
D. Mery and L. Rueda (Eds.): PSIVT 2007, LNCS 4872, pp. 853–866, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Adaptive Key Frame Selection
for Efficient Video Coding

Jaebum Jun, Sunyoung Lee, Zanming He,
Myungjung Lee, and Euee S. Jang

Digital Media Lab., Hanyang University
17 Haengdang-dong, Seongdong-gu, Seoul, 133-791, Korea
powerory@hotmail.com, profjang@gmail.com

Abstract. Recently, many researches on frame skipping are conducted to
reduce temporal redundancy in video frames. As a simple method, fixed frame
skipping (FFS) adjusts frame rate by skipping frame at regular intervals. To
overcome the poor performance of FFS, variable frame skipping (VFS) has
been introduced to exploit the temporal dependency between frames. In this
paper, scene-adaptive key frame selection method with low complexity is
proposed. The proposed method performed about 20 percent better in
complexity with the better visual quality than the conventional video encoding.
As a preprocessing method, the proposed technology can be used with any
conventional video codec.

Keywords: variable frame skipping, frame interpolation, fame rate control.

1 Introduction

Many conventional video codecs tried to reduce temporal redundancy in video frames
by means of motion estimation and motion compensation (MEMC). MEMC was
performed as a part of video encoding process.

As an alternative approach, frame skipping (FS) method has been investigated. It is
to further exploit the temporal redundancy of video frames by skipping some video
frames in encoding. The skipped video frames may be generated at the decoder by
repeating the previous video frame or by interpolating neighboring frames.

By employing FS in the coding process, one can allocate the more bits for each
frame in encoding. By lowering the frame rate, the better picture quality can be
obtained for the encoded frames. FS helps in downsizing the decoding time and the
complexity by reducing the number of coded frames. These are the clear advantages
of FS over MEMC.

The performance of FS is highly dependent upon the selection of coded (or
uncoded) frames from the given video sequence. The most critical issue in FS is not
to lose semantically important frames after FS. Therefore, a key element in FS is to
distinguish repetitive or easily-interpolatable frames from the video sequence.

In FS, there are two representative approaches: fixed frame skipping (FFS) and
variable frame skipping (VFS). By skipping frames at regular intervals, FFS is a useful
technology for very low bit rate environment [1]. FFS is simple to implement, but suffers
severe quality degradation due to the jerky effect in the sequence with high motion.

 J. Jun et al. 854

In the case of VFS, the interval of skipping frames can be changed depending on
the similarity in video frames. Therefore, it can reduce the jerky effect when the
bitstream is decoded and interpolated. Several methods are proposed in VFS [2]-[4].

Based on the similarity of the last two frames in the previous group of pictures
(GOP), Song[2] defined the variable frame rate of the current GOP. However, the
method showed a limited performance in the presence of high motion in a scene, since
the frame rate of the current GOP is predicted only from the previous GOP
information and the range of the variable frame rate was not flexible enough.

Pejhan[3] proposed a dynamic frame rate control mechanism. He tried to separate
files containing motion vectors at the low frame rates. However this method has to
analyze the entire encoding video sequence for adjusting frame rates. Due to the
complexity that all the frames are to be analyzed, it would be difficult to use the
method in real time applications.

Kuo[4] proposed a VFS method that introduced interpolation in the encoding
process. The results reported in [4] produced the better PSNR quality than
conventional coding with no FS. In [4], the method is closely coupled with the
encoding process targeted for low resolution and low bit rate applications.

In this paper, we proposed a straightforward skipping algorithm by adaptively
selecting key frames depending on the similarity of video sequence. In designing the
proposed scheme, we focused on two requirements: low computational complexity
and efficient selection of key frames.

The main objective of our method is to build a framework that provides good
enough visual quality to the user. We tried to reach the level of good enough quality
not necessarily by minimizing the difference (e.g., PSNR) between the original and
interpolated video frames, but rather by semantically interpolating in between key
frames. In this case, the level of visual quality can only be estimated correctly by
subjective test with independent viewers.

The remainder of this paper is organized as follows. In Section 2, the proposed
method is described including frame skipping and frame interpolation processes.
Experimental results are provided in Section 3. We summarized the paper and listed
the future work in Section 4.

2 Adaptive Key Frame Selection

Our proposed system can be described as shown in Fig. 1. The proposed frame
skipping (FS) process can be implemented either inside or outside of the encoding
process, since the FS is not dependent upon the encoding process. After FS, only the

Fig. 1. Block diagram of the encoding and decoding process of the proposed system

 Adaptive Key Frame Selection for Efficient Video Coding 855

selected frames will be encoded by the encoder. Once these encoded frames are
decoded from the transmitted bitstream, frame interpolation is performed at the
decoder side.

2.1 Frame Skipping

The proposed frame skipping algorithm can be described with the following three
steps:

Step 1: Define the maximum cluster size.
Step 2: Analyze similarity between neighboring frames and form clusters.
Step 3: Select key frames.

The maximum cluster size (MCS) is defined in Step 1. A cluster is defined as a set
of consecutive video frames with high similarity. The definition of MCS may be
needed to meet the physical cluster size for application needs. For example, the MCS
can be defined to be 30 to ensure that frame skipping does not last more than a
second. The definition of the MCS does not affect the encoding/decoding process. It
is only used to identify and form a cluster in Step 2.

The similarity among neighboring video frames is checked to identify clusters
from the given video sequence in Step 2. In this paper, to measure distortion between
two frames, PSNR is used as depicted in Fig. 2. For simplicity, tools such as sum of
absolute difference (SAD) may be used instead. A cluster is identified when all the
PSNR values of video frames in the cluster are higher than a certain threshold:

PSNR Tii ≥+)1,((1)

where PSNR)1,(+ii is the PSNR value between the i-th and (i+1)-th frames and T

is the threshold.
If PSNR)1,(+ii is larger than the threshold, it is assumed that the i-th frame has

little similarity to the (i+1)-th frame and a scene change is happened between the i-th
and (i+1)-th frames as shown in Fig. 3. We have assigned an appropriate value to the
threshold for each test sequence in empirical approach.

This clustering method would include a case that PSNR between the first frame
and the last frame in a cluster is lower than the threshold. From the experiments, we
found that such a case exists and clustering is still effective. When such a case
happens, it means that only a small part of an entire frame is moving. This creates a
gradual change in PSNR, which results in a great difference between the first and the
last frames. However, it would be nicely interpolated when using motion vector
information at the decoder side.

Fig. 2. PSNR computation between consecutive image frames

 J. Jun et al. 856

Fig. 3. Example of forming clusters

In Step 3, the first and the last frames in a cluster are candidates for the key frame
as shown in Fig. 4 (a). In forming clusters, it is also possible for neighboring two
clusters overlapped by one key frame as depicted in Fig. 4 (b). It is usually caused
when the MCS is set too small and the actual cluster size is larger than the MCS.
When two clusters are overlapped, the last frame of the first cluster will be the first
frame of the second cluster. If three consecutive clusters are overlapped, the number
of selected key frames becomes four.

The number of the skipped frames can be identified when reading the time stamp
in each selected video frame. If there is a certain jump in time stamp between two
consecutive frames, the decoder can detect how many frames are skipped by
computing the difference of the two time stamps.

2.2 Frame Interpolation

When we use the frame skipping at the encoder side, skipped frames will be
interpolated by using key frames at the decoder side. There are several methods to
interpolate skipped frames such as repetition, bilinear interpolation, and motion
compensated interpolation (MCI) [4], [5]. In this paper, we used an MCI-based
method at the decoder side.

The proposed MCI-based interpolation method is performed to reproduce N skipped
frames in between the first and the last key frames in a cluster. For the interpolation of
the i-th skipped frame (i = {1, …, N}), the following procedure can be applied:

Step 1: [Bilinear interpolation] perform bilinear interpolation (cf. Eqn. 3) using the
first and the last key frames to fill the i-th skipped frame.

Step 2: Select an MB in the last key frame with the following conditions: 1) a
nonzero MV and 2) the smallest MV value among the unprocessed MBs.

Step 3: [First-frame background filling] Fill the collocated MB in the i-th skipped
frame with the collocated MB in the first key frame according to Eqn. 4.

Step 4: [Last-frame background filling] Using the MB where the MV of the selected
MB is pointing in the last key frame, fill the collocated area of the i-th
skipped frame according to Eqn. 5.

Step 5: [Motion compensated bilinear interpolation] Find the area in the skipped
frame with the scaled MV from the selected MB in the last key frame. Update
the area by bilinear interpolation of the area which the MV of the selected
MB in the last key frame is pointing and the selected MB in the last key
frame according to Eqn. 6.

Step 6: Go to Step 2, until all MBs in the last key frame are processed.

 Adaptive Key Frame Selection for Efficient Video Coding 857

(a) No overlapped cluster

(b) Overlapped cluster

Fig. 4. Selecting key frames

The basic principle in interpolation is to use a two-pass interpolation. The first pass
is the bilinear interpolation between the first and last key frames. In the second pass,
we exploited the MV values in the last key frame to identify moving objects between
the first and the last key frames.

When the i-th skipped frame is interpolated, interval ratio (R) should be computed
based on the time stamps of the first, the last, and the i-th skipped frames:

firstlast

firsti

TT

TT
R

−
−

= (2)

where
iT ,

firstT ,
lastT are the time stamps of the i-th skipped, the first, and the last

video frames, respectively.
For bilinear interpolation the following equation can be formulated:

)1(),(),(),(RyxPRyxPyxP firstlasti −×+×= (3)

where),(yxPi
,),(yxPlast

, and),(yxPfirst
 denote pixel values at the x-th row and the

y-th column of the i-th skipped, the last, and the first video frame respectively.
The bilinear interpolation is a very simple method to reduce the computational

complexity. However, the visual quality using bilinear interpolation is poor in the
presence of fast moving objects in the first and the last key frames. In order to
overcome this shortcoming, the second pass with the MVs in the last frame is
performed.

In the second pass, we start with the MBs with small MV values to large MV
values. The reason that we start with MBs with small MVs is due to the fact that
moving objects with high motion is more influential to the visual quality of the
interpolated frame. Therefore, the MB with the largest MV will be used last.

:Non-Key frame to be skipped : Key frame to be code

 J. Jun et al. 858

Once there is an MB selected with nonzero MV, three operations follow as shown
in Fig. 5: first-frame background (FB) filling, last-frame background (LB) filling, and
motion compensated bilinear interpolation (MCBI).

FB filling is to fill an MB in the skipped frame with the collocated MB in the first
frame:

),(),(yxPyxP firsti = (4)

In LB filling, the area in the first key frame pointed by the selected MB in the last
key frame is identified first. The collocated (to the pointed area in the first key frame)
area in the skipped frame will be filled with the collocated area in the last key frame:

),(),(yxlastyxi MVyMVxPMVyMVxP ++=++
 (5)

In MCBI, the filled area in the skipped frame can be found using the interval ratio
(cf. Eqn. 2) and MV in the last key frame as shown in Fig. 5. The area will be filled
by bilinear interpolation as follows:

RyxPRMVyMVxP

RMVyRMVxP

lastyxfirst

yxi

×+−×++=

×+×+

),()1(),(

))(,)((

 (6)

where
xMV ,

yMV are motion vectors of macro block in the last key frame, which

references the first key frame.

3 Experimental Results

For the evaluation of the proposed method, we used MPEG-4 simple profile (SP) as a
test bed on a PC equipped with Intel Core2Duo 2.8GHz running Windows Vista. The
test sequences used in the experiment are shown in Table 1. For MPEG-4 SP codec,
we used the MPEG-4 reference software [6], where no optimization is performed. For
simplicity of the experiment, we used only one MV per MB.

Table 2 shows the result of the proposed key frame selection. With three different
MCS values for each test sequence, it is observed that the more frames will be
skipped with the larger MCS value. This is more apparent in Akiyo and Container,
whereas the variation in the number of selected key frames is marginal when the
video sequence is highly active such as in Stefan.

Fig. 5. MCI-based Interpolation

 Adaptive Key Frame Selection for Efficient Video Coding 859

Table 1. Test Sequence

Sequence Resolution Number of frames FPS
Akiyo CIF (352x288) 300 30
Container CIF (352x288) 300 30
Stefan SIF (352x240) 300 30

Table 2. Key frame selection results

Test
sequence

MCS
(frames)

T
(dB)

Number of clusters Selected key
frames/

average fps
3 38 85 215 (21.5)
7 38 36 141 (14.1)

Akiyo

12 38 24 124 (12.4)
3 38.2 75 225 (22.5)
7 38.2 40 150 (15.0)

Container

12 38.2 30 124 (12.4)
3 23 11 289 (28.0)
7 23 6 282 (28.2)

Stefan

12 23 5 280 (28.9)

We chose arbitrary thresholds (T) for clustering from sequence to sequence,

keeping in mind that a high threshold is assigned when there is low in motion as
shown in Table 1.

A large cluster is divided into multiple clusters when MCS decreases. For example,
there are 24 clusters formed in Akiyo when MCS was set to 12, where as 61 more
clusters formed when MCS was set to three with the same threshold. Overall, it is
shown that the average frames per second (fps) can be controlled with MCS and T. In
the table, the average fps varied from 12.4 to 28.9.

We have depicted a bar graph in Fig. 6, which indicates the selected key frames in
Akiyo sequence. A bar in the figure indicates a selected key frame. If the distance
between two neighboring bars is greater than one, there is a cluster. From the figure, it
is clearly noticed that the number of the skipped frames is highly affected by MCS.

For the estimation of the computational complexity, we measured the encoding and
decoding time in Table 3. Compared with the encoding time of MPEG-4 SP, the
skipping time including encoding time of the proposed method is faster for all the test
sequences. Our proposed skipping method requires only PSNR computation between
two neighboring frames and reduces the coding time according to the number of the
skipped frames. Furthermore, decoding time of the proposed method including the
interpolation time is also comparable with the decoding time of MPEG-4 SP.

Table 4 shows the number of the coded frames for MPEG-4 SP and the proposed
method at the similar bit rate. The reduced number of frames in the proposed method
resulted in high visual quality, since more bits per frame can be assigned in encoding
using the lower quantization parameter (Qp). Obviously, the better visual quality in
key frames leads to the better visual quality in interpolation.

 J. Jun et al. 860

(a) MCS = 3

(b) MCS = 7

(c) MCS = 12

Fig. 6. Selected key frames in Akiyo

We evaluated the PSNR values between the original and reconstructed sequences
using two methods (MPEG-4 SP and proposed interpolation method), where the MCS
value is 7. For test sequences except Akiyo, the average PSNR values using two
methods are quite close to each other. In the case of Akiyo sequence, the average
PSNR value of the reconstructed sequence using the proposed method is 36.38dB,
whereas that using MPEG-4 SP is 34.44dB as shown in Fig. 7. The results obtained in
Akiyo sequence are rather surprising in that we did not expect the objective quality
using the proposed method would excel that using MPEG-4 SP.

Fig. 8 shows the comparison of reconstructed key frames from MPEG-4 SP and the
proposed method. If many frames are skipped as in the case of Akiyo and Container,

Table 3. Evaluation of encoding time and decoding time (in seconds)

 MPEG-4 SP Proposed Method

Test
Sequence MCS=3 MCS=7 MCS=12

Encoding Akiyo 14.64 11.90 8.42 7.78
Time Container 19.56 18.87 14.78 13.04

 Stefan 33.08 31.81 31.63 32.22
Decoding Akiyo 3.09 2.98 2.48 3.10

Time Container 3.21 2.99 3.07 3.04
 Stefan 4.04 4.19 4.15 4.45

 Adaptive Key Frame Selection for Efficient Video Coding 861

Table 4. Comparison of Qp between MPEG-4 SP and the proposed method

Test sequence Method Qp Coding frames Bitstream size
(byte)

MPEG-4 SP 16 300 138,323
MCS=3 12 215 134,330
MCS=7 9 141 127,858

Akiyo
Proposed
Method

MCS=12 8 124 125,174
MPEG-4 SP 16 300 228,041

MCS=3 14 225 210,438
MCS=7 10 150 216,991

Container
Proposed
Method

MCS=12 9 124 218,381
MPEG-4 SP 16 300 1,094,888

MCS=3 16 289 1,074,832
MCS=7 16 282 1,060,963

Stefan
Proposed
Method

MCS=12 16 280 1,049,128

Fig. 7. Comparison of PSNR in Akiyo

the improved visual quality of the encoded key frames is apparent. In the case of
Stefan, not many frames are skipped due to high motion. In such a case, there is no
apparent gain in Qp.

In Fig. 9, the screenshots of the first key frame, the interpolated frame, and the last
key frame using the proposed method are compared with the corresponding frames
using MPEG-4 SP. In Akiyo and Container sequences, the interpolated frames are
better than the coded frames using MPEG-4 SP in that there are less visual artifacts
due to the better key frames. It does not necessarily mean that the interpolated frame
is close to the original skipped frame. As explained earlier, the main objective of this
work is to reproduce the interpolated frame with semantically acceptable visual
quality. In the case of Stefan, the interpolated frame is worse than the coded frame
using MPEG-4 SP. It means that frame skipping and interpolation of video sequences
with high motion is of little value.

 J. Jun et al. 862

(a) Akiyo screenshot with MPEG-4
SP (Qp = 16)

(b) Akiyo screenshot with the proposed
method (MCS=7 & Qp =9)

(c) Container screenshot with
MPEG-4 SP (Qp = 16)

(d) Container screenshot with the proposed
method (MCS = 7 & Qp = 10)

(e) Stefan screenshot with MPEG-4
SP (Qp = 16)

(f) Stefan screenshot with the proposed
method (MCS=7 & Qp =16)

Fig. 8. Screenshot of the selected key frames

 Adaptive Key Frame Selection for Efficient Video Coding 863

Fig. 9a. Akiyo screenshot

Fig. 9b. Container screenshot

 J. Jun et al. 864

Fig. 9b. (continued)

Fig. 9c Stefan screenshot

 Adaptive Key Frame Selection for Efficient Video Coding 865

Fig. 9c. (continued)

Screenshots of the interpolated frames in the form of

MPEG-4 Proposed
Decoded frame First key frame (decoded)
Decoded frame Interpolated frame
Decoded frame Last key frame (decoded)

We also conducted a subjective test (mean opinion score: MOS) with 40 viewers.

The viewers are chosen from the first year undergraduate students who are taking C
programming classes, where these viewers cannot be regarded as image processing
experts. The viewers are given three video sequences: 1) the original test sequence
and 2) two test video sequences using MPEG-4 SP and the proposed method (with an
arbitrary order). After viewing, the viewer scored the test sequences between one
(very corrupted) and five (undistinguishable with the original).

In this subjective test, we set the Qp value (16) in using MPEG-4 SP. For the test
sequences of the proposed method, we used the cases, in which MCS is set to 3 for all
test sequences with different Qp value as shown in Table 4.

Fig. 10 shows the results of the MOS of the blind test. In Akiyo and Container, the
viewers gave more scores on the proposed method, while the best and the worst
scores for the proposed method are the same or better than those for MPEG-4 SP. In
the case of Stefan, the lower score was anticipated due to its difficulty in forming
clusters. Considering that the interpolated frames using the proposed method are not

Fig. 10. MOS of the blind test

 J. Jun et al. 866

necessarily mathematically closer to the original frames than those using MPEG-4 SP,
the subjective test results prove that the good enough quality reached using the
proposed method.

4 Conclusion

In this paper, we proposed an adaptive key frame selection method to adaptively
select key frames for the better interpolation at the decoder. From the experimental
results, we showed that the proposed method is simple and efficient. Because of its
low complexity at the encoder side as well as at the decoder side, the proposed
method is well suited in real-time environment.

In this paper, the more focus has been given to the frame skipping part. Yet, a good
frame interpolation is as important as a good frame skipping. Research on frame
interpolation mechanism to yield good enough visual quality with low complexity
should be continued in the future.

References

1. ITU -T Study Group 16.: Video codec test model, near-term, version8 (TMN8). ITU -
Telecommunications Standardization Sector, Q15-A-59 (1997)

2. Song, H., Kuo, C.-C.J.: Rate control for low-bit-rate video via variable-encoding frame
rates. IEEE Trans. Circuits Syst. Video Technol 11(4), 512–521 (2001)

3. Pejhan, S., Chiang, T.-H., Zhang, Y.-Q.: Dynamic frame rate control for video streams.
ACM Multimedia 1, 141–144 (1999)

4. Kuo, T.-Y.: Variable Frame Skipping Scheme Based on Estimated Quality of Non-coded
Frames at Decoder for Real-Time Video Coding. Ieice Trans. Inf. and Syst E88-D (12),
2849–2856 (2005)

5. Kuo, T.-Y., Kim, J., Kuo, C.-C.: Motion-compensated frame interpolation scheme for
H.263 codec. In: Circuits and Systems, ISCAS 1999, vol. 4, pp. 491–494 (1999)

6. MPEG-4 Reference Software,
http://mpeg.nist.gov/cvsweb/MPEG-4/MPEG4RefSoft/Video/natural/microsoft-2.5-
040207-NTU/

	Adaptive Key Frame Selection for Efficient Video Coding
	Introduction
	Adaptive Key Frame Selection
	Frame Skipping
	Frame Interpolation

	Experimental Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

