. E.g., to compute the sbox lookup T1[i] using the sbox T we
simply cyclically shift the value Ty[é] by 1 byte to the right.

small-n: A simple but effective countermeasure to counteract CBAs is to split
the sbox S into n smaller sboxes Sy, ..., S, _1 such that every small sbox S; fits
completely into a single cache line. An application S;[z] of sbox S; yields d; bits
of the desired result S[z]. Hence, the correct result can be calculated by com-
puting all bits separately and shift them into the correct position. We construct
the small sboxes S; for 0 <7 <n — 1 as follows:
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S; :{0,1}® — {0,1}% 2 — LSMJ@;;; a5 (S d)—1)

where [y 5 ¢) are the bits yy, . . . g of the binary representation of y = (yo, ..., y7).
Instead of applying the sbox S to x directly each S; is applied. The result is com-
puted as S[x] = Z?:_Ol Si[z] -2¥ 5209 In the sequel, we assume that the size of the
sbox is a multiple of the size of a cache line and that all d; are equal. Depending
on the number n of required sboxes we call this implementation small-n. E.g., let
|CL| = 512 and for 0 < ¢ < 3 let each S; store the bits (S[z])2; 2i+1. The result
S|x] is then computed as S[x] = So[z] ® S1[z] - 4 & Sa[z] - 16 P S3x] - 64. We call
this implementation small-4. Obviously, the performance depends on the number
of involved sboxes and shifts to move bits into the right position. To estimate the
efficiency we used the small-n variants in the last round of the fast implementation.
Due to the inefficient bit manipulations on 32 bit processors our ad hoc implemen-
tation of using small-4 only in the last round shows that the penalty is about 60%.
We expect that a more sophisticated implementation reduces this penalty signif-
icantly. Table[[lin the appendix shows a summary of timing measurements of the
implementations described above. The measurements were done on a Pentium M
(1400MHz) running linux kernel 2.6.18, gcc 4.1.1.

Next, we consider CBAs based on different sboxes and examine the informa-
tion leakage and the resistance of each of the implementations described above.
The standard implementation uses only a single sbox. Hence, a CBA as de-
scribed above is based on that sbox. We verified by experiments that measure-
ments taken over < 3 rounds of the standard implementation leak all key bits.
Experiments with a larger number of rounds are too complex due to the rapidly
decreasing resistance F,.. We assume that even more rounds will leak all key
bits. The resistance for all numbers of rounds is listed in column 1 of Table [2in
the appendix.

The second implementation is the fast implementation. The CBA on the first
round of [I3] on one of the sboxes Ty, ..., T3 shows that in this case the fast
implementation will reveal half of the key bits, even with an arbitrary number of
measurements. The resistance of the fast implementation against such an attack
is shown in column 2 of Table 2l The CBA on the last round of [7] based on the
sbox T4 shows that in this case the fast implementation leaks all key bits. Since
this sbox is only used in the last round the resistance as shown in column 3 of
Table 2] does not change for a different number of rounds.

The implementation called fastV1 also leaks all key bits. The resistance against
CBAs based on sboxes T, ..., T3 remains the same as listed in column 2 of Table
The resistance against CBAs based on the standard sbox is shown in column 4
of Table 2l It remains constant over the number of rounds because the standard
sbox is only used in the last round.

Like the fast implementation, the variation called fastV2 also leaks all key
bits. It uses only the large sbox T in every round. The resistance for all possible
numbers of rounds is listed in column 5 of Table 2l

Last, we consider the variants small-2, small-4 and small-8 that use smaller
sboxes than the standard sboxes. Computing S[z] using variant small-4 or
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small-8 leaks 0 bits of information having cache lines of size 512 bits because of
two reasons:

1. Every S; fits completely into a single cache line.
2. For every = each S; is used exactly once to compute S|x].

Hence, the cache information remains constant for all inputs. The only assump-
tion that is involved is that A cannot distinguish between the accesses on dif-
ferent elements within the same cache line (Assumption Bl). We expect that the
variant small-2 leaks all key bits in our setting. As we have shown above, the
variants small-4 and small-8 leak no key bit and hence have resistance 0 (see
column 7 and 8 of Table [Z). The resistance of small-2 is listed in column 6 of
Table 21

Comparison of implementations. As TableRlshows, the standard implementation
provides rather good resistance against CBAs but only has low efficiency. The
fast implementation provides the lowest resistance against CBAs but is very
efficient. Its variants fastV1 and fastV2 are almost as efficient on 32 bit platforms
but provide better resistance against CBAs. The variants using small sboxes
provide the best resistance. Especially small-4 and small-8 prevent the leakage of
information. For high security applications we propose to use one of the variants
using small sboxes and adapt the number of sboxes to the actual size of cache
lines of the system.

5 Countermeasure 2: Random Permutation

Another class of countermeasure that was already proposed but not analyzed in
[7] is to use secret random permutations to randomize the accesses to the sbox.
In this section we present a CBA against an implementation of AES secured
by a random permutation that needs roughly 2300 measurements to reveal the
complete key. This shows that the increase of the complexity of CBAs induced
by random permutations is not as high as one would expect. In particular, the
uncertainty of the permutation is not a good measure to estimate the gain of
security. A random permutation has uncertainty of log,(256!) ~ 1684 bits and
the uncertainty of the induced partition on the cache lines is log,(256!/(16!)'6) ~
976 bits.

On the other hand, we present a subset of permutations, so called distin-
guished permutations, that reduce the information leakage from 8 bits to 4 bits
per key byte. Hence, the remaining bits must be determined by an additional
attack thereby increasing the complexity. In our standard scenario this is the
best one can achieve.

We focus only on the protection of the last round of AES and we assume
that the output z of the 9th round is randomized using some secret random
permutation w. To be more precise, each byte z; of the state x = xg,...,x15
is substituted by 7(z;). To execute the last round of AES a modified sbox T}
that depends on 7 fulfilling T [ (x;)] = T4[z;] is applied to every byte x;. This
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ensures that the resulting ciphertext ¢ = cg, ..., c15 is correct. We denote the /-
th cache line used for the table lookups for T} by C L, ¢ = 0,...,15. Hence, C'L;
contains the values {S[r~1(z)]|x = 16¢,...,16¢ + 15}. Using a permutation ,
information leaking through accessed cache lines does not depend directly on x;
but only on the permuted value 7(z;). Since 7 is unknown to A the application
of 7 prevents him to deduce information about the secret key k** = k3%, ... ki?
directly. However, in the sequel we will show how to bypass random permutations
by using CBAs.

5.1 An Access Driven CBA on a Permuted Sbox

We assume that we have a fast implementation of AES that is protected by a
random permutation 7 as described above. We also assume that the adversary
A has access to the AES decryption algorithm. This assumption can be avoided.
However, the exposition becomes easier if we allow A access to the decryption.
We show how A can compute the bytes k%, ... k12 of the last round key. Let
ko denote a candidate for byte k30 of the last round key. In a first step for
each possible value @0 the adversary A determines the assignment PEO of bytes
to cache lines induced by 7 under the assumption that ko = k¢%. To be more
precise 4 computes a function

P :{0,1}* - {0,...,15}
such that if Eo is correct then for all x:

m(x) € {16P%0 (),..., 16P%0 (x) + 15}.

Le., if ko is correct then P, is the correct partition of values 7(z) into cache
lines. Let us fix some x and a candidate 76\0 for k(l)o. We set ¢ = S[z] & 76\0 and
Z/\l\o = {0,...,15}. The adversary repeats the following steps for j = 1,2,...,
until Z/\l\o contains a single element.

1. A chooses a ciphertext ¢/, whose first byte is cg, while the remaining bytes
of ¢/ are chosen independently and uniformly at random.

2. Using his access to the decryption algorithm, A computes the plaintext p’
corresponding to the ¢7. 4

3. By encrypting p, the adversary A determines the set D} of indices of cache
lines accessed for the table lookups for T} during the encryption of p’.

4. A sets ]/\4\0 = ]/\4\0 N D6

If My = {y}, then A sets P, (z) = y. Repeating this process for all  yields the
function P@O which has the desired property.

Under the assumption that the guess @0 was correct, the function PEO is the
correct partition of values 7(z) into cache lines. Moreover, it is not difficult to
see that the information provided by PEO enables the adversary to mount an
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attack similar to the CBA on the last round of m This attack can be used to
determine for each possible ko a set of vectors kh .. k15 of hypotheses for the
other key bytes. For the time being, we assume that 7 has the property that for
each kg there remains only a single vector of hypotheses for the other key bytes.
In general, a random permutation has this property (for a mathematical precise
definition and analysis of that property see Section [(£.2)). Hence, based on this
property in the end there are only 256 AES keys left and a simple brute force
attack reveals the correct one.

Cost Analysis. Experiments show that in the first step of the attack A needs
on average 9 measurements consisting of a pair (p’,c’) and the corresponding
cache information D} such that the intersection JT/[\O := (D} contains only a
single element y = P, (z). We need to determine the mapping P, (z) for ev-

ery key candidate @0 and every argument = € {0, 1}%. Hence, a straightforward
implementation of the attack needs roughly 256 - 256 - 9 measurements to deter-
mine the function P (z) for all arguments = € {0,1}® and all key candidates

ko € {0,1}®. However, one can reuse measurements for different key candidates
@07% to reduce the number of measurements to roughly 256 - 9 = 2304. To de-
termine the vector of hypothesis based on the candidate 76\0 we can reuse the
measurements obtained by determining the function PEO‘ Hence, the expected
number of measurements of this attack is 2304.

5.2 Separability and Distinguished Permutations

From a security point of view, it is desirable to reduce the information leakage.
E.g., a CBA alone should reveal as little information as possible, in particular
it should not reveal the complete key. Then the adversary is forced to either
mount a refined and more complex CBA based on other intermediate results or
combine the CBA with some other method to determine the key bytes uniquely.
In this case, the situation is similar to the attack of [I3], where a CBA on the
first round only reveals 4 bits of each key byte. Hence Osvik et al. combine CBAs
on the first and second round of AES.

First, we present the property a permutation applied to the result of the 9-th
round should have such that A cannot determine the key bytes uniquely using
only a CBA on the last round. We denote the ¢th cache line by C' Ly and the
elements of C'Ly by a(z) .. a§5) Hence, the underlying permutation used to
define this cache line is given by

7160+ j) = S al"). (2)

We say that a key candidate 74;\0 is separable from the first key byte ko of the
last round if there exists a measurement that proves ko to be wrong. Conversely,
a key candidate ko is inseparable from the key ko if there does not exist a
measurement that proves ko to be wrong. More precisely, writing ko =ko®6
the bytes ko and kg are inseparable if and only if

Ve e {0,...,15}NVa € CLy:a® 6 € CLy. (3)
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Notice that this property only depends on the difference § and not on the
value of kg. Since there are 16 elements of the sbox in every cache line property
@) can only be satisfied by at most 16 differences. It turns out that for |[A| = 16
the set

A= {5 | for all kg € {0,1}® the bytes ko and ko & J are inseparable}

forms a 4 dimensional subspace of Fys viewed as a 8 dimensional vector space
over Fy. It is obvious that the neutral element 0 is an element of A and that
every § € A is its own inverse. It remains to show that A is closed with respect to
addition. Consider §,¢’ € A and an arbitrary a € CLy . Then a’ =a® 6 € CL,
implies that a’' ® 0’ =a ® § @ ¢’ € CLy because of (@) and 6 ® §’ € A holds.
Hence, any partition that has the maximal number of inseparable key can-
didates must generate a subspace of dimension 4. Using this observation we
describe how to efficiently construct permutations such that the set A of insep-
arable differences has size 16. In the sequel, we will call any such permutation a
distinguished permutation. Next, we describe how to construct the subspace.

Construction of the subspace. We first construct a set A of 16 differences that
is closed with respect to addition over Fo56. We can do this in the following way

1. set A := {dp := 0}, choose d; uniformly at random from the set {1,...,255},
set A:=AU{0}

2. choose d3 uniformly at random from {1,...,255}\ A, set A := AU{dz, 03 :=
91 @ 02}

3. choose §4 uniformly at random from {1,...,255}\ A, set A := AU{d4, 5 :=
94 @ 01,06 := 04 B 02,07 := 04 D I3}

4. choose ds uniformly at random from {1,...,255}\ A, set A := AU{dg, dg :=
08 @ 01,010 1= 08 D 02,011 := 08 @ I3, 012 := 0 @ 64,013 := 08 D J5,014 :=
08 @ 06,015 := 08 B 07}

This construction ensures that A is closed with respect to addition and hence
A forms a subspace as desired.

Construction of the permutation. Now we can compute the function P that
maps S[z] € F§ to a cache line. We use the fact that 16 proper translations of
a 4 dimensional subspace form a partition of a 8 dimensional vector space F5.
A basis {bg,...b3} of the subspace A can be expanded by 4 vectors by, ...br
to a basis of F§. The 16 translations of A generated by linear combinations of
by, ...,by form the quotient space F§/A that is a partition of F§ . To construct
the function P we do the following:

1. for every cache line C'L, do
2. choose a'®) uniformly at random from Foss/{a) @6 | j < £,6 € A}
3. fill CL, with the values of the set {a @ § | § € A}

Using (2)) this partition into cache lines defines the corresponding permutation.
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Analysis of the countermeasure. The security using a distinguished permutation
as defined above rests on two facts.

1. Using a distinguished permutation where the set A of inseparable differences
has size 16, a CBA on the last round of AES will reveal only four bits of
each key byte k}°. Overall 64 of the 128 bits of the last round key remain
unknown. Therefore, the adversary has to combine his CBA on the last round
with some other method to determine the remaining 64 unknown bits. For
example, he could try a modified CBA on the 9-th round exploiting his
partial knowledge of the last round key. Or he could use a brute force search
to determine the last round key completely.

2. There are several distinguished permutations and each of these permutations
leads to 16! different functions mapping elements to 16 lines. If we choose
randomly one of these functions, before an adversary can mount a CBA on
the last round of [7], he first has to use some method like the one described
in Section [5.1] to determine the function P that is actually used.

We stress that we consider the first fact to be the more important security fea-
ture. We saw already in Section Bl that determining a random permutation
used for mapping elements to cache lines is not as secure as one might expect.
Since we are using permutations of a special form the attack described in Sec-
tion [ can be improved somewhat. In the remainder of this section we briefly
describe this improvement. To do so, first we have to determine the number of
subspaces leading to distinguished permutations. As before view F3 := {0,1}"
as an n-dimensional Fy vector space. For 0 < k < n we define D,, ; to be the
number of k-dimensional subspaces of Fy. To determine D,, , for V' an arbitrary
m-dimensional subspace of F we define

Nk = {(v1,...,08)|v; € V,u1,...v; are linearly independent }|.

The number N, . is independent of the particular m-dimensional subspace V,

Ny k
New: Next we

observe that N, = H?;é(?m —27) = 2k(k=1)/2 H?;é(Qm_j —1). Hence, we
obtain that
1= —1)
Dn,k: = ?c—l b .
[[=o (2" -1)
In our special case we have n = 8 and k = 4 and hence the number of 4
dimensional subspaces is Dg 4 = 2551';277,36,?{'31 = 200787.

As mentioned above, each subspace leads to 16! different distinguished permu-
tations. Hence, overall we have 200787 - 16! ~ 2% distinguished permutations.
On the other hand, because of the special structure of our permutations, to de-
termine the function P by CBAs can be done more efficiently than determining
an arbitrary function mapping elements to cache lines (see Section B.]). In par-
ticular, A only needs to observe about 7 accesses of a single but arbitrary cache
line. With high probability this will be enough to determine a basis of the sub-
space being used. In addition, A needs at least one access for every other cache

it only depends on the two parameters m and k. Then D, =
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line in order to determine the function P. The corresponding probability exper-
iment follows the multinomial distribution. We did not calculate the expected
number of tries exactly. Experiments show that if we can determine the accessed
cache line exactly, on average 62 measurements suffice to compute the function
P exactly. However, a single measurement only yields a set of accessed cache
lines. But arguments similar to the ones used for the first part of the attack in
Section (.1l show that we need on average 9 measurements to uniquely determine
an accessed cache line. Therefore, on average we need 62 -9 = 558 experiments
to determine the function P.

Hence, compared to the results of Section [£.]] we have reduced the number of
measurements used to determine the function P by a factor of 3. However, we
want to stress again, that the main security enhancement of using distinguished
permutations instead of arbitrary permutations is the fact, that distinguished
permutations have a lower information leakage. To improve the security, one
can choose larger key sizes such as 192 bits or 256 bits. Since distinguished
permutations protect half of the key bits, the remaining uncertainty about the
secret key after CBAs can be provably increased from 64 bits to 96 bits or 128
bits, respectively. In the full version of the paper [6] we describe an efficient and
secure realization of random and distinguished permutations using small sboxes
as described in Section [4]

Separability and random permutations. In our CBA on an implementation pro-
tected by a random permutation (Section[B5.1]) we assumed that fixing a candidate
@0 determines the candidates for all other key bytes. With sufficiently many mea-
surements for a fixed kg we can determine the function PA as defined in Section

EIl Furthermore, we saw that the separability of candldates k P depends only
on their difference § = kok. Hence, to be able to rule out all but one candi-
date k at position i for a fixed ko the permutation 7 must have the following
property:

V6 #0375 €{0,...,15}3a € CL; :a® 6 ¢ CL;.

There are less than 2844 of the 256! ~ 21634 permutations that do not have this

property. Hence, a random permutation satisfies this condition with probability
844

1- 21684 -

6 Summary of Countermeasures and Open Problems

In this paper we presented and analyzed the security of several different imple-
mentations of AES. Moreover, we analyzed countermeasures based on permu-
tations: random permutations and distinguished permutations. We give a short
overview over the advantages and disadvantages of selected countermeasures:

countermeasure # measurements information in bits /security efficiency
small-4 ) 0 / high slow
random permutation 2300 128 / low fast

distinguished permutations 560 64 / medium fast
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The second column shows the expected number of measurements an attacker
has to perform in order to get the amount of information shown in the third
column.
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A Appendix

Table 1. Timings for different implementations of AES

# sboxes fast standard fastV1 fastV2 small-2 small-4 small-8
~1 1.32

time factor 1

~3

~1

1.6

Table 2. The resistance E, of AES implementations as defined in ()

1

standard

S

Ey 2.57

Ey 2.57-
E3 2.58 -
Ey 2.58-
Es 2.59 -
Es 2.59 -
E7 2.60 -
Ly 2.61-
. 10-16

Ey 2.61

Eip 2.62-

1072
1074
1076
108
10— 10
10712
10—14

10—18

2
fast
To,..., T3
198.0
153.0
118.0
91.2
70.4
54.4
42.0
32.5
25.1
25.1

3

4

fast Ty fastV1

T4
91.2
91.2
91.2
91.2
91.2
91.2
91.2
91.2
91.2
91.2

S

2.57
2.57
2.57
2.57
2.57
2.57
2.57
2.57
2.57
2.57

fastV2

-

6

small-2

To So,S1
91.2  3.91-107°
325  5.96-1078
11.6  9.09-107 %
412 1.39-10717
147  212-10722
5.22-1071 3.23-107%
1.86 - 107! 4.93 . 10732
6.62-10727.52-107%"
2.36-10721.15-107%
8.39-107% 1.75 - 10746

109
1.95
7 8
small-4 small-8

So,...,S3 So,...,S7

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0
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