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Abstract. An automatic facial occlusion reconstruction system based upon a 
novel learning algorithm called the direct combined model (DCM) approach is 
presented. The system comprises two basic DCM modules, namely a shape 
reconstruction module and a texture reconstruction module. Each module 
models the occluded and non-occluded regions of the facial image in a single, 
combined eigenspace, thus preserving the correlations between the geometry of 
the facial features and the pixel grayvalues, respectively, in the two regions. As 
a result, when shape or texture information is available only for the non-
occluded region of the facial image, the optimal shape and texture of the 
occluded region can be reconstructed via a process of Bayesian inference within 
the respective eigenspaces. To enhance the quality of the reconstructed results, 
the shape reconstruction module is rendered robust to facial feature point 
labeling errors by suppressing the effects of biased noises. Furthermore, the 
texture reconstruction module recovers the texture of the occluded facial image 
by synthesizing the global texture image and the local detailed texture image. 
The experimental results demonstrate that compared to existing facial 
reconstruction systems, the reconstruction results obtained using the proposed 
DCM-based scheme are quantitatively closer to the ground truth. 
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1   Introduction 

The performance of automatic face recognition, facial expression analysis and facial 
pose estimation schemes is largely dependent upon the amount of information 
available in the input facial images. However, in real life, facial images are invariably 
occluded to a greater or lesser extent, and hence the performance of such schemes is 
inevitably degraded. It is necessary to develop the means to recover the occluded 
region(s) of the facial image such that the performance of these applications can be 
improved. 

Saito et al. [14] proposed a method for removing eyeglasses and reconstructing the 
facial image by applying principal component analysis (PCA) to eigenspaces having 
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no eyeglass information. Similarly, Park et al. [13] removed eyeglasses from facial 
images by repainting the pixels in the occluded region of the image with the 
grayvalues of the corresponding region of the mean facial image prior to the PCA 
reconstruction process. However, in both studies, the reconstruction process was 
performed based upon eigenspaces derived from the entire facial image rather than 
from the occluded and non-occluded regions, respectively. As a result, the two 
schemes are capable only of reconstructing facial images with long and thin occluded 
regions, e.g. occlusion by a pair of eyeglasses. If the major facial features, e.g. the 
eyes or the nose, are occluded, the schemes yield highly unpredictable and unrealistic 
reconstruction results. Furthermore, the reconstructed images tend to be notably 
blurred since both schemes use the Gaussian-distributed PCA process to model the 
facial images, whereas such images typically have a non-Gaussian distribution. To 
resolve this problem, the facial reconstruction systems presented in [7], [8] and [9] 
separated each facial image into its facial shape and facial texture, respectively, 
utilizing the face models introduced in [1], [3] and [15]. In contrast to the iterative 
facial reconstruction process presented in [9], Hwang et al. [7], [8] proposed a non-
iterative process for reconstructing the occluded region of an input face using facial 
shape and facial texture models. Each model consisted of one eigenspace and one 
sub-eigenspace, with the former containing the whole facial shape or texture 
information and the latter containing only the shape or texture information of the non-
occluded region. In the proposed approach, the shape or texture information of the 
non-occluded region was reconstructed via a linear combination of the sub-eigenspace 
and the corresponding weight vector. The whole facial image was then reconstructed 
by applying the same weight vector to the whole-face eigenspace. However, the 
significant characters of the two eigenspaces are different, and thus inherent variances 
between two different subjects may be suppressed if the same weight vectors are 
applied to both. 

In contrast to the methods described above, apply a Gaussian distributed PCA 
process, the patch-based non-parametric sampling methods presented in [2], [5] and 
[11] synthesize facial images based upon local detailed features. In the psychological 
evaluations performed in [12], it was shown that facial features are correlated rather 
than independent. However, the localized characteristic of patch-based approaches 
results in a loss of information describing the overall geometric relationships between 
the individual facial features. 

This paper proposes a learning-based facial occlusion reconstruction system 
comprising two DCM modules, namely a shape reconstruction module and a texture 
reconstruction module. Adopting a similar approach to that used in [3], the proposed 
system normalizes the texture image by warping the facial image to the mean-shape 
coordinates. The DCM approach used in the two modules facilitates the direct 
analysis of the geometric and grayvalue correlations of the occluded and non-
occluded regions of the face by coupling the shape and texture of the two regions 
within single shape and texture eigenspaces, respectively. Given the shape or texture 
of the non-occluded region of the face, the DCM modules enable the optimal shape or 
texture of the occluded region to be reconstructed even though the two regions of the 
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face are modeled within a single eigenspace. In practice, the quality of the 
reconstructed facial shape is adversely effected by errors in the facial feature positions 
when labeling the features in the non-occluded region of the face. However, the shape 
reconstruction module developed in this study is specifically designed to tolerate such 
misalignments by taking account of these noise sources.  Furthermore, the quality of 
the texture reconstruction results is enhanced by synthesizing the global texture 
image, i.e. a smooth texture image containing the global geometric facial structure, 
and a local detailed texture image, i.e. a difference image between the texture image 
and the corresponding global texture image. 

2   Direct Combined Model Algorithm 

The DCM algorithm assumes the existence of two related classes, i.e. X∈ Rm and 
Y ∈ Rn. Given an observable (or known) vector x ∈ X, such as the shape or pixel 
grayvalues of the non-occluded facial region, the objective of the DCM modules 
developed in this study is to estimate (i.e. recover) the corresponding unobservable 
(or unknown) vector y∈Y, i.e. the shape or pixel grayvalues of the occluded region, 
based on training datasets X and Y. According to the maximum a posterior (MAP) 
criterion, the optimal solution of the unknown y can be obtained by maximizing the 
posterior probabilistic distribution ( | , )P x y θ , i.e.  

arg max ( | , ) arg max ( | ) ( | , )ˆ
y y

y P y x P y P x yθ θ θ= = , (1) 

where θ denotes the model parameters, i.e. x , y , CXY (or CYX) and CXX (or CYY) , in 

which x and y  denote the mean vectors of classes X and Y, respectively, CXY (or CYX) 

is the cross-covariance matrix of X and Y (or Y and X), and CXX (or CYY) is the 
covariance matrix of X (or Y), respectively. Assuming that ( | , )P y x θ has a Gibbs 

distribution [4], [11], then  

( | , ) { ( , , )}GP y x exp E y xθ θ∝ − , (2) 

where EG(•) is the Gibbs potential function, which describes the strength of the 
correlation between x and y based on the information contained within the training 
dataset and the model parameters θ. Thus, Eq. (1) can be reformulated as an energy 
minimization problem of the form 

arg min ( , , )ˆ G
y

y E y x θ= . (3) 

In the reconstruction system presented in this study, the two training datasets, i.e. X 
and Y, are modeled by combining them into a single joint Gaussian distribution using 
the PCA method. As a result, the combined training dataset, comprising p training 
samples, can be represented as an (m+n)×p matrix, [XT YT]T, in which each column 
corresponds to an unbiased, concatenated sample vector [( x x− )T ( y y− )]T. 
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Applying the singular value decomposition (SVD) process, the covariance matrix of 
the coupled training dataset can be expressed as 
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where U, Σ  and UΔ  represent the combined eigenvector matrix, the combined 
eigenvalue matrix and the m+n-K eigenvector matrix, respectively. According to the 
general properties of PCA, the linear combination of the first K (K << (m + n)) 
eigenvectors, [UX

T UY
T]T, sorted in descending order based on their corresponding 

eigenvalues, sufficiently represents all of the significant variances within the training 
dataset, and thus the remaining eigenvectors, UΔ, can be discarded. The resulting K-
dimensional combined eigenspace, i.e. the DCM, can be used to reconstruct any new 
feature pair ( x̂ |w, ŷ |w) via a linear combination of the eigenspace and the 
corresponding K-dimensional weight vector, w , i.e.  

|

|

ˆ
,      

ˆ

T
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. (5) 

In the PCA technique, a set of orthogonal eigenvectors is obtained by minimizing 
the mean-square error (MSE) between the input data and the corresponding 
reconstruction result. In the current study, the minimum mean-square error (MMSE) 
is used as the criterion for the energy minimization problem given in Eq. (3). Hence, 
Eq. (3) can be expressed in terms of the expected posterior distribution ( | , )P y x θ as 
follows: 

2
|

, |

ˆ1
arg min  ( | , ) arg minˆ

ˆ2
w

Yy y w w

xx
y y P y x dY

yy
θ

⎡ ⎤⎡ ⎤
= = − ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
∫ . (6) 

Substituting the parameters of the combined model, θ, into Eq. (6) and applying the 
Penrose conditions method [6], Eq. (6) becomes 

†1 ( ) ( )ˆ YX YXX Xy C C x x y U U x x−= − = + − , (7) 

where the singular matrix UX
†is the right inverse matrix of the non-square matrix UX. 

In contrast to the schemes presented in [7] and [16], in which the SVD algorithm is 
applied to approximate the inverse of this non-square matrix indirectly, the current 
study directly uses the following procedure to substitute the matrix inverse, UX

†. Since 
UXUX

†=I and the combined eigenspace, [UX
T UY

T]T, is an orthonormal matrix, then 
UX

TUX=I-UY
TUY. As a result, it can be inferred that: 
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in which the square matrix (I-UYUY
T) is invertible since classes X and Y are 

correlative. Hence, the UYUX
† term in Eq. (7) can be replaced by 

1( )T T
Y Y Y XI U U U U−− , with the result that Eq. (7) becomes 

1ˆ( ) ( ) ( )T T
Y Y Y Xy x y I U U U U x x−= + − − . (9) 

Here, the inverse of the residual covariance matrix, i.e. (I-UYUY
T)-1, is a normalization 

term which renders the correlation between X and Y insensitive to variances within 
each class. For example, if X represents the grayvalues of the non-eye regions of the 
facial image and Y represents the grayvalues of the eye region, the dynamic ranges of 
X and Y are clearly different. However, the normalization process renders the two 
ranges approximately equal to one another. In addition, the DCM algorithm assumes 
that classes X and Y are correlated. If this assumption is not made, i.e. X and Y are 
considered to be statistically uncorrelated, then UYUX

T becomes a zero matrix, i.e. 
ˆ( )y x y= . 

3   Reconstruction System 

The proposed reconstruction system for partially-occluded facial images is based on a 
joint Gaussian distribution assumption. However, in practice, the distribution of facial 
images actually has the form of a complicated manifold in a high-dimensional space, 
and thus it is inappropriate to model this distribution using a Gaussian distribution 
model. To resolve this problem, the current system separates the facial shape and 
texture of each image, rendering both facial properties more suitable for modeling 
using a Gaussian approach.  

As shown in Fig. 1, the proposed facial occlusion reconstruction system comprises 
two separate DCM modules, namely the shape reconstruction module and the texture 
reconstruction module. In the training process, the facial feature points of each facial 
image in the training set are manually labeled to generate the corresponding facial 
shape, S, and the mean facial shape coordinates, S , are then derived. Thereafter, each 
facial texture image with facial shape coordinates S is warped to the mean facial 
shape S  using a texture-warping transformation function W [3] to generate the 
corresponding normalized texture image T. The resulting facial shapes {S} and 
canonical textures {T} of the training images are then used in the shape and texture 
modules, respectively, as described in the following.  
 
 



146 C.-T. Tu and J.-J.J. Lien 

Fig. 1. Framework of partially-occluded facial image reconstruction system comprising shape 
reconstruction module and texture reconstruction module 

In the shape reconstruction module, the occluded region of the input image and the 
facial shape of the non-occluded region, i.e. Sno, are detected automatically using the 
method prescribed in [10]. The facial shape of the occluded region, i.e. So, is then 
reconstructed by the shape reconstruction DCM algorithm by applying a process of 
Bayesian inference to the facial shape of the non-occluded region to give the complete 
facial shape, S. Meanwhile, in the texture reconstruction module, the input texture 
image of the non-occluded region is warped from its original shape coordinates S to 
the mean shape coordinates S  using the transformation function W to generate the 
corresponding normalized texture image of the non-occluded region, i.e. Tno. The 
canonical facial texture of the occluded region, To, is then reconstructed from Tno 
using the texture reconstruction DCM algorithm. Finally, the complete canonical 
facial texture T (i.e.Tno+To) is warped from the mean facial shape coordinates S  back 
to the original facial shape coordinates S in order to generate the final reconstruction 
result.  

The reconstruction process illustrated in Fig. 1 presents the particular case in 
which both eyes are occluded. However, due to the combined model approach, the 
reconstruction system developed in this study is capable of reconstructing frontal-
view facial images containing occluded regions in other facial features, such as the 
nose and the mouth, without modeling an additional combined model. 

3.1   Robustness of DCM Shape Reconstruction Module to Facial Feature Point  
        Labeling Errors   

As shown in Fig.2, the DCM shape reconstruction module comprises a training 
process and a reconstruction process. In the training process, a K-dimensional shape 
eigenspace is constructed based upon a total of p manually-labeled facial shapes S. 
The performance of the facial shape reconstruction module is highly dependent on the 
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Fig. 2. Workflow of DCM shape reconstruction module 

accuracy with which the individual facial feature points in the non-occluded region of 
the face image are identified. To improve the robustness of the shape reconstruction 
module, each training facial shape S is added by q number of random biased noises to 
generate a total of q biased facial shapes S’. The biased noise is randomly generated 
and is bounded by σcn

2(∑K
2-σcn

2I)-1 in accordance with the recommendations of the  
subspace sensitivity analyses presented in [6], where ∑K is the matrix of the first K 
eigenvalues and σcn

2 is the norm of the covariance matrix of the expected residual 
vector based on the p training shape vectors S. Note that this residual vector is defined 
as the distance between the input facial shape and the corresponding reconstructed 
shape obtained using the K-dimensional shape eigenspace. A new facial shape 
eigenspace is then constructed based on the total of p×q facial shapes S’. 

Once the non-occluded and occluded regions of the input image have been detected 
and separated, the new facial shape eigenspace can be rearranged according to the 
combined eigenspace formula of the DCM algorithm, which is the non-occluded part, X, 
should be in the upper rows of the combined model, while the occluded part, Y, should 
be in the lower rows. Importantly, rearranging the eigenspace has no effect on the 
reconstruction result since exchanging any two row vectors in the combined eigenspace 
changes only their relative position in the eigenspace, i.e. the values of their elements 
are unchanged. Finally, the rearranged combined eigenspace is used to reconstruct the 
shape of the occluded region So by replacing x in Eq. (9) with Sno. 

3.2   Recovery of Global Structure and Local Detailed Texture Components  
        Using DCM Texture Reconstruction Module  

As shown in Fig. 3, the texture of an input image is reconstructed by integrating the 
global texture DCM and the local detailed texture DCM. The global texture image, i.e. 
Tg, is a smooth texture image containing the global geometric facial structure, while the 
local detailed texture image, i.e. Tl, represents the difference between Tg and the 
normalized texture image T, and contains the subtle details of the facial texture. The 
objective function of the DCM texture reconstruction module can be formulated as  

arg max ( | , ) ( , )

arg max ( | , ) ( , )

g g g g
o no o o

l l l l
o no o o

T P T T P T

T P T T P T

θ θ

θ θ

=

=
, (10) 
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Fig. 3. Workflow of DCM texture reconstruction module 

where Tno
g and Tno

l are the global and local detailed texture components of Tno, 
respectively, and To

g and To
l are the global and local detailed texture components of 

To, respectively. 
In the training process, the texture image training dataset, {T}, is used to construct 

a K-dimensional global texture eigenspace. The local detailed texture images of the 
training dataset {Tl} are then calculated and used to construct the local detailed 
texture eigenspace. Each local detailed texture image is derived by calculating the 
difference between its texture image, T, and the corresponding global texture image, 
Tg. In the reconstruction process, the texture of the occluded region To is inferred via 
the following procedure: 

1. According to the occluded region and the non-occluded region of the input 
texture image, the global eigenspace and the local detailed eigenspace are 
rearranged using the combined eigenspace formula of DCM given in Eq. (4). 

2. Replacing x in Eq. (9) with Tno, the global texture of the occluded region, i.e. To
g, 

is reconstructed using the global texture DCM. 
3. The image T’, which contains the texture of the non-occluded region Tno and the 

current reconstruction result To
g, is projected onto the K-dimensional global 

texture eigenspace, and the corresponding projection weight is then used to 
reconstruct T”. The local detailed texture components of the non-occluded region 
are then extracted by calculating Tno

l=T”-T’. 
4. Replacing x in Eq. (9) with Tno

l, the local detailed texture of the occluded region 
To

l is reconstructed using the local detailed DCM. 
5. The final texture result is obtained by synthesizing Tno with the reconstruction 

results To
g and To , i.e. T=Tno+To

g+To
l. 

4   Experimental Results 

The performance of the proposed reconstruction system was evaluated by performing 
a series of experimental trials using training and testing databases comprising 205 and 
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60 facial images, respectively. The images were acquired using a commercial digital 
camera at different times, in various indoor environments. Eighty-four facial feature 
points were manually labeled on each training and testing facial image to represent 
the ground truth of the facial shape. Specific facial feature regions of the testing 
images were then occluded manually.  

Figure 4 presents representative examples of the reconstruction results obtained 
using the proposed method for input images with a variety of occlusion conditions. 
Figures 4(a) and 4(b) show the occluded facial images and the original facial images, 
respectively. Figure 4(c) presents the reconstruction results obtained using the shape 
and global texture DCMs. Meanwhile, Fig. 4(d) presents the reconstruction results 
obtained when the texture is reconstructed using not only the global texture DCM, but 
also the local detailed texture DSM. Comparing the images presented in Fig. 4(d) with 
 

 

     

     

     

     

Fig. 4. Reconstruction results obtained using DCM method: (a) occluded facial images, (b) 
original facial images, (c) reconstructed facial images using global texture DCM only, and (d) 
final reconstruction results using both global texture DCM and local texture DCM 

Table 1. Average and standard deviation of facial shape and facial texture reconstruction errors 
for images in testing database with different levels of occlusion. Note that the occlusion rate 
data indicate the ratio of the occluded area to the non-occluded area in the facial image; Ave: 
Average; Std. Dev: Standard deviation of errors.  

Ave. Error (Pixel/Grayvalues) Std. Dev. (Pixel/Grayvalues) Facial 
features Shape Texture Shape Texture 

Occlusion  
Rate 

Left Eye 1.2 6.6 1.1 1.7 10% 
Right Eye 1.3 6.5 1.0 1.8 10% 
Both Eye 1.4 8.0 1.7 3.6 24% 
Nose 1.0 7.2 1.4 3.0 16% 
Mouth 1.6 6.8 1.5 3.2 20% 

(a) 

(b) 

(c) 

(d) 
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(a)

(b)

(c) 7.0 8.1 10.5 9.2 8.7

(d) 9.8 9.0 11.2 9.7 8.5

(e) 6.6 6.5 8.0 7.2 6.8
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8.1 
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10.4 
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8.8 
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Fig. 5. Reconstruction results: (a) occluded facial images, (b) original facial images, (c) 
reconstructed texture images using method presented in [13], (d) reconstructed texture images 
using method presented in [8], and (e) reconstructed texture images using current DCM 
method. The digits within the images represent the average grayvalue evaluation error of the 
corresponding pixels in the original non-occluded image, while the digits in the columns next to 
these images represent the average grayvalue error over all of the images in the test database. 
Note that each facial texture image has a size of 100*100 pixels. 

those presented in Fig. 4(b), it can be seen that the use of the two texture DCMs yields 
a highly accurate reconstruction of the original facial image. Table 1 presents the 
average reconstructed shape and texture errors computed over all the images in the 
testing database. In general, the results show that the magnitudes of both errors 
increase as the level of occlusion increases or as the geometrical complexity of the 
occluded facial feature increases. Figure 5 compares the reconstruction results 
obtained using the proposed DCM method with those obtained using the occlusion 
recovery schemes presented in [8] and [13], respectively. The data presented within 
the reconstructed images indicate the average difference between the grayvalues of 
the pixels in the restored region of the reconstructed image and the grayvalues of the 
corresponding pixels in the original non-occluded image, while the data in the 
columns next to these images indicate the average grayvalue error of the restored 
pixels in the occluded region computed over all 60 texture images within the test 
database. Overall, the results demonstrate that the images reconstructed using the 
current DCM-based method are closer to the original un-occluded facial images than 
those obtained using the schemes presented in [8] or [13]. 

5   Conclusions 

This study has presented an automatic facial occlusion reconstruction system 
comprising two DCM-based modules, namely a shape reconstruction module and a 
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texture reconstruction module, respectively. The experimental results have 
demonstrated that the images reconstructed by the proposed system closely resemble 
the original non-occluded images. The enhanced reconstruction performance of the 
proposed system arises as a result of its robustness toward misalignments of the facial 
features when constructing the facial shape and its ability to recover both the global 
structure and the local detailed facial texture components of the input image. Unlike 
PCA-based methods, the DCM-based system presented in this study provides the 
ability to reconstruct the occluded region of an input image directly from an image of 
the non-occluded region even though they are initially combined in a single 
eigenspace. Overall, the experimental results indicate that the DCM-based facial 
occlusion reconstruction system presented in this study represents a promising means 
of enhancing the performance of existing automatic face recognition, facial 
expression recognition, and facial pose estimation applications.  
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