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Abstract. With the increasing needs in security systems, iris recognition is 
reliable as one important solution for biometrics-based identification systems. 
Empirical Mode Decomposition (EMD), a multi-resolution decomposition 
technique, is adaptive and appears to be suitable for non-linear, non-stationary 
data analysis. This paper presents an effective approach for iris recognition 
using the proposed scheme of Modified Empirical Mode Decomposition 
(MEMD) to analyze the iris signals locally. Since MEMD is a fully data-driven 
method without using any pre-determined filter or wavelet function, MEMD is 
used as a low-pass filter to extract the iris features for iris recognition. To verify 
the efficacy of the proposed approach, three different similarity measures are 
evaluated. Experimental results show that those three metrics have achieved 
promising and similar performance. Therefore, the proposed method 
demonstrates to be feasible for iris recognition and MEMD is suitable for 
feature extraction. 

Keywords: Biometrics, iris recognition, Empirical Mode Decomposition 
(EMD), multi-resolution decomposition. 

1   Introduction 

Biometrics is inherently a more reliable and capable technique to identity human's 
authentication by his or her own physiological or behavioral characteristics. The 
features used for personnel identification by current biometric applications include 
facial features, fingerprints, iris, palm-prints, retina, handwriting signature, DNA, 
gait, etc. [1], [2] and the lowest error recognition rate is achieved by iris recognition 
[3]. With the increasing interests, more and more researchers gave their attention into 
the field of iris recognition. 

Recently, iris recognition approaches can be roughly divided into four categories: 
phase-based approaches [4], zero-crossing representation [5], texture analysis [6], [7], 
and intensity variation analysis [8], [9]. Daugman’s algorithm [4] adopted the 2D 
Gabor filters to demodulate phase information of iris. Each phase structure is 
quantized to one of the four quadrants in the complex plane. The Hamming distance 
was further used to measure the 2048-bits of iris code. Boles and Boashash [5] 
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proposed the zero-crossing of 1D wavelet transform to represent distinct levels of a 
concentric circle for an iris image, and then two dissimilarity functions were used for 
matching. Wildes et al. [6] analyzed the iris texture using the Laplacian pyramids to 
combine features from four different resolutions. Normalized correlation is selected to 
decide whether the input image and the enrolled image belong to the same class. L. 
Ma et al. [8], [9] proposed a local intensity variation analysis-based method and 
adopted the Gaussian-Hermite moments [8] and dyadic wavelet [9] to characterize the 
iris image for recognition. 

Feature extraction is a crucial processing stage for pattern recognition. 
Traditionally, basis decomposition techniques such as Fourier decomposition or 
Wavelet decomposition are selected to analyze real world signals [10]. Also, Fourier 
and Wavelet descriptors have long been used as powerful tools for feature extraction 
[10], [11], [12]. However, the main drawback of those approaches is that the basis 
functions are fixed, and do not necessarily match varying nature of signals. The 
Empirical Mode Decomposition (EMD) was firstly proposed by Huang et al. [13] for 
analyzing nonlinear and non-stationary time series. Any complicated data set can be 
decomposed into a finite and often small number of intrinsic mode function (IMF) 
components representing the data features. Those extracted components can match the 
signal itself very well. Motivated by that EMD provides a decomposition method to 
analyze the signal locally and separate the component holding locally the highest 
frequency from the rest into a separate IMF, in this paper, EMD technique is modified 
and refined to extract distinguishable features from iris images, called Modified 
Empirical Mode Decomposition (MEMD). There are two merits for using MEMD to 
extract features for iris recognition. First, MEMD is a fully data driven method 
without using any pre-determined filter [8], wavelet function or Fourier-wavelet basis 
[12]. Second, MEMD can be easily implemented, the matching time is greatly 
reduced and the achieved recognition rate is better than the method using EMD for 
feature extraction. Therefore, the proposed MEMD approach is used to extract 
residual components from iris images as features for recognition. 

This paper is organized as follows. Section 2 introduces preprocessing procedures 
for iris images. Section 3 and Section 4 describe the details of our proposed approach 
for feature extraction and matching. Experimental results are demonstrated and 
discussed in Section 5, prior to Conclusions in Section 6.  

2   Iris Image Preprocessing 

To ensure that correct iris features can be easily extracted from the eye image, it is 
essential to perform preprocessing to eye images. The human iris is an annular portion 
between the pupil (inner boundary) and the sclera (outer boundary). The image 
preprocessing procedures to extract the iris from the eye image operate in three steps. 
The first step is to locate the iris area. Then, the located iris is normalized to a 
rectangular window with a fixed size in order to achieve the approximate scale 
invariance. Finally, illumination and contrast problems are eliminated from the 
normalized image by image enhancement, and the most irrelevant parts (such as 
eyelid and eyelashes) are removed from the normalized image as much as possible. 
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2.1   Locating the Iris Area 

In an iris recognition system, iris location is an essential step. Herein, we proposed the 
method for iris location base on the Thales' theorem that the diameter of a circle 
always subtends a right angle to any point on the circle’s circumference. Fig. 1 shows 
the Thales' theorem is applied to find the inner and outer boundary of iris. The iris 
location method is not detailed here, because it is not the focus of this paper. We sum 
up the main points as follows. Firstly, the dilation and erosion basic morphological 
operators are used in order to obliterate the illumination influence inside the pupil. 
Then, a point inside the pupil is found using the method of minimum local block 
mean and the pupil area gives the minimum average gray value in the eye image. 
Therefore, the target point 0P  inside the pupil is found and its coordinate can be 
computed. Secondly, we rely on the target point and cooperate with the specialized 
boundary detection mask (SBDM) to locate three points ( 1 2 3, ,P P P and 4 5 6, ,P P P ) along 
the inner and outer iris boundaries, respectively. The SBDM is constructed by a b×  
matrix, as shown in Fig. 2. During the processing, each pixel ( , )x y  in the search 
range is considered as the center of SBDM and the corresponding edge intensity is 
calculated by 
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where ( , )f i j  represents the pixel value in an image, ( , )w i j  is a weighting value of 
the SBDM. During the search range, we can find that the boundary point appears with 
the largest edge intensity variation values. Finally, we apply Thales' theorem to 
calculate the circle parameters such as the circle center ( pP and iP ) and its radius 
( pR and iR ). 
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(a)                                                             (b) 

Fig. 1. Thales' theorem is applied to find (a) the inner and (b) the outer boundary of iris 

1 1 1 1 1 0 -1 -1 -1 -1 -1 
1 1 1 1 1 0 -1 -1 -1 -1 -1 
1 1 1 1 1 0 -1 -1 -1 -1 -1 

Fig. 2. An example of the SBDM (3x11) 
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2.2   Iris Normalization 

The pupil will dilate or constrict when eye images are captured with flash light or 
under a dark circumstance. For the purpose of achieving more accurate recognition 
performance, it is necessary to compensate for such deformation. Before using the 
proposed method for iris recognition, it is required to normalize the iris image, so that 
the representation is common to all, with similar dimensions. 

Normalization process involves in unwrapping the iris and converting it into its 
equivalent polar coordinates. We transform the circular iris area into a block using 
Daugman’s Rubber sheet model [14]. The pupil center is considered as the reference 
point and a remapping formula is used to convert the points on the Cartesian scale to 
the polar scale. In our experiment, the radial resolution and the angular resolution are 
set to 64 and 512 pixels, respectively. 

2.3   Image Enhancement 

After normalization, iris templates still have low contrast and non-uniform 
illumination problems. To eliminate the background brightness, the iris template is 
divided into non-overlapped 16 16×  blocks and their means constitute coarse 
estimates of background illumination for individual blocks. By using bicubic 
interpolation, each estimated value is expanded to the size of a 16 16×  block. Then 
each template block can be enhanced to a uniform light condition by subtracting from 
the background illumination. After that, the lighting corrected images are enhanced by 
histogram equalization. It shows clearer texture characteristics of iris than those in 
Fig. 3(c). Figure 3 illustrates the preprocessing process for the iris image. 

(b)(a)

(d)

ROI

(c)

(b)(a)

(d)

ROI

(c)

 

Fig. 3. Preprocessing of the iris image, (a) the original iris image, (b) the image with located 
iris area, (c) normalized the iris image, and (d) the region of interesting (ROI) from the 
enhanced image  
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3   Feature Extraction 

Despite all normalized iris templates have the same size and uniform illumination, 
there are still eyelashes and eyelids on the templates and those will influence the 
performance of iris recognition. Therefore, the region of interest (ROI) is selected to 
remove the influence of eyelashes and eyelids that are shown in Fig. 3(d). The 
features are extracted only from the upper half region ( 32 512× ) which is closer to 
the pupil and provides the most discriminating information [15]. 

3.1   Empirical Mode Decomposition 

Huang et al. [13] introduces a multi-resolution decomposition technique, Empirical 
Mode Decomposition (EMD) that is adaptive and appears to be suitable for non-linear 
and non-stationary signal processing method. The major advantage of EMD is that the 
basis functions are derived directly from the signal itself. Its principle is to decompose 
adaptively a given signal into components called intrinsic mode functions (IMFs). An 
IMF is characterized by some specific properties. One is that the number of zero 
crossings and the number of extrema points are equal or different only by one. Another 
property of the IMFs is that the mean of its upper and lower envelopes must equal zero. 
Hence, for a given signal X , EMD ends up with a representation of the form:  

where ih  is the thi  mode (or IMF) of the signal, and r  is the residual trend (a low-

order polynomial component). The sifting procedure generates a finite (and limited) 
number of IMFs that are nearly orthogonal to each other [13]. 

3.2   Modified Empirical Mode Decomposition 

Huang’s solution is to find a mean envelope by using cubic spline interpolation 
through the respective local extrema. It can be argued that repeated iterations using 
cubic splines in EMD cause the loss of amplitude and frequency information. In this 
paper, the technique of Modified Empirical Mode Decomposition (MEMD) is 
proposed to improve EMD for iris feature extraction. The local mean of a signal is 
accomplished by progressively smoothing the signal using moving averaging. By 
considering the sample portion of iris data shown in Fig. 4, the local mean involves 
calculating the mean of the maximum and minimum points of half-wave oscillation of 
the signal. So the thi  mean value im  of each two successive extrema in  and 1in +  is 
given by 

The local mean function is then repeatedly smoothed using this length of moving 
average until no two successive points with the same value. The smoothing process is 
shown in Fig. 5. 
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Fig. 4. Sample portion of iris data is displayed as the black line. The local means are shown by 
horizontal lines computed from the mean of successive extrema. The smoothed local mean is 
calculated by moving averaging and shown in blod line. 
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Fig. 5. The smoothing process ((a)-(c)) of the local mean function using successive applications 
of a moving average, (c) the final smoothed local mean function 

The MEMD principle is similar to EMD that a signal is decomposed into a sum of 
intrinsic mode functions (IMFs). Also, it has to satisfy two conditions as same as the 
EMD. Specifically, the first condition is similar to the narrow-band requirement, 
whereas the second condition modifies a global requirement to a local one by using 
the local mean defined by the local maxima points and the local minima points, and is 
necessary to certify that the instantaneous frequency will not have unnecessary 
fluctuations as induced by asymmetric waveforms. To make use of MEMD for 
practical applications, the signal must have at least two extrema—one maximum and 
one minimum to be successfully decomposed into individual IMFs. These IMF 
components are obtained from the signal by means of an algorithm called sifting 
process. This algorithm extracts locally for each mode the highest frequency 
oscillations out of the original signal. 

Given those two definitive requirements for an IMF, the sifting process to extract 
IMFs from a given signal ( )z t , 1,...,t T=  is described as follows. 



304 J.-C. Lee et al. 

1) Identify all the maxima and minima in ( )z t . 
2) Calculate the local mean of each two successive extrema using formula (3). 
3) The local means are smoothed using moving averaging from a smoothly varying 

continuous local mean function ( )m t . 
4) Extract the details by ( ) ( ) - ( )d t z t m t= . 
5) Check the properties of ( )d t : 

 • If the above-defined two conditions are met, an IMF is derived and ( )z t  is  
  replaced with the residual ( ) ( ) - ( )r t z t d t= ; 

•  If ( )r t  is not an IMF, then replace ( )z t  with ( )d t . 
6) Repeat Steps 1)–5) until the residual satisfies pre-defined stopping criteria. 
At the end of this process, the original signal ( )z t  can then be reconstructed, using 
the following equation 

1

( ) ( ) ( )
n

i n
i

z t c t r t
=

= +∑ , (4) 

where n  is the number of IMFs, ( )nr t  denotes the final residue which can be 
interpreted as the dc component of the signal, and ( )ic t  are nearly orthogonal to each 
other, and all have nearly zero means. 

In fact, after a certain number of iterations, the produced signals do not carry 
significant physical information. To avoid this situation, we can stop the sifting 
process by limiting the normalized standard deviation (SD), computed from two 
consecutive sifting results. The SD is defined as 
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the SD is usually set between 0.2 and 0.3. 
As the decomposition process proceeds, the time scale increases, and hence, the 

mean frequency of the mode decreases. Based on this observation, we may devise a 
general purpose time-space filtering as 
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where [ ], 1,..., , .l h n l h∈ ≤  For example, when 1l =  and h n< , it is a high-pass 
filtered signal; when 1l >  and h n= , it is a low-pass filtered signal; when 
1 l h n< ≤ < , it is a band-pass filtered signal. The above equation forms the basis to 
our application of iris data described below, where we use it as a low-pass filtering. 

To associate with iris recognition, we also present the results of MEMD 
decomposition for iris images in Fig. 6. Note that the ROI of the normalized iris image 
is converted into a 1-D feature sequence by concatenating its rows. For the purposes of 
easy comparison, Figure 6 shows only the first 500 components from their original 
feature sequences. To demonstrate the similarity of two iris images from the same 
person captured at different time, it is easily proved by checking those corresponding 
circles marked in Fig. 6(a) and 6(b). Also, those circles marked in Fig. 6(a) and 6(c) 
point out the differences of two iris images from two different persons. 
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Fig. 6. (a) and (b) show the MEMD decomposition results of two iris images from the same 
person. (a) and (c) show the MEMD results of two iris images from two different persons. 

3.3   Feature Vector 

For the ROI of each normalized iris image I , pixel sequences from adjacent rows are 
concatenated to form the 1-D vector V  represented by 

1 1 2{ } { , , , , }x K j nV I I I v v v v= =" " " " , (7) 

where xI  denotes gray values of the thx  row in the image I , jv  defines the pixel 
value of position j inside the vector V , and n  is the number of total components, 
herein, 32 512 18634n = × = . After concatenation and before applying MEMD, linear 
re-scaling [16] is applied to each vector to adjust the average of each data set to zero 
and to normalize the standard deviation to unity before further using the ROI vector. 
After MEMD calculation, the feature vector of each MEMD residual from the 1-D 
vector can be obtained by 

where mR  represents the thm  residual result from MEMD and m
jR  denotes the 

feature value from the thj  position of the mR . 

4   Iris Matching 

A suitable similarity measure is essential for precise matching between feature 
vectors. In this article, three different similarity measures used as the matching 
criterion are: 
1) The mean of the Euclidean distances (MED) measure: 
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where M K L= ×  is the dimension of the feature vector, ip  is the thi  component of 
sample feature vector, and iq  is the thi  component of unknown sample feature 
vector. 
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2) The cosine similarity measure:  

where p  and q  are two different feature vector. •  indicates the Euclidean norm. 

The range of 
p q

p q
i  is [0,1] . The more similar the two vectors are, the smaller the 

2( , )d p q  value is. 

3) The binary Hamming distance (HD) measure:  
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i
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where ⊕  denotes Exclusive-OR, M  is the length of the binary sequence. ip  is the 

thi  component of the database sample feature vector, and iq  is the thi  component of 

the unknown sample feature vector. 

5   Experimental Results 

To evaluate the performance of the proposed approach at iris recognition, varied 
experiments are conducted in this section. In the verification mode, the ROC curve that 
depicts the relationship of false acceptance rate (FAR) versus false reject rate (FRR) is 
used. Hence, ROC curve is normally used to measure the accuracy of matching process 
showing the achieved performance of an algorithm. Meanwhile, the equal error rate 
(EER) is also used for performance evaluation. In the recognition mode, the correct 
recognition rate (CRR) is adopted to assess the efficacy of the algorithm.  

5.1   Iris Database 

In our experiments, the test data set is from the CASIA Iris Database [17]. Each image 
has the resolution of 320 280×  in 8-bit gray level. This database includes 1,992 iris 
images from 249 different eyes (hence, 249 different classes) with 8 each. The images 
are acquired during different sessions and the time interval between two collections is 
at least one month. In our experiments, three images from each class are randomly 
selected to constitute the training set, so the entire training set has 747 images. The 
other five images of each class are used as the test set with the number of 1,245 
images. Using those 1,992 different iris images from the CASIA Iris Database, the 
experiments conducted below are running on the computing environment of 1.8GHz 
PC with 736MB RAM using Matlab 6.5.  

5.2   Recognition Results 

Table 1 demonstrates promising recognition results achieved by our proposed MEMD 
method using three similarity measures from (8)-(10). Note that performance 

2 ( , ) 1
p q

d p q
p q

= − i , (10) 
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differences are not very significant while different similarity measures are used. Only 
a slightly higher recognition rate of 99.31% is accomplished by using the MED 
similarity measure in the identification tests. The verification results are also shown in 
Figure 7. The achieved Az value (the area under the ROC curve) is up to 0.9927 by 
the MED similarity measure. Therefore, experimental results show that the proposed 
iris representation is effective for recognition and the MEMD approach can really 
extract the promising feature from each iris image.  

Table 1. Recognition rates of MEMD by different measures 

Similarity measure Correct recognition rate (CRR) % 
MED 99.31% 

Cosine 98.78 % 

HD 98.32% 
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Fig. 7. The ROC curve of MEMD method with different similarity measures 

5.3   Comparison Between MEMD and EMD 

This paper presents the proposed MEMD method and illustrates its performance in 
iris recognition. MEMD can separate the iris signal into a small set of components 
and each one could be associated with some aspects of cognitive function. 

Although using MEMD on sample test signals produces similar results to those 
generated by EMD, significant differences between these two schemes should be 
noted. The MEMD iteration process using smoothed local means appears to be a 
gentler way of decomposing the data than the cubic spline approach used by EMD. 
This can be seen in Fig. 8, which compares the intrinsic mode functions calculated by 
MEMD with the equivalent EMD IMFs. 
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Experimental results demonstrated in Section 5.2 reveal that the proposed MEMD 
technique is an effective scheme for feature extraction from iris images and the MED 
similarity measure can achieve a correct recognition rate up to 99.31%. Here, we also 
use the EMD method to extract the iris feature for iris recognition in order to compare 
with the MEMD method. For the results shown in Table 2 and Fig. 9, we have also 
implemented the other iris recognition algorithms, the methods of the Fourier-wavelet 
feature [12] and the Gaussian-Hermite moments [8]. Together with our proposed 
scheme, four approaches are tested using the 249 classes of the CASIA Iris Database 
and the cosine similarity measure. Although a slightly lower recognition rate than the 
approach of Gaussian-Hermite moments is achieved, the proposed method still can 
fulfill the demand of high accuracy suitable for very high security environments. 
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Fig. 8. Comparison between MEMD and EMD intrinsic mode functions. This figure compares 
four MEMD IMFs (shown in black line) with the four EMD IMFs (shown in bold line) 
generated from the same iris signal. 

Table 2. Typical operating states of the different method 

Methods CRR(%) Az EER (%) 
Fourier-wavelet feature[12] 94.37 0.9683 5.24 

Gaussian-Hermite moments[8] 99.64 0.9989 0.29 
EMD 97.22 0.9812 1.82 

Proposed method 98.78 0.9915 0.54 

To evaluate the computation complexity, Table 3 shows the computational costs 
consumed by four methods, including the CPU time for feature extraction and 
matching. In spite of the cost time of EMD for feature extraction is slightly faster than 
the cost time of MEMD, the computation efficiency of MEMD is still better than the 
other two methods. Our proposed MEMD method for feature extraction demonstrates 
to have the desired recognition performance. This can be a potential advantage for iris 
matching in a large database. 
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Based on the previous experimental results and corresponding analysis, we can 
conclude: 

1. The proposed method can achieve high accuracy and fast performance for iris 
recognition. This indicates that the MEMD technique can extract discriminating 
features suitable for iris recognition. 

2. Although our proposed method presents better computation efficiency than the 
method of Gaussian-Hermite moments [8], the recognition performance still needs 
to be improved. Therefore, feature selection is an important research issue in the 
near future. 

Table 3. Comparison of the computational complexity 

Methods Feature extraction(s) Matching(s) Total times(s) 
Fourier-wavelet feature[12] 1.297 0.116 1.413 
Gaussian-Hermite moments[8] 2.191 0.553 2.744 
EMD 0.521 0.109 0.63 
Proposed method 0.985 0.108 1.093  
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Fig. 9. The ROC curve of different methods using the cosine similarity measure 

5   Conclusions 

In this paper, a novel and effective method of feature extraction for iris recognition is 
presented, which operates using the Modified Empirical Mode Decomposition 
(MEMD) technique. The performance of iris recognition achieved by the MEMD 
approach associated with three different similarity measures has been evaluated. 
Experimental results have shown that the proposed method can demonstrate eminent 
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performance for iris recognition. The best similarity metric is the MED measure and 
the other two measures also have achieved similar performance more than 98%. 
Therefore, the proposed method has demonstrated to be promising for iris recognition 
and MEMD is suitable for feature extraction. In the future, we will ameliorate the 
template processing method to reduce the influence of light, eyelid, and eyelash. We 
are also working at increasing the database in order to further verify the performance 
and trying other possible approaches to improve the classification accuracy. 
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