
D. Mery and L. Rueda (Eds.): PSIVT 2007, LNCS 4872, pp. 24 – 35, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Motion Compensation Hardware Accelerator
Architecture for H.264/AVC

Bruno Zatt1, Valter Ferreira1, Luciano Agostini2, Flávio R. Wagner1,
Altamiro Susin3, and Sergio Bampi1

1 Informatics Institute
Federal University of Rio Grande do Sul

Porto Alegre – RS – Brazil
2 Informatics Department

Federal University of Pelotas
Pelotas – RS – Brazil

3 Electrical Engineering Department
Federal University of Rio Grande do Sul

Porto Alegre – RS – Brazil
{bzatt, vaferreira, flavio, bampi}@inf.ufrgs.br

agostini@ufpel.edu.br
Altamiro.Susin@ufrgs.br

Abstract. This work presents a new hardware acceleration solution for the
H.264/AVC motion compensation process. A novel architecture is proposed to
precede the luminance interpolation task, which responds by the highest compu-
tational complexity in the motion compensator. The accelerator module was in-
tegrated into the VHDL description of the MIPS Plasma processor, and its vali-
dation was accomplished by simulation. A performance comparison was made
between a software implementation and a hardware accelerated one. This com-
parison indicates a reduction of 94% in processing time. The obtained through-
put is enough to reach real time when decoding H.264/AVC Baseline Profile
motion compensation for luminance at Level 3.

Keywords: Video Coding, H.264/AVC, MPEG-4 AVC, Motion Compensation,
Hardware Acceleration.

1 Introduction

Currently, the development of embedded devices that use some system of video player
is growing. Such systems need to find a balance between the computational complex-
ity, to execute their functions, and the excessive increasing in the energy consumption.

On the other hand, the H.264/AVC standard of video [1,2] compression, due to its
high complexity, needs powerful processors and hardware support to work accordingly
with the application requirements. Furthermore, the motion compensation operation
presents one of the highest computational complexities in a H.264/AVC [3] decoder.
This high complexity also implies in large energy consumption. This work intends to
generate an efficient embedded solution for the H.264/AVC motion compensation.

 Motion Compensation Hardware Accelerator Architecture for H.264/AVC 25

In this work, a general purpose processor was used together with a specific designed
accelerator hardware to meet the embedded motion compensation requirements. The
processor used was the MIPS Plasma processor, and the two-dimensional FIR filter
was designed as the accelerator hardware. Then a satisfactory real time performance
was obtained for the motion compensation process. As the operation frequency of
Plasma is relatively low (74MHz), the energy consumption of this solution could be
lower than that obtained through the design of the complete motion compensation in
hardware. Other advantage is the time-to-market, once processor-based systems are
more quickly designed than specific integrated circuits.

This paper is organized as follows. Section 2 presents the H.264/AVC standard. The
motion compensation process in the H.264/AVC and its main features are presented in
the third section. In Section 4, the proposed MC hardware accelerator architecture is
presented in details. The integration with the MIPS processor is shown in Section 5.
Section 6 presents the synthesis results and the performance comparison. Finally, Sec-
tion 7 concludes the work.

2 The H.264/AVC Standard

H.264/AVC [1] is the latest video coding standard of the ITU-T Video Coding Experts
Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG). H.264/AVC
provides higher compression rates than earlier standards as MPEG-2, H.263, and
MPEG-4 part 2 [2].

The H.264/AVC decoder uses a structure similar to that used in the previous stan-
dards, but each module of a H.264/AVC decoder presents many innovations when
compared with previous standards as MPEG-2 (also called H.262 [4]) or MPEG-4
part 2 [5]. Fig. 1 shows the schematic of the decoder with its main modules. The input
bit stream first passes through the entropy decoding. The next steps are the inverse
quantization and inverse transforms (Q-1 and T-1 modules in Fig. 1) to recompose the
prediction residues. Motion compensation - MC (also called INTER prediction) re-
constructs the macroblock (MB) from neighbor reference frames, while INTRA pre-
diction reconstructs the macroblock from the neighbor macroblocks in the same
frame. INTER or INTRA prediction reconstructed macroblocks are added to the resi-
dues, and the results of this addition are sent to the deblocking filter. Finally, the re-
constructed frame is filtered by the deblocking filter, and the result is sent to the
frame memory. This work focuses on the motion compensation module, which is
highlighted in Fig. 1.

Fig. 1. H.264/AVC decoder diagram

26 B. Zatt et al.

H.264/AVC was standardized in 2003 [1] and defines four profiles, targeting differ-
ent applications. These profiles are called: Baseline, Main, Extended, and High. The
Baseline profile (which is the focus of this work) focuses on low delay applications
and was developed to run on low-power platforms. The Main profile is oriented to high
image quality and HDTV applications. It added some different features with regard to
the Baseline profile, like: bi-prediction, weighted prediction (WP), direct prediction,
CABAC, and interlaced video capabilities [1, 2]. The Extended profile was developed
for streaming video applications. Finally, the High profile, which was defined in 2005
by the FRExt (Fidelity Range Extension) [2] extension, provides support to different
color sub-sampling (4:2:2 and 4:4:4), besides all Main profile features. The standard
also defines sixteen operation levels [1, 2], which are classified in accordance to the
desired processing rate. This work presents an embedded solution for motion compen-
sation of an H.264/AVC decoder considering the Baseline profile at Level 3.

3 Motion Compensation in H.264/AVC

The operation of motion compensation in a video decoder can be regarded as a copy of
predicted macroblocks from the reference frames. The predicted macroblock is added
to the residual macroblock (generated by inverse transforms and quantization) to re-
construct the macroblock in the current frame.

The motion compensator is the most demanding component of the decoder, con-
suming more than half of its computation time [3]. Intending to increase the coding
efficiency, the H.264/AVC standard adopted a number of relatively new technical
developments. Most of these new developments rely on the motion prediction process,
like: variable block-size, multiple reference frames, motion vector over picture
boundaries, motion vector prediction, and quarter-sample accuracy. This paper will
explain in more details just the features that are used in the Baseline profile.

Quarter-sample accuracy: Usually, the motion of blocks does not match exactly in
the integer positions of the sample grid. So, to find good matches, fractional position
accuracy is used. The H.264/AVC standard defines half-pixel and quarter-pixel

(a) (b)

Fig. 2. (a) Half-sample luma interpolation and (b) Quarter-sample luma interpolation

 Motion Compensation Hardware Accelerator Architecture for H.264/AVC 27

accuracy for luma samples. When the best match is an integer position, just a 4x4
samples reference is needed to predict the current partition. However, if the best
match is a fractional position, an interpolation is used to predict the current block.
A matrix with 4x9 samples is needed to allow the interpolation of a fractionary
vector in the 'X' direction, while a matrix with 9x4 samples is needed to allow the
interpolation of a fractionary vector in the 'Y' direction. When the fractionary vec-
tors occur in both directions, the interpolation needs a matrix with 9x9 samples.
This need of extra samples to allow the interpolation has a direct impact on the
number of memory accesses.

Fig. 2(a) shows the half-samples interpolation, which is made by a six-tap FIR fil-
ter. Then, a simple average from integer and half-sample positions is used to generate
the quarter-sample positions, as shown in Fig. 2(b).

Multiple reference frames: In H.264/AVC, slices are formed by motion compen-
sated blocks from past and future (in temporal order) frames. The past and future
frames are organized in two lists of frames, called List 0 and List 1. The past and
future frames are not fixed just to the immediate frames, as in early standards. Fig. 3
presents an example of this feature.

Fig. 3. Multiple Reference Frames

4 MC Hardware Accelerator Architecture

The hardware accelerator module for MC targets the bi-dimensional FIR filter, which
is used in the luminance quarter-pixel interpolation process. This filter was designed
using the 1-D separability property of 2-D FIR filters. Other MC filter implementations
presented in the literature [6, 7, 8] use a combination of different vertical and horizon-
tal FIR filters serially and target an ASIC implementation. In the architecture of this
work, the 2-D interpolation is done by only four FIR filters used for vertical and hori-
zontal filtering. The bilinear interpolation used to generate quarter-sample accuracy is
done by bilinear filters embedded in the FIR filters.

The hardware accelerator was designed to process 4x4 samples blocks. A six-tap fil-
ter is used to generate a block of 4x4 interpolated samples. An input block of up to 9x9
samples is necessary to generate the interpolation.

The motion compensation luminance filtering considers eight different cases in this
accelerator architecture, as listed below and presented in Fig. 4:

Current
Frame Past Reference Frames Future Reference Frames

28 B. Zatt et al.

(a) No interpolation: The samples by-pass the filters;
(b) No vertical interpolation without ¼ samples: the samples pass the FIR filters

once with FIR interpolation;
(c) No vertical interpolation with ¼ samples: the samples pass the filters once

with FIR and bilinear interpolation;
(d) No horizontal interpolation without ¼ samples: the samples by-pass the fil-

ters and are stored in the transposition memory, then the memory columns are
sent to the FIR filters once with FIR interpolation;

(e) No horizontal interpolation with ¼ samples: the samples by-pass the filters
and are stored in the transposition memory, then the memory columns are sent
to the FIR filters once with FIR and bilinear interpolation;

(f) Horizontal and vertical interpolations without ¼ samples: the samples pass
the filters twice with FIR interpolation;

(g) Horizontal and vertical interpolations with ¼ samples: the samples pass the
filters twice with FIR interpolation in the first time and with FIR and bilinear
interpolation in the second one;

(h) Horizontal and two vertical interpolations with ¼ samples: the samples pass
the filters three times with FIR interpolation in the first and second times and
with FIR and bilinear interpolation in the third time;

Fig. 4. Filtering cases

Fig. 5 presents the proposed MC hardware accelerator organization as well as its
main modules and connections. The number above each connection indicates its width
considering the number of 8-bit samples.

The first procedure to start each block processing is to set up the filtering parame-
ters. In this case, the parameters are only the motion vector coordinates ‘X’ and ‘Y’.
This information defines the kind of filtering that will be used and spends one clock
cycle. The ‘X’ and ‘Y’ coordinates are stored in two specific registers inside the archi-
tecture, which are omitted in Fig. 5.

 Motion Compensation Hardware Accelerator Architecture for H.264/AVC 29

Fig. 5. MC unit architecture

The input receives a line with 9 samples, and these samples are sent to the FIR filter
module. This module contains four 6-tap FIR filters working in parallel. After the
interpolation, which generates four half-pixel samples, these results are sent to a trans-
position memory together with four non-interpolated samples. If just 1-D interpolation
is needed, then the filter output is sent directly to the output memory. This process is
repeated up to nine times to process all the 9x9 input block, completing the first 1-D
filtering and filling the 8x9 samples transposition memory.

After filling the transposition memory by shifting the lines vertically, the columns
are shifted horizontally to the left side, sending the left column samples to the filter to
be interpolated in the second dimension. Each column is composed by 9 full or half-
samples.

The quarter-samples are generated together with the half-samples during the same
filter pass. Each filter can perform the FIR filtering and the bilinear filtering at the
same clock cycle, since the bilinear filter is embedded in the FIR filter as shown in Fig.
6. However, when quarter-sample accuracy is needed, other four samples must be sent
to the filters.

Depending on the filtering case, the transposition memory is filled using a different
order to simplify the multiplexing logic for the FIR input. When just the half-samples
need to be interpolated again in the second filter loop, they are sent to the four left
memory columns (columns 0 to 3) and the full samples are sent to the four right col-
umn (column s 4 to 7). When just full samples need to be filtered in the second filter
loop, these samples are sent to the left columns (columns 0 to 3) and half-samples to
the right columns (columns 4 to 7). Finally, when both half and full samples need to be
filtered, the columns are interleaved, even columns are filled with full samples while

30 B. Zatt et al.

odd columns are filled with half-samples (columns 0, 2, 4, and 6 for full-samples and
1, 3, 5, and 7 for half-samples).

When just half or full samples are interpolated, after the second filtering loop the re-
sults are sent to the output memory, which stores the output block of 4x4 interpolated
samples. If both half and full samples must be filtered again, the full samples are proc-
essed and the outputs are stored in four delay registers to create one cycle of delay. So,
in the next cycle, when the half-sample columns filtered by the FIR filter, the interpo-
lated samples processed in the past cycle are sent to the embedded bilinear filter to
generate the quarter-sample. After the interpolation is completed, the output is also sent
to the output memory.

The output memory can be read by column or by lines, depending whether the input
was transposed or not. The kind of output depends on the type of interpolation and is
controlled through an output multiplexer.

Each FIR filter is composed by six taps with coefficients (1, -5, 20, 20, -5, 1). Fig. 6
shows the FIR filter hardware, which was designed using only additions and shifts to
eliminate the multiplications. With six 8-bit inputs (E, F, G, H, I, J), the FIR block in-
cludes five adders, two shifters, one subtractor, and a clipping unit to keep the values in
the range [0..255]. A bilinear filter was embedded in the FIR filter. As inputs, the bilin-
ear filter uses the FIR output and an 8-bit input (Y) to perform the bilinear filtering.

Fig. 6. FIR filter block diagram

The MC unit was described in VHDL and validated by simulation using the Mentor
Graphics ModelSim software. The simulation was controlled by a testbench also writ-
ten in VHDL.

5 Integration

To evaluate the designed hardware accelerator, it was integrated with a general-
purpose processor. The MIPS Plasma core was chosen because of its simple RISC

 Motion Compensation Hardware Accelerator Architecture for H.264/AVC 31

organization and because its VHDL description was available in the “Opencores”
community [9]. The MIPS Plasma organization and its integration with the MC hard-
ware accelerator module can be seen in Fig. 7.

The MIPS Plasma processor is fully compliant with the MIPS I(TM) ISA, but with-
out support to non-aligned memory access instructions. It was designed using a Von
Neumann architecture with 32x32-bits registers and three pipeline stages.

The integration demanded some modifications on the MC accelerator and on the
MIPS Plasma core. Once the processor data bus is 32-bits wide and the input of MC is
72-bits wide, a hardware wrapper was designed to make them compatible. Finally,
some changes in the processor control block were made to insert new instructions and
to call the new module tasks.

MC spends a variable number of cycles to process a 4x4 block, and the Plasma
processor does not support parallel instructions execution. Therefore, the processor
pipeline is kept frozen while this module is working.

Fig. 7. Integration architecture among MIPS Plasma and MC unit

The MC unit architecture uses an input interface modeled as a ping-pong buffer (see
Fig. 8), which receives a 32-bit word per cycle, storing up to three words. After the
module received the appropriate number of words, a specific instruction sends the
signal to start the processing.

Each word is read from the Plasma memory, sent to the processor register bank, and
finally sent to the ping-pong buffer. This happens up to three times to process each MC
input line. Finally, the words are sent to the MC accelerator. The ping-pong buffer
filling process happens up to nine times for each block. Many clock cycles are spent to
feed the MC unit. After loading, the data processing occurs relatively fast. After the
processing, the results can be read from MC registers to the Plasma register bank.

32 B. Zatt et al.

Fig. 8. Ping-Pong buffer

Some new instructions were added to the MIPS Plasma instruction set to control
the MC module. Each operation of reading, writing, or setting the MC hardware accel-
erator originated a new processor instruction. The new instructions use a MIPS type
R format (as shown in Fig. 9) composed by a 6-bit op-code field, two 5-bit
source register index fields, one 5-bit target register index field, and one 6-bit function
field.

The new instructions use in the op-code field the value “111111”, while in the func-
tion field the values from “000000” to “0000100” were used. This op-code value is
reserved for eventual instruction set expansions. The new instructions are listed in
Table 1. The MC_WRITE instruction uses the “Rt” field to indicate the source register,
while the MC_READ instruction uses the “Rd” field to point the target register. The
other register fields need no specific value.

Fig. 9. Type R MIPS Instruction

Table 1. New Instructions

Function Name Description

000000 MC_SET Sets motion vector coordinates
000001 MC_WRITE Writes a word
000010 MC_PROC Starts the filtering
000100 MC_READ Reads a word

The final integration step was the validation of the integrated modules. An as-

sembly code was written using the new instructions to feed and control the MC
hardware accelerator. This assembly was loaded to the Plasma ROM memory, and
its correct execution was verified through simulation using the Mentor ModelSim
software.

 Motion Compensation Hardware Accelerator Architecture for H.264/AVC 33

6 Results and Comparisons

The MIPS Plasma processor and the MC accelerator architectures were synthesized
targeting a Xilinx Virtex-2 PRO FPGA device (XC2VP30-7) [10] using the Xilinx ISE
8.1 software.

Table 2 shows the resource utilization for the Plasma processor and the MC module
in the second and third columns, respectively. The fourth column presents the synthesis
results for the processor integrated to the MC hardware accelerator. Finally, the last
column shows the ratio between synthesis results obtained for the Plasma version with
the hardware accelerator and for its original version. The synthesis results presented an
important increasing in hardware resource utilization besides a degradation in the
maximum operation frequency. The high increasing in register utilization occurs be-
cause the memories inside the MC module were implemented as banks of registers and
not as Block-RAMs available in this FPGA family.

Table 2. Synthesis Results

 Plasma MC MC + Plasma Increase

LUTs 2599 1594 3966 52 %
Reg 402 758 1262 213 %

Slices 1378 891 2172 57 %
Freq. ~90MHz ~74 MHz ~74 MHz -21%

Two different software codes were described to compare the performances of the

standard MIPS Plasma and the modified MIPS Plasma. The first code makes the mo-
tion compensation task in software without any hardware acceleration. The second
solution is a HW/SW solution using the hardware acceleration instructions to call the
new MC module. For a fair comparison, the software solution was optimized to have
no multiplications, since a multiplication spends 32 clock cycles in this processor.
Additions and shifts were used to eliminate multiplications.

The first software solution (without MC accelerator) was described in C language
based on the H.264/AVC reference software (JM 12.2) [11]. GCC was used as a cross
compiler to generate MIPS machine code. This machine code was mapped to the MIPS
Plasma ROM memory. The software was analyzed through simulations using Mentor
Graphics ModelSim 6.0. These simulations were used to count the number of clock
cycles necessary to process a 4x4 samples block at each different interpolation case.

The HW/SW solution demanded an assembly description to use the new instruc-
tions. The same method of simulation used in the first code was applied to the HW/SW
solution. Another way to generate the code using MC accelerating instructions is
adapting the GCC compiler to use these instructions, but this solution was not imple-
mented in this paper.

The results obtained in the simulation process are shown in Tables 3 and 4. These
tables present a considerable increase in performance with the use of the MC accelera-
tion hardware. The performance increase reaches more than 95% in clock cycles and
94% in execution time, when comparing the average gains of the HW/SW solution in

34 B. Zatt et al.

relation to the SW one. As expected, because of the simplicity of the Plasma processor,
the increase in area was relatively high and the performance gains were expressive.

The first and second columns of Tables 3 and 4 present the different interpolation
cases and their probability of occurrence.

In Table 3, the third column presents the total number of clock cycles spent to proc-
ess each kind of block using a SW solution. The three following columns show the
number of cycles spent to process a block in the HW/SW solution, considering also the
cycles used for memory accesses and for effective processing. The seventh column
presents the percentage of reduction in number of clock cycles when using the MC
accelerator.

Table 4 shows the total execution time for the SW and HW/SW solutions in the
third and fourth columns, respectively. The last column presents the percentage of
reduction in terms of execution time, considering 90 MHz for the SW solution and 74
MHz for the HW/SW one.

Table 3. Results and Comparison (clock cycles)

SW HW/SW Interpolation
Cases

Prob. Total # of
Cycles

Memory
Cycles

Processor
Cycles

Total # of
Cycles

Clock
Cycles

Reduction

No Interpolation 1/16 187 24 8 32 82.89%
No Vertical S/1/4 1/16 802 44 8 52 93.52%
No Vertical C/1/4 1/8 1069 44 8 52 95.14%

No Horizontal S/1/4 1/16 811 62 17 79 90.26%
No Horizontal C/1/4 1/8 1084 62 17 79 92.71%
Vert. & Hor. S/ 1/4 1/16 2245 62 17 79 96.48%
Vert. & Hor. C/ 1/4 1/4 1717 62 17 79 95.40%

Vert. & 2 Hor. C/ 1/4 1/4 2667 62 21 83 96.89%
Weighted Average - 1617.9 56.25 15.75 72 95.55%

Table 4. Results and Comparison (execution time)

SW HW/SW Interpolation
Cases

Prob.
Time (ns) Time (ns)

Total Time
Reduction

No Interpolation 1/16 207.78 43.24 79.19%
No Vertical S/1/4 1/16 891.11 70.27 92.11%
No Vertical C/1/4 1/8 1187.78 70.27 94.08%

No Horizontal S/1/4 1/16 901.11 106.76 88.15%
No Horizontal C/1/4 1/8 1204.44 106.76 91.14%
Vert. & Hor. S/ 1/4 1/16 2494.44 106.76 95.72%
Vert. & Hor. C/ 1/4 1/4 1907.78 106.76 94.40%

Vert. & 2 Hor. C/ 1/4 1/4 2963.33 112.16 96.22%

Weighted Average - 1797.71 97.30 94.59%

 Motion Compensation Hardware Accelerator Architecture for H.264/AVC 35

7 Conclusions

This work presented a new architectural solution for a hardware accelerator for the
motion compensation of an H.264/AVC Baseline Profile video decoder. The applica-
bility in embedded devices was demonstrated. The MC accelerator was validated and
successfully integrated to the MIPS Plasma VHDL description. Through simulations,
data were extracted to evaluate the performance increase of the proposed solution.
Results indicate sufficient performance to execute the luminance motion compensation
decoding task in real time for H.264/AVC Baseline Profile at level 3. H.264/AVC at
level 3 demands decoding 525SD (720x480) video sequences at 30 fps or 625SD
(720x576) video sequences at 25 fps. The HW/SW performance gains were compared
to a SW solution running in the MIPS Plasma processor. These results indicate a reduc-
tion of 95% in the number of necessary clock cycles and a reduction of 94% in execu-
tion time when using the MC accelerator.

This architecture working at 74MHz and using an average number of 72 clock cy-
cles to decode each 4x4 block can process up to 64.2K P-type macroblocks (16x16
samples) per second, reaching an average processing rate of 39.6 P-frames per second
for 625SD (720x576).

References

1. JVT, Wiegand, T., Sullivan, G., Luthra, A.: Draft ITU-T Recommendation and Final Draft
International Standard of Joint Video Specification (ITU-T Rec.H.264 ISO/IEC 14496-10
AVC). JVT-G050r1, Geneva (2003)

2. International Telecommunication Union.: Advanced Video Coding for Generic
Audiovisual Services. ITU-T Recommendation H(264) (2005)

3. Wiegand, T., Schwarz, H., Joch, A., Kossentini, F., Sullivan, G.: Rate-constrained Coder
Control and Comparison of Video Coding Standards. IEEE Transactions on Circuits and
Systems for Video Technology 13, 688–703 (2003)

4. International Telecommunication Union: Generic Coding of Moving Pictures and
Associated Audio Information - Part 2. ITU-T Recommendation H(262) (1994)

5. International Organization For Standardization. Coding of Audio Visual Objects - Part 2
ISO/IEC 14496-2 - MPEG-4 Part 2 (1999)

6. Azevedo, A., Zatt, B., Agostini, L., Bampi, B.: Motion Compensation Decoder Architecture
for H.264/AVC Main Profile Targeting HDTV. In: IFIP International Conference on Very
Large Scale Integration, VLSI SoC, Nice, France, pp. 52–57 (2006)

7. Wang, S.-Z., Lin, T.-A., Liu, T.-M., Lee, C.-Y.: A New Motion Compensation Design for
H.264/AVC Decoder. In: International Symposium on Circuits and Systems. In: ISCAS,
Kobe, Japan, pp. 4558–4561 (2005)

8. Chen, J.-W., Lin, C.-C., Guo, J.-I., Wang, J.-S.: Low Complexity Architecture Design of
H.264 Predictive Pixel Compensator for HDTV Applications. In: Proc. 2006 IEEE
International Conference on Acoustics, Speech, and Signal Processing, ICASSP,
Toulouse, France, pp. 932–935 (2006)

9. OPENCORES.ORG (2007), Available from: URL: http://www.opencores.org/projects.cgi/
web/ mips/overview

10. Xilinx Inc. (2007), Availabe from: http://www.xilinx.com
11. H.264/AVC JM Reference Software (2007), Available from: URL: http://iphome.hhi.de/

suehring/tml

	Motion Compensation Hardware Accelerator Architecture for H.264/AVC
	Introduction
	The H.264/AVC Standard
	Motion Compensation in H.264/AVC
	MC Hardware Accelerator Architecture
	Integration
	Results and Comparisons
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

