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Abstract. We present a framework for tracking large facial deforma-
tions using nonlinear dynamic shape and appearance model based upon
local motion estimation. Local facial deformation estimation based on a
given single template fails to track large facial deformations due to signif-
icant appearance variations. A nonlinear generative model that uses low
dimensional manifold representation provides adaptive facial appearance
templates depending upon the movement of the facial motion state and
the expression type. The proposed model provides a generative model for
Bayesian tracking of facial motions using particle filtering with simul-
taneous estimation of the expression type. We estimate the geometric
transformation and the global deformation using the generative model.
The appearance templates from the global model then estimate local
deformation based on thin-plate spline parameters.

Keywords: Nonlinear Shape and Appearance Models, Active Appear-
ance Model, Facial Motion Tracking, Adaptive Template, Thin-plate
Spline, Local Facial Motion, Facial Expression Recognition.

1 Introduction

Recently there has been extensive research on modeling and analyzing dynamic
human motions for human computer interaction, visual surveillance, autonomous
driving, computer graphics, and virtual reality. Facial motions intentionally or
unintentionally display internal emotional states explicitly through facial expres-
sions. Accurate facial motion analysis is required for affective computer inter-
action, stress analysis of users or vehicle drivers, and security systems such as
deception detection. However, it is difficult to accurately model global facial mo-
tions since they undergo through nonlinear shape and appearance deformations,
which varies across different people and expressions. Local facial motions are also
important to detect subtle emotional states for stress analysis, and recognizing
deception.

Active Shape Models (ASMs) is a well known statistical model-based approach
that uses point distribution models in linear subspace [1]. By constraining shape
deformation into the linear subspace of training shapes, the model achieves ro-
bust estimation of shape contour [1]. Active Appearance Models (AAMs) [2]
combine the shape model and the linear appearance subspace after aligning the
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appearance into a normalized shape. It employs an iterative model refinement
algorithm based on a prediction model, that is learned as a regression model.
A variety of approaches have been proposed to improve the update schemes
such as compositional update schemes [3,4], direct AAMs [5], and adaptive gra-
dient methods [6], are proposed. However, all these methods have limitations
in modeling facial shape and appearance deformations since they approximate
nonlinear deformations in shape and appearance using a linear subspace. As a
result of the linear approximation, the model requires high dimensional para-
meters to model nonlinear data. The high dimensionality makes it difficult to
find the optimal shape and appearance parameters. In addition, it is difficult
to generate accurate facial animations using linear approximations since linear
subspace requires large amount of data in order to model shape and appearance
variations accurately [7].

Template based approaches are frequently used for estimating geometric trans-
formation [8,9,10,11] that are invariant to shape and appearance variations. Re-
cently templates based on nonlinear warping parameter estimation have been
used for tracking nonrigid shape deformation [12]. Although, the method pro-
vides effective facial motion tracking under small facial deformations, it loses
track for large deformations.

We propose a nonlinear facial motion tracking framework that can accurately
estimate the local and global shape deformation in addition to the geometric
transformation. We estimate the geometric transformation and global facial mo-
tions based on a global nonlinear appearance model. The global nonlinear ap-
pearance model provides a compact low dimensional representation of the facial
motion state using an embedded representation of the motion manifold. Our
system also factorizes the shape variations into different expressions. We achieve
tracking of large facial motions using particle filter within the Bayesian frame-
work based on the global nonlinear appearance model.

The global model is not enough for accurate tracking of local deformation and
shape deformation that are limited in training. The global nonlinear appearance
model, however, provides accurate appearance templates according to the esti-
mated embedding state and the expression type. The local facial deformation
estimation using single template TPS parameter estimation fails to track large
facial motion deformation. The global model that supports large shape deforma-
tions provides normalized-appearance models for local deformation estimation.
By combining the global appearance model and local deformation, we can achieve
accurate estimations of facial motions in large deformations.
Our contributions are as follows:

Modeling nonlinear shape and appearance deformations: We propose a
nonlinear shape and appearance model of facial expressions that factorizes facial
expression type and facial motion state. A low dimensional representation for
facial motion state is achieved using an embedded representation of the motion
manifold. For accurate facial appearance model, we employ nonlinear warping
of the appearance templates based on TPS (Sec. 3.1) warping.
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Tracking global facial motions using particle filter: Using the global
nonlinear shape and appearance model in conjunction with low dimensional
facial motion separations, we estimate the geometric transformation and facial
deformations. We use the global model for global facial motion tracking within
the Bayesian particle tracking based framework (Sec. 4.1).
Local facial motion estimation using adaptive appearance templates:
We extend tracking of the motion deformations using single template in [12] by
adaptive templates to cover large facial deformation. After estimating the state
of the global shape and appearance, local nonrigid deformation is estimated using
TPS warping control (Sec. 4.2). The local facial deformation is directly estimated
using shape landmark points from the adaptive normalized-appearance templates.

2 Framework

We develop a facial shape and appearance model for large facial deformations
with different expressions. A dynamic facial deformation for a given facial ex-
pression is a nonlinear function of the facial configuration; as the facial configu-
ration varies over time, the corresponding observed facial shape and appearance
changes according to the given facial configuration. In addition, the facial de-
formation is variant in different expressions. Different facial expressions undergo
different facial deformations in shape and appearance.

Let facial configuration at time t be xt, and the corresponding observed non-
linear shape and appearance at the same time be yt for given expression sequence
k, then the nonlinear facial shape and appearance can be represented by

yt = fk(xt) = g(ek, xt), (1)

where fk(·) is a nonlinear function variant in different expression type ek, g(·)
is a nonlinear mapping with factorization of expression type parameter ek in
addition to facial configuration xt. Hence, to develop nonlinear shape and ap-
pearance model, we need to find a representation of facial configuration xt and
a factorization of nonlinear function fk(·) in different expressions. In Sec. 3.2 we
present a nonlinear generative model with low dimensional embedded represen-
tation of the motion manifold and a factorization of nonlinear mapping using
empirical kernel map and decomposition.

For a given nonlinear shape and appearance model, tracking of facial motion
is estimating facial configuration and expression type, and geometric transfor-
mation, which match generated shape and appearance to the observed image
frame. For a given observation zt and state st, we can represent the Bayesian
tracking as a recursive update of the posterior P (st|zt) over the object state st

given all the observation zt = z1, z2, .., zt up to time t:

P (st|zt) ∝ P (zt|st)
∫

st−1

P (st|st−1)P (st−1|zt−1)

Rao-Blackwellized particle filtering is applied for efficient state estimation in
Sec. 4.1.
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Fig. 1. The block diagram of nonlinear facial motion tracking system

Facial state estimation based on the global facial shape and appearance model
provides global facial motion tracking for the training data. The estimated states,
however, are not sensitive to local deformations: small misalignment in geometric
transformation. Hence we enhance our facial motion tracking system based on
local nonrigid deformation estimation using TPS-warping parameter estimation
and adaptive appearance templates in Sec. 4.2. The appearance templates for
TPS-warping parameter estimation are provided from the global facial shape
and appearance model, which support different appearance model according to
facial motion state and expression type. For accurate estimation of local nonrigid
deformation from the appearance template, we need accurate appearance repre-
sentation of the global shape and appearance model. We use TPS warping for
accurate shape-normalized appearance template (Sec. 3.1). The local estimation
of facial motion is used to update global shape model by linear combination of
expression weights (Sec. 4.3).

Our facial motion tracking system consist of three stages: data acquisition,
normalization and learning nonlinear facial motion model, and tracking facial
motion from the video sequence. Fig. 1 shows the block diagram of our facial
motion tracking system. First, we collect multiple video sequences with different
expressions and manually mark some of the frames. Prior to learning nonlinear
facial shape and appearance model, we collect normalized-shape and -appearance
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using similarity transformation and TPS warping respectively (Sec. 3.1). Col-
lected normalized-shapes and corresponding normalized-appearances in differ-
ent expression sequences are used for learning the nonlinear shape and appear
model. We use particle filtering and the nonlinear shape and appearance model
to estimate global deformation and geometric transformation using particle fil-
ter. Based on the estimated global state, we generate the appearance template
for local nonrigid deformation estimation. The estimated local deformation is
used to refine global model state estimation as shown in Fig. 1.

3 Nonlinear Global Shape and Appearance Models

In this section, we explain how to achieve accurate and appearance normalization
for a normal shape, and how to learn nonlinear shape and appearance model
using an embedded representation of the motion manifold.

3.1 Facial Shape and Appearance Normalization

Facial shape normalization: We align collected landmark shape points using
weighted similarity transformation for shape normalization. The ith shape with
n landmark points is represented by a vector pi = (xi1, yi1, xi2, yi2, · · · , xin, yin).
Given two shapes pi and pj , we can find the similarity transformation for shape
j, S(δj) that minimizes the weighted sum Ej = (pi −S(δj)pj)TD(pi −S(δj)pj),
where D is a weighting diagonal matrix. The mean shape, represented by p0, is
computed by averaging shape landmark points after shape normalization. This
mean shape is used as a normal shape for normalized-appearance representation.

Facial appearance normalization: Normalized-appearance is a vector repre-
sentation for appearance of the normal shape. It is important to have precise
normalized-appearance as we use the normalized-appearance as an adaptive ap-
pearance template for the local deformation estimation (Sec. 4.2) in addition to
the observation model in Bayesian tracking using particle filtering (Sec. 4.1). We
use TPS warping [13] for non-rigid registration of appearance image to the mean
shape that is estimated after shape normalization. The TPS warping leads to
smooth deformations of shape by control points. Though piecewise-affine warp-
ing are frequently used in linear appearance models [14,4], the piecewise-affine
warping can cause artifacts around the boundaries in non-rigid deformation of
shape due to facial motion [15]. The normalized-appearances, which are com-
puted by the TPS warping of the given landmark points to the mean shape, are
used to represent appearance variations in vector space.

We compute the normalized facial appearance precisely using TPS backward
warping. Given the image frames I1, I2, · · · , INK , we collect manually marked
corresponding shape vectors p1, p2, · · · , pNK

, where NK is the number of image
frame for training. A normalized-appearance template for training image j, I

′

j , is
generated from the image Ij with a corresponding shape vector pj by TPS warp-
ing the shape pj to the mean shape p0. We denote this normalized-appearance
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computation for the given image Ij , and shape vector pj by I
′

j = Ij(W(p0, pj)),
where W(·) denotes a TPS warping from control landmark point pj to p0. In
actual computation, we apply a backward warping due to discrete nature of the
raster images and computational efficiency. In case of backward warping we need
to warp output image coordinate into input image coordinate and interpolate
the intensity values. The TPS warping W(·) needs to be computed once for the
mean shape p0.
Normalized shape-appearance representation: In image sequences, the
kth image Ik can be represented by its aligned shape pk and the TPS warped
normalized-appearance ak. We combine the normalized-shape vector and the
normalized-appearance vector as a new shape-appearance vector yk = [pT

k aT
k ]T.

We extract the normalized-appearance vector ak as pixels which are inside the
contour of the mean shape p0 after the TPS warping of the original image Ik

from the original shape pk to the mean shape p0. We denote this procedure as

ak =
Ik

ξ∈p0
(W(ξ, p0; pk)) = Υ (Ik, pk) (2)

So, Υ (Ij , pi) returns a normalized-appearance vector for the given image Ij

with the TPS warping from a shape vector pi to the mean shape p0. If the
pixel number within the mean shape is Na, then the dimension of the shape-
appearance vector yk is Nas = 2n + Na.

3.2 Nonlinear Generative Models with Manifold Embedding and
Factorization

Facial motion embedding and nonlinear mapping: We propose to use the
nonlinear facial shape and appearance model based on low-dimensional manifold
embedding and empirical kernel mapping to track accurate nonlinear appearance
deformations in different facial motions. Since dynamic facial expressions lie on
low dimensional manifolds, we use a conceptual unit circle as an embedded repre-
sentation of the facial motion manifold for each of the facial expression cycle [16].
Sets of image sequences, which represent a full cycle of facial expressions, are used
for the embedded representation of the motion manifold. We denote each expres-
sion sequence by ye = {ye

1 · · · ye
Ne

} where e denotes the expression type and Ne

the number of frames for a given expression sequence. Each sequence is tempo-
rally embedded on a unit circle at equal distance. Given a set of distinctive rep-
resentative embedding points {xi ∈ R

2, i = 1 · · ·N}, we can define an empirical
kernel map[17] as ψN (x) : R

2 → R
N where ψN (x) = [φ(x, x1), · · · , φ(x, xN )]T,

given a kernel function φ(·).
For each input ye and its embedding xe, we learn a nonlinear mapping func-

tion fe(x) that satisfies fe(xi) = ye
i , i = 1 · · · Ne and minimizes a regular-

ized risk criteria. Such function admits a representation of the form ψ(x) =∑N
i=1 wiφ(x, xi), i.e., the whole mapping can be written as

fe(x) = Be · ψ(x), (3)
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where B is a d × N coefficient matrix. The mapping coefficient can be obtained
by solving the linear system [ye

1 · · ·ye
Ne

] = Be[ψ(xe
1) · · · ψ(xe

Ne
)]. Using this non-

linear mapping, we capture nonlinearity of facial expressions in each sequence.
Expression type factorization: Given learned nonlinear mapping coefficients
B1, B2, · · · , BK of K different expression type sequences, the nonlinear map-
pings are factorized by fitting an asymmetric bilinear model to the coefficient
space [18]. As a result, we can generate a nonlinear shape and appearance in-
stance yk

t for a particular expression type k at any configuration xt as

yk
t = A × ek × ψ(xt) = g(ek, xt), (4)

where A is a third order tensor, ek is an expression type vector for the expres-
sion class k. We can analyze and represent nonlinear facial expression sequences
by estimating the facial motion state vector xt, and expression type e in this
generative model.

4 Tracking Global and Local Facial Motions

In order to track nonrigid local facial deformations as well as global large fa-
cial deformations in different expression type, we first estimate the global facial
motion and the geometric transformation. We then apply local nonrigid facial
deformation estimation using the appearance template generated from the global
facial motion estimation. Estimated global facial motion parameters are updated
to reflect local facial deformation.

4.1 Global Facial Motion Estimation

Our global facial motion tracking routine incorporates two components: the geo-
metric transformation, and the global deformation. The geometric transforma-
tion explains the rigid movement of face due to head motion. The global defor-
mation motion captures the nonlinear facial deformation in different expression
types and motion states (configurations). If we describe the geometric trans-
formation parameters by Tαt

, the global shape and appearance deformation as
yt, i.e.at, pt, then the goal of our global tracking algorithm for a given image It

is to estimate sub state vector α∗
t , p∗

t and a∗
t that minimize

E(α∗
t , p

∗
t , a

∗
t ) = min

αt,pt,at

(Υ (It, Tαt
· pt) − at)

= min
αt,pt,at

(Υ (It, Tαt
· (q(yt)) − a(yt)) (5)

where a(y∗
t ) = a∗

t = y∗
t (2n + 1 : Nas) is an appearance sub-vector and q(y∗

t ) =
p∗

t = y∗
t (1 : 2n) is a shape sub-vector from shape-appearance vector y∗

t . The
shape-appearance vector y∗

t = A × e∗ × ψ(x∗
t ) is computed for the estimated

expression type e∗ and facial motion state x∗
t by Eq. 4. Therefore, tracking of the

global deformation of facial motion essentially invloves estimating e∗, and x∗
t ,
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which are the best fitting global shape-appearance template after the geometric
transformation αt.
Global facial motion tracking:particle filtering Given the nonlinear gener-
ative shape and appearance model, we can describe the observation of shape
and appearance instance zt by geometric transformation and global shape-
appearance vector, i.e., state parameters αt and yt. The global shape-appearance
vector is defined by expression type et and facial configuration xt in Eq. 4.
Therefore, tracking facial motion is effectively inferring the configuration xt,
facial expression type parameter et, and global transformation Tαt given the
observation zt at time t.

In our model, the state st [αt, xt, et] uniquely describe the state of the track-
ing facial deformation. The observation zt is composed of shape vector zpt and
appearance vector zat for the given image at time t. The global transformation
parameter is independent of the global deformation state as we can combine any
shape and appearance model with any geometrical transformation to synthesize
a new shape and appearance in the image space. However, they are depen-
dent on the given observation. We approximate the joint posterior distribution
P (αt, xt, et|zt) = P (αt, yt|zt) by two marginal distribution P (αt|y∗

t , z
t) and

P (yt|α∗
t , z

t), where α∗
t , and y∗

t are representative values like MAP (maximum
a posteriori).

We estimate the likelihood of the observation zt for given state st = (αt, yt)
by

P (zt|αt, yt) ∝ exp
(

−||Υ (It, Tαt
· pt) − at||

σ

)
(6)

where pt = yt(1 : 2n), at = yt(2n + 1 : Nas), and σ is the scaling factor for
the measured image distance. In particle filtering, the state st is updated by
estimating the weight π

(i)
t using the observation likelihood:

π
(i)
t ∝ P (zt|s(i)

t ) = P (zt|α(i)
t , y

(i)
t ).

Particle filter for the geometric transformation: We estimate geomet-
ric transformation using particle filter based on the predicted global shape and
appearance. We assume that expression state varies smoothly, and predicted
configuration explains temporal variation of the estimated expression state. The
estimated global shape and appearance at time t, y∗

t , is estimated from the pre-
vious expression state et−1, and predicted configuration x

′

t. The prediction of
configuration, x

′

t, is estimated from previous estimated embedding x∗
t−1 using

dynamics of the configuration along the embedded representation of the motion
manifold [19]. This predicted shape and appearance y

′

t is used as the represen-
tative value y∗

t . Given this global shape and appearance template, we estimate
the best geometric transformation αt for the given observation at time t, zt.

The geometric transformation state αt consists of geometric transformation
parameters γt,θt, and τ t for scaling, rotation, and translation. The marginal
probability distribution is represented by Nα particles {α

(i)
t , απ

(i)
t }Nα

i=1. We up-
date weights απ

(i)
t , i = 1, 2, · · · , Nα with y

′

t using Eq. 6.
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Rao-Blackwellized particle filtering for global deformation tracking:
For the state estimation of the global deformation, we utilize Rao-Blackwellized
particle filtering. In order to estimate global deformations using generative model
in Eq. 4, we need to estimate the state vector xt, and et whose dimensions are
2, and Ne. The dimension of the expression state Ne depends on the number of
expression types which can be high. When we know the configuration vector xt,
we can achieve approximate solution for the expression vector as explained in the
following. The original Rao-Blackwellized particle filtering for dynamic Bayesian
networks [20] assumes accurate solution for the state that is not represented by
particle state. We utilize an approximate solution for the expression type vector
to avoid sampling for high dimensional state density estimation, which requires
large number of particles for accurate approximation.

The facial motion state xt is embedded in two dimensional space with one
constraint for unit circle embedding. So, the embedding dimension is actually
one-dimensional and we can represent the embedding parameter βt as one-
dimensional state vector. We represent the distribution of facial motion em-
bedding β by Nβ particles {β

(i)
t , βπ

(i)
t }Nβ

i=1. If we represent the approximate esti-
mation of expression vector as e∗

t , we can approximate the marginal distribution
as

P (e∗
t |yt) =

∑
β

P (e∗
t |βt, yt)P (βt|yt) =

∑
β

P (e∗
t |βt, yt)

Nβ∑
i=1

βπ
(i)
t δ(β(i)

t , βt)

=
Nβ∑
i=1

βπ
(i)
t P (e∗

t |β
(i)
t , yt),

where δ(x, y) = 1 if x = y and 0 otherwise.
We represent the estimated expression vector by a linear weighted sum of

known expression vectors. We assume that the optimal expression vector can be
represented by a linear combination of the expression classes in the training data;
we can generate the global deformations as the configuration changes along the
manifold through the linear weighted sum of expression classes. Now, we need
to solve linear regression weights κ such that enew =

∑Ke

k=1 κkek where each ek

is one of Ke expression classes. For a given configuration βt, that is xt = h(βt),
we can obtain expression conditional class probability p(ek|yt, xt) proportional
to the observation likelihood p(yt | xt, e

k). Such likelihood can be estimated as
a Gaussian density centered around A × ek × ψ(xt), i.e.,

p(yt | xt, e
k) ≈ N (A × ek × ψ(xt), Σek

).

Given expression class probabilities, we can set the weights of expression classes
to κ

(i)
k = p(ek | yt, x

(i)
t ). The estimated expression vector is the weighted sum

of each expression type e∗
t =

�Nβ
i=1
�Ne

k=1 κ
(i)
k ek

�Nβ
i=1 κ

(i)
k

.
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4.2 Local Facial Motion Estimation

We perform local facial motion tracking for estimating local deformations that
differs from global facial model, and to refine inaccurate estimation of the geo-
metric transformation. The estimated global facial motion state using particle
filter, with limited number of particle samples shows misalignment of geometric
transformations and inaccurate estimations of the global deformations some-
times. In addition, facial deformation of the new sequence can be different from
the learned global model even for the same person with the same expression
type. Therefore, we need local facial motion tracking to refine the global track-
ing result.

We propose template-adaptive local facial motion tracking with shape de-
scription using thin plate splines (TPS) warping. We utilize landmark points
in the facial shape description as control points in TPS. The shape-normalized
appearance is used as a template for local facial motion tracking. The proposed
local facial motion tracking is similar to the non-rigid object motion tracking
using TPS parameters and image gradients [12]. In our case, the tracking result
of global deformation using the nonlinear shape and appearance model provides
a new appearance template for each frame. In addition, the landmark shape es-
timated from the global deformation after applying geometric transformations
provides initial shape for local facial motion tracking.

Let the estimated global shape and appearance be yg
t0, its shape vector be

pg
t0, appearance vector be ag

t0, and current input image be It, the objective of
the local deformation fitting is to minimize the error function

E(δpt) =
∑

‖Υ (It, p
g
t0 + δpt) − ag

t0‖

=
∑
ξ∈p0

‖It(W(ξ, p0; p
g
t0 + δp)) − Ig

t0(ξ)‖2 (7)

where Ig
t0 is an image in normalized shape with global appearance vector ag

t0.
Since we use shape normalized appearance as the template in the local tracking,
the TPS warping W(ξ, p0; p

g
t0 + δp) is determined by the coordinate control

points pg
t0 + δp. For the given pt0 from the global deformation tracking, the

warping function is solely determined by the local deformation δp.
Gradient descent technique is applied to find the local deformation parame-

ter δp which minimize Eq. 7 similar to [12,8]. Linearization is carried out by
expanding It(W(ξ, p0; p

g
t0 + δp)) in the Taylor series about δp,

It(W(ξ, p0; p
g
t0 + δp)) = It(W(ξ, p0; p

g
t0)) + δpTM t + h.o.t, (8)

where M t = [ ∂It

∂p1
| ∂It

∂p2
| · · · | ∂It

∂p2n
]. Each term ∂It

∂pk
can be computed using warped

image coordinate ξ = W(ξ, p0; p
g
t0) by applying chain rule: ∂It

∂pk
= ∂It

∂ξ
∂ξ

∂pk
. The

∂It

∂ξ is the gradient of current input image It after TPS warping to the mean
shape. The warping coefficients are fixed and can be pre-computed since we
use the common mean shape in all the normalized-appearance templates. The
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solution for Eq. 7 can be computed when the higher-order terms in Eq. 8 is
ignored:

δp = (MT
t M t)−1MT

t δIt, (9)

where δIt is the image difference between template appearance image and cur-
rent image warped to the template shape. We achieve better fitting of the shape
to local image features by iterative updating the local shape model. This local
fitting provides better alignment of shape and normalized appearance for a given
input image.

4.3 Combining Global Facial Motion Estimation and Local Facial
Motion Estimation

We update the global deformation state using the new shape normalized ap-
pearance image after local fitting. As a result of accurate local fitting, the new
shape-normalized appearance vector will represent appearance more accurately
than the one estimated by the global facial motion tracking.

Using the new shape-normalized appearance vector estimated from local de-
formation, we update the expression state. First, we estimate the new expression
weight κl based on the new appearance vector after local fitting. Then, the com-
bined new estimated expression weight is computed by linear combination of the
local expression weight κl and global expression weight κg,

κnew = (1 − ε)κg + εκl (10)

This process enhances the robustness in the expression parameter estimation.
The combining parameter ε, which is empirically estimated, depends on the
reliability of local fitting. For example, local fitting is less reliable for unknown
subject and we assign small value for ε. Even though the combination is in linear
interpolation, the overall system preserve nonlinear characteristics of the facial
motions. This refined global state estimation improves accuracy of geometry
transformation in the subsequent frames.

5 Experimental Results

In order to build global shape and appearance model for different expressions, we
use Cohn-Kanade AU coded facial expression database [21]. The landmarks have
38 points in each frame image (n = 38). The appearance vector was represented
by 35965 pixels (Na = 35965) inside landmark shape contour in the mean shape.
This appearance vector size depend on mean shape size. By reducing the mean
shape size, we can reduce the appearance vector dimension. We manually marked
the shape landmarks of every other frame to learn the shape and appearance
model. As the database has expression sequences from the neutral expression
and to the peak expression, we embed each frame on the half circle with equal
distance for each sequence.
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Fig. 2. Facial expression tracking with global and local fitting: (a) Best fitting global
appearance in normalized shape. (b) Global shape tracking facial motion. (c) Expres-
sion weights in global facial motion estimation. (d) Image error in the local fitting. (e)
Local tracking facial motion with adaptive template provided by global appearance
model. (f) Expression weights in local facial motion estimation.

Facial motion tracking with expression type estimation: Estimated ex-
pression type shows how well the facial motion tracking discriminate variations
in facial motion of different expressions. Fig. 2 shows tracking a smile expression
sequence with the local fitting. At each frame, global facial motion tracking is es-
timated expression weights (c) and facial shape after global transformation esti-
mation. The best fitting shape-appearance parameter provided shape-normalized
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Fig. 3. Comparison of Facial expression tracking: (a) Comparison of tracking result:
yellow-global fitting, red-local fitting. (b) Update of estimated expression weights by
combination of local and global expression estimation. (c) Best fitting global model
using updated expression state.

appearance template (a) and facial shape tracking after global deformation (b).
After local nonrigid deformation estimation, tracking result (e) shows better es-
timation of shape deformation to the input image and better estimation of facial
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Fig. 4. Tracking surprise expression : (a) Error image based on a template after local
fitting. (b) Tracking result by the local deformation estimation with an initial frame as
a template. (c) Tracking result with adaptive template by global shape and appearance
model: yellow-global fitting, red-local fitting. (d) Estimated global expression weights.

expression type (f). Facial expression weight in global deformation had similar
weights between ’surprise’ and ’happy (smile)’. After the local deformation es-
timation, the estimated expression type got higher weight for happy expression
correctly. However, some points like left eyebrow show inaccurate local fitting.
Fig. 3 shows comparison of tracking accuracy. After updating estimated expres-
sion type by combining global deformation and local deformation, we got new
estimation of expression weight Fig. 3(a). Based on the new expression weight,
we accurately estimated global facial motion tracking(c).
Tracking large facial deformations: We compared tracking accuracy with
a single template and adaptive templates in large facial deformations. Fig. 4
(b) is facial motion tracking result based on single frame. It shows appropriate
tracking of facial motion in small deformations. However, it fails to track large
facial deformations around mouth region. Fig. 4 (c) shows facial motion tracking
result using adaptive templates at each frame. As the global deformation model
provides updated appearance template in addition to initial shape for tracking,
it achieved more accurate tracking of large facial deformations.
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6 Conclusion and Future Works

We have proposed a new framework for facial motion tracking for handling large
facial deformations. The global deformation tracking based on nonlinear shape
and appearance model provides appearance adaptive template in large facial
deformation. The local fitting with the appearance adaptive templates enables
accurate fitting of global, coarse estimation of facial motion.

Here, we count facial motion deformation by combination of expression type in
addition to configuration change. We plan to extend our system to consider vari-
ations of facial shape and appearance in different people by applying multilinear
analysis. The TPS warping is expensive computationally. We may efficiently pro-
gram this computation using general-propose computing on graphics processing
units(GPGPU), which provides efficient parallel processing.
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