
Towards Context-Awareness in Ubiquitous
Computing

Edwin J.Y. Wei and Alvin T.S. Chan

Department of Computing, The Hong Kong Polytechnic University
{csjwei,cstschan}@comp.polyu.edu.hk

Abstract. Future ubiquitous computing has accelerated the need of
context-awareness that leverages information about surrounding
situation so as to adapt applications. There is considerable interest in
context-awareness, and many prototypes have been proposed, which have
demonstrated the potential of context-aware applications. That notwith-
standing, these kinds of systems are known to be difficult to design,
develop and maintain. This paper considers these difficulties as it dis-
cusses the core issues of context-aware computing, including definition
of context, techniques of acquiring, modeling and adapting to contextual
information. It intends to provide the community with a comprehensive
and detailed view of current state of the art.

Keywords: Context-Awareness, Ubiquitous Computing, Context
Definition, Context Acquisition, Context Modeling, Context-aware Adap-
tation.

1 Introduction

The need for context-awareness, which leverages information about surrounding
situation so as to adapt applications, has been accelerated by the vision of ubiq-
uitous computing. Computing devices in ubiquitous computing environment now
exhibit a high degree of mobility and their computational systems must adapt
to heterogeneous and dynamic surrounding environment where they are within.
At the same time, more and more everyday devices, such as digital cameras and
watches, are now equipped with computing capabilities, so that applications in
ubiquitous computing environment need to take into account the attributes of
different devices, which otherwise will result in unsatisfactory user experience.

Due to the interest of context-awareness, many research works have been
proposed in this area [1][2][3][4][5]. These prototypes have demonstrated the
potential of context-aware applications, but have also shown that designing,
developing and maintaining these kinds of systems are still extremely difficult,
to say the least. Lots of technical challenges remain to be addressed before
even simple context-aware systems can be widely and realistically developed. In
particular, every context-aware application needs to consider four basic issues:
what is context, how to acquire them, how to represent them, and how to adapt
to them. This paper discusses these core issues of context-aware computing, and

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 706–717, 2007.
c© IFIP International Federation for Information Processing 2007

Towards Context-Awareness in Ubiquitous Computing 707

intends to provide the community with a comprehensive and detailed view of
current state of the art.

The remainder of this paper is organized as follows: In section 2, we review
definitions of context and present our own definition from an application point
of view. Section 3 focuses on currently available context acquisition techniques
for context-aware applications. Section 4 discusses several basic technical aspects
of context models including data structure, integrity and manipulation. In sec-
tion 5, we detail various design concerns of context-aware adaptation. Section 6
concludes and summarizes related challenges in context-aware research.

2 Definitions of Context

In order to effectively utilize contexts, we should first understand what contexts
are. Researchers in the context-aware computing community have invariably of-
fered their own definitions of context based on their research background. Schilit
and Heimer [6] first introduced context-aware computing in 1994 and set three
parameters for contexts: the software’s location of use, the collection of nearby
people and objects, and changes to those objects over time. For a long time,
contexts are defined by enumerating examples or choosing synonyms [7][8][9][4].
In 2000, Dey and Abowd [10] proposed a more generic definition:

“Context is any information that can be used to characterize the situa-
tion of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including
the user and applications themselves.”

More recently, inspired by social sciences, some researchers argue that contexts
are socially and psychologically constructed outcomes of human activities rather
than stable, and objective sets of features that externally characterize activities
[11][12]. Oulasvirta et al. [13] summarize these definitions of context, and divide
them into two camps which are realism and constructivism. Realism posits con-
texts as existing ontologically, and that they can be correctly recognized and
adapted to if properly instrumented and programmed. Whereas, constructivism
recognizes that contexts are human creations, social and psychological, and that
people should be provided resources to create and maintain these contexts.

No matter realism or constructivism, in their answers to ”what is context”,
user interaction with applications is overly emphasized. Actually, many non-
interactive programs can also make use of surrounding situation. We argue that
considering the issue of context definition from an application point of view
will be a more reasonable way to help developers to construct context-aware
applications. With this in mind, we present here our own definition of context:

Context is application specific, and context of an application is any external
information which can be utilized to adapt the data, behavior or structure of this
application.

Our definition of context indicates three important features of context. First of
all, context is application specific. Contexts of one specific application may make

708 E.J.Y. Wei and A.T.S. Chan

no sense to others. Secondly, context is external to applications. Only informa-
tion outside one application can be regarded as the context of that application.
Finally, context can be used to adapt not only behavior of applications, but also
their data, or even structures.

3 Acquiring Contexts

In practice, the information from three categories of context may be used to
adapt applications, which are physical contexts, computing contexts and user
contexts. Physical contexts are physical circumstances of an application like
noise level and temperature. Computing contexts refer to an application’s own
execution conditions such as host computing resources, available peripheral de-
vices, network capacity and connectivity, and so on. Finally, user contexts are
anything regarding users such as their location, presence, identities, abilities, ac-
tivities, etc. The vision of future ubiquitous computing paradigm requires these
contexts to be captured without user interaction. In this section, we review
various techniques that have been used to implicitly acquire these contextual
information.

3.1 Acquiring Physical Contexts

Physical contexts are primarily obtained through specially designed physical
sensors, which convert physical properties or phenomena, such as light and noise,
into a corresponding measurable data. For example, the TEA project [4] uses
photodiode, accelerometers, and other sensors to measure various contextual
information such as light level, tilt and vibration, proximity of humans or other
heat-generating objects, and so on. Further sensor progress in the development
and manufacture of sensors will allow more and greater varieties of physical
contextual information to be captured and used. Table 1 provides a summary of
some common types of sensors for context-aware applications.

3.2 Acquiring Computing Contexts

Computing contexts are normally collected by software routines. Most main-
stream operating systems provide primitives for developers to get related runtime
information about the device hardware, and reduce the work involved in devel-
opment. For example, in most Unix/Linux operating systems, one can employ
commands like iostat, vmstat, and netstat to report statistics for I/O devices,
virtual memory, and network condition. Symbian OS also provides a compre-
hensive software development toolkit for developers to monitor CPU, memory
and storage usage, etc. In addition to using OS primitives, it is also possible to
leverage user-level modules to sense computing contexts. For instance, applica-
tions can obtain device management information of most network devices like
routers and firewalls by sending SNMP requests, and applications base on [14]
or [15] can be notified of change of network bandwidth via upcalls.

Towards Context-Awareness in Ubiquitous Computing 709

Table 1. Common Types of Sensors

Type of Sensor Context Sensed Sensor Examples
Temperature Sensor Temperature Thermometer, Thermocou-

ple, Thermistor
Heat Sensor Heat Bolometer, Calorimeter
Magnetism Sensor Orientation Magnetic Compass, Flux-

gate, Compass
Pressure Sensor Altitude, Atmospheric Pres-

sure, Speed
Altimeter, Barometer

Gas/Liquid Flow Sensor Velocity of the Wind, Rate
of Fluid Flow

Anemometer, Mass Flow
Sensor

Mechanical Sensor Acceleration, Position, An-
gle, Deformation

Acceleration Sensor, Posi-
tion Sensor, Selsyn

Chemical Sensor Proportion of Gas Carbon Monoxide Detector,
Ion-Selective Electrode

Light Sensor Light Phototubes, Photodiode
Sound Sensor Audio Microphone, Hydrophone,

Seismometer
Motion Sensor Speed, Acceleration Radar Gun, Speedometer,

Odometer
Orientation Sensor Orientation Gyroscope, Artificial Hori-

zon

3.3 Acquiring User Contexts

It is difficult to directly sense user context through dedicated hardware sensors
or software routines. Rather, they have to be derived from original measurements
by software programs where original measurements are processed collectively. In
the followings, we discuss in some detail on the techniques used to acquire user
contexts especially location information.

Location. The most commonly acquired attribute of user context is location. In
this section, we describe four most frequently used techniques for the acquisition
of location information, which are trigonometry, signature matching, cellular
proximity and computer vision.

Trigonometry, including trilateration and triangulation, leverages the geome-
try of triangles to determine the positions of objects. Trilateration utilizes the
measured distance between the subject and three or more reference points,
as well as the known locations of these reference points, to compute the sub-
ject’s location. Differently, triangulation uses angle measurements and at least
one known distance to complete the computation. In order to measure the re-
quired distances and angles for trigonometry, time of arrival/time difference of
arrival (TOA/TDOA) [16][17], received signal strength (RSS) [18] and angle
of arrival (AOA) [19] of various communicational signals are most frequently
used. Trigonometric approaches are fine-grained localization techniques, fre-
quently used outdoors. However, due to rough wall surfaces and obstacles

710 E.J.Y. Wei and A.T.S. Chan

between emitters and receivers, communication signal propagation in indoor
environment suffers from multipath, non-line-of-sight (NLOS), and local shad-
owing, which result in unreliable measurements of location metrics such as TOA,
TDOA and AOA. Therefore trigonometric approaches fail to provide adequate
location accuracy indoors.

The positioning process based on signature matching consists of two phases:
an off-line phase of collecting data, and a real-time phase of inferring the users’
location [20]. In the off-line phase, necessary information of the entire zone of
interest is collected to produce signatures, and the latter are then stored as a
function of user’s location. In the real-time phase, incoming data is analyzed and
compiled into a unique signature which is compared with the recorded signatures
to identify the closest record and then the location is inferred. In order to produce
a unique signature for each location, several types of communicational signal
information such as received signal strength (RSS), signal noise ratio (SNR),
angular power profile (APP) and power delay profile (PDP) can be utilized.
Another interesting information frequently used to construct distinct signatures
is the ground reaction force (GRF) gathered by pressure sensors. GRF refers to
the reaction force supplied by the ground in response to the weight and inertia
of a body exerted on the ground. For example, the Smart Floor [21] sets load
cells under floor tiles to gather GRF profile, and choose ten profile features,
including the mean value, standard deviation, length of the profile and so on,
to use as signatures for each GRF profile. Signature matching approaches can
effectively counteract the problems of signal propagation in indoor environment.
The major drawback of these approaches is that developers have to collect a great
quantity of data to generate the signature database. Furthermore, changes to the
environment may require reconstruction of the predefined dataset or retrieval of
an entirely new dataset. Consequently, it is not suited for ad hoc deployment
scenarios [22].

Cellular proximity location sensing techniques determine the location of a
subject when it is near a known access point. In a cellular network, each fixed
access point, with known location, owns its sensing cell. Whenever the subject
enters the cell, it is sensed by the access point, and its location is therefore
pinned down to the resolution of a cell. Cellular proximity approaches can be
used both indoors and outdoors, and also requires no collection of off-line data.
However, they are coarse-grained localization techniques. Since the subject’s
location information is sensed by judging whether the subject is in the range of an
identified area, the sensing accuracy is determined by the radius of the identified
area. Moreover, they also incur significant installation and maintenance costs.
Using cellular proximity techniques, the cellular network must provide thorough
coverage through adequate placement and density of access points.

Location information can be also derived from analysis of data from visual
images. Visual processing techniques like depth and color segmentation, blink
detection, and color histogram matching can be used to analyze visual streams
from cameras, and recognize one or several objects, together with their 2D po-
sitions in the image or 3D positions in the scene. By combining these positions

Towards Context-Awareness in Ubiquitous Computing 711

with knowledge of camera’s relative location, fields of view, and heuristics on
the movements of objects, the final location of objects can be computed. For in-
stance, Microsoft’s Easyliving [23] uses two color stereo cameras each connected
to a PC to track multiple people in a living room. Vision based location sensing
techniques are the most flexible approaches. They can be used either indoors or
outdoors, and do not require any sort of devices to be worn by users. However, as
scene complexity increases and more occlusive motions occur, more works have
to be done to maintain analysis accuracy [24].

Other User Contexts. Other user contexts can also be acquired via a number
of novel ways. MIT’s Office Assistant [25] uses pressure sensors to detect visitors.
Schmidt et al. [26] make use of load sensing technique to explore more pervasive
augmentation of surfaces in everyday environment including floors, tables and
other high interactive spaces, and from these load-sensitive surfaces extract three
context primitives: weight, position and type of interaction. Moore et al. [27]
measure image-, object-, and action-based information from videos to recognize
human activities such as reading, coffee break and washing dishes, and objects
like winding road and parking car.

4 Modeling Context

Context modeling is concerned with representing, structuring and organizing
contextual data and relationships between them, in order to facilitate the storage
and operations of them. A well-designed context model needs to consider three
basic technical aspects: data structure, integrity and manipulation.

4.1 Data Structure

The underlying data structure used to exchange context information inside and
between applications is the first basic issue for context models. An appropriate
data structure for contextual information will facilitate not only the representa-
tion of contextual data, but also their storage, validation, modification, retrieval,
and even reasoning. Currently, tuples, objects and markup schemes are three
most popular data structures used to represent contextual information.

The simplest structure to represent contextual information is key-value pair
(2-tuple). Every pair describes one aspect of the surrounding situation of an
application. A set of these pairs describes the whole environment where applica-
tions are actively deployed. Early works in context-awareness, [28] for instance,
frequently used tuples as the underlying context structures. Tuples are easy to
implement and manage. Most programming languages provide direct support to
construct tuples. For example, as a fundamental data type, Lisp provides list,
which is a finite ordered sequence of elements. Eiffel also has a built-in type of
tuple. However, tuples lack structure and formality. As a result, they can not
effectively express sophisticated contextual information and relationships.

Contexts can also be modeled as a set of related objects. Contextual informa-
tion is embedded as the states of these objects, accessed and modified through

712 E.J.Y. Wei and A.T.S. Chan

accessor and mutator methods. Object-oriented context models’ encapsulation
and reusability cover parts of the problems arising from the dynamics of con-
texts [29]. The major drawback of object-oriented models is that context objects
are programming language dependent, which will affect their portability among
different applications and platforms. Although there do exist some techniques
advocating language- and platform- independent implementation, in this area
much work remains to be done.

Various markup languages can be also used to model context data, which
use a hierarchical data structure consisting of markup tags with attributes and
content. Among them, XML schema languages, like DTD, XML Schema and RE-
LAX NG, are the simplest ones. We can also model contexts using other more
expressive and formal data representation markup languages. Resource Descrip-
tion Framework (RDF) is such an alternative. Using RDF, contexts are modeled
as a set of statements about resources and can be exchanged between appli-
cations without loss of meaning. RDF also provides a vocabulary description
language, RDF Schema (RDF-S), to help modeling not only structures of re-
lated resources, but also relationships between them. The capability of modeling
context relationships enables context-aware applications to reason with contex-
tual information. Another powerful data modeling markup language is the Web
Ontology Language (OWL), which provides more vocabularies for expressing
meaning and semantics than XML, RDF, and RDF-S. Using OWL, contextual
information is modeled as a set of ontologies for specific application domains.
Markup scheme context models can be used to represent complex contexts and
relationships like object-oriented models. Moreover, they enable a high degree
of context sharing. Contextual information can be share among different appli-
cations across different platforms. However, markup based syntax is redundant
or large compared to binary representations of similar data.

4.2 Integrity

A well-designed context model needs to support the validation of structure and
data integrity of contextual information. In an extra dynamic environment, con-
textual information may be partially lost and become incomplete, so they must
be validated before used. Integrity validation can be performed at two levels:
structure and data. The purpose of structure validation is to check whether the
information acquired is complete in structure. For example, whether they have a
predefined ending or the necessary components exist. Data validation is a more
meticulous examination and attends to the data type, range, and even semantics
of the information to be validated. What kinds of integrity validation a context
model can support, to some extent, depends on the data structure it employs.
When using tuples as the underlying data structure, limited structure integrity
validation can be applied due to their lack of structure and formality; With the
help of compilers and programming interfaces, object-oriented models can be
validated in terms of context structure and data integrity; For markup scheme
context models, there exist many tools and specifications available for validating
structure and data integrity.

Towards Context-Awareness in Ubiquitous Computing 713

4.3 Manipulation

A comprehensive context model also needs to define operators which can be ap-
plied to the data structure. Except for the basic C.R.U.D. operations, another
especially important operator for contextual data is context reasoning. Effective
context reasoning can introduce more new contextual information derived from
other types of contexts to improve user experience. For example, given contex-
tual information like Jack’s location is in the presentation room, his posture is
sitting and the projector is on, the application may infer that Jack is now in-
volved in a presentation, and automatically turn Jack’s cell phone to vibration
mode. Furthermore, context reasoning helps to resolve context inconsistency and
conflict, and provide more exact context query results. Similar to integrity vali-
dation, context manipulation also depends on the underlying data structures of
context models. For example, tuple-based contexts are easy to modify, however
tuples support only simple context queries and reasoning, and are not easy to
use with other efficient context retrieval and reasoning algorithms. By contrary,
there are many techniques available for querying and reasoning with markup
context information, but markup schemes suffer from its operational difficulties.

5 Adapting to Contexts

After acquiring raw contextual data, representing fine-grained contexts, context-
aware applications have to struggle with the issue of adaptation. In particular,
developers need to consider three adaptation-related questions: what to adapt,
how to adapt, and when to adapt.

5.1 What to Adapt

There are three kinds of adaptations which applications may use in order to
adapt to contexts: data adaptation, behavioral adaptation and structural adap-
tation. By data adaptation we mean that applications may change their oper-
ating data in some ways such as changing the quality of data to be accessed,
transforming data form to a more suitable one, or accessing a different set of
data. For example, in Odysssey, the server can select the most appropriate data
at runtime from several pre-generated versions with different fidelity level ac-
cording to the available resources or even energy [30]. By behavioral adaptation
we refer to the fact that applications may behave differently in different contexts.
For instance, a context-aware video player may pause when the audience leave
and resume when they return. By structural adaptation we mean that applica-
tions may modify their internal structures or processing sequences to counteract
contexts yet retain the same functions. For example, to adapt to poor computing
resource, a compiler may unload the code optimization module.

5.2 How to Adapt

Two general approaches have been used to realize context-aware adaptation: trans-
formational adaptation and compositional adaptation [31]. In transformational

714 E.J.Y. Wei and A.T.S. Chan

adaptation, applications directly modify related specifications and/or implemen-
tations to suit changing contexts. Compositional adaptation, in contrast, does not
directly modify. Rather, it responds to contexts through adding, removing, replac-
ing, or even changing the interconnections of application algorithmic or structural
parts. For example, to adapt web contents to resource-constrained devices, appli-
cations may directly transcode the original data by transformational adaptation,
or replace the original data with a new version by compositional adaptation.

To use transformational adaptation, some crucial variables to describe
context-aware aspects of applications are usually defined and tuned to adapt
to contextual information. Although transformational adaptation is easier to
implement than compositional adaptation, it suffers from two major drawbacks:
first, it is hard to realize structural adaptation, which usually requires adding
or removing structural parts of applications. Moreover, unimplemented versions
of data and behavior cannot be introduced into applications during runtime. In
transformational adaptation, everything should be designed and implemented in
advance.

Compositional adaptation is more flexible. It is applicable for all types of adap-
tation, including data adaptation, behavioral adaptation and structural adap-
tation, and it allows new data, behavioral or structural parts to be adopted to
address unforeseen concerns after the original construction of applications. On
the downside, compositional adaptation is more complex than transformational
adaptation. Developers need to pay attention to synchronization and state migra-
tion between different components [32]. For example, in the case of a streaming
player which can replace various encoders and decoders using various algorithms,
if the encoder at the sender side is replaced before the decoder is replaced at the
receiver side, the video content may be decoded incorrectly. Thus, synchroniza-
tion among components is required while adding, removing or replacing com-
ponents. At the same time, in order to keep state consistence, when replacing
components, state migration is necessary to correctly initialize the new version
of a component.

5.3 When to Adapt

Context adaptation may occur throughout almost the entire lifetime of an appli-
cation, from compile time, to load time, to run time. Generally speaking, later
adaptation time supports more powerful adaptation methods, but also compli-
cates the problem of ensuring consistency in adapted programs [33]. In compile
time, context-aware applications can be adapted to contexts, especially comput-
ing contexts, with the help of compilers. For example, programs are expected to
use various compiler flags for various target machine models when using GNU
Compiler Collection (GCC). Another example is aspect-oriented programming
(AOP). In AOP, during compilation, an aspect weaver can be used to weave
different crosscutting concerns of the program together to form a program with
new behavior. Context-aware applications can also defer the adaptation decision
until the application load time, enabling developers to configure applications
in respond to current environment after compile time. The simplest load time

Towards Context-Awareness in Ubiquitous Computing 715

adaptation implementation is to use command-line parameters. Another more
flexible way is to use external configuration files. Apart from these two general
methods, there are particular languages that provide primitives to support load
time adaptation. For example, using Java, developers can design their own class
loaders, and decide which classes are to be loaded according to current contexts,
hence adapting applications. The most powerful adaptation takes place in appli-
cation run time so that context-aware applications can be dynamically adapted
while it is being used. Examples of techniques to implement runtime adaptation
include computational reflection and dynamic weaving of aspects.

6 Challenges for Context-Awareness in Ubiquitous
Computing

We have discussed the core issues of context-awareness in ubiquitous computing.
During this process, we can observe that research into context-aware computing
is still at its early stage and there exist several central research challenges in
context-aware computing.

First of all, there is still a fundamental lack of understanding of context.
Many definitions are available but none is satisfactory to most people. As a
result, almost all current context-aware applications are built on their own un-
derstandings to contexts. This case makes it impossible to exchange context
information between different applications. Secondly, more contexts wait to be
sensed and used. Currently, most of the focus in context-aware research is on
location and lots of location-sensing approaches have been explored but there
have been few attempts to enhance applications by applying other contextual in-
formation, such as human emotions and activities. Finally, more comprehensive
context-aware middlewares need to be provided. Early context-aware research
efforts directly interact with the underlying network and operating systems to
extract contextual information, process it, and adapt to it entirely at the applica-
tion layer. These approaches were hard to be reused, and application developers
have to ”re-invent the wheel” each time a new context-aware application being
developed. Moreover, the complexity of communicating with various sensors,
modeling and reasoning raw contextual data, and adapting application behav-
ior tends to distract developers from implementing real application logic, and
this will slow down productivity and compromise product quality. Mechanism
and primitives must be provided to conceal the complexity of these issues from
context-aware application developers, and to facilitate the development process.
However, although most of the existing middlewares provide software abstraction
and management facilities for sensor devices, they do not provide off-the-shelf
context acquisition components or underlying supports for communication with
sensors. Additionally, the task of context-aware adaptation is seldom addressed
at the middleware layer and just left as an application concern, and few of the
works in context-aware middlewares support all needs of context acquisition,
modeling, and adaptation.

716 E.J.Y. Wei and A.T.S. Chan

References

1. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The Active Badge Location System.
ACM Transactions on Information Systems 10(1), 91–102 (1992)

2. Abowd, G.D., Atkerson, C.G., Hong, J., Long, S., Kooper, R., Pinkerton, M.:
Cyberguide: A Mobile Context-Aware Tour Guide. Wireless Networks 3(5), 421–
433 (1997)

3. Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Developing A
Context-Aware Electronic Tourist Guide: Some Issues and Experiences. In: Pro-
ceedings of the SIGCHI conference on Human factors in computing systems, pp.
17–24 (April 2000)

4. Schmidt, A., Aidoo, K.A., Takaluoma, A., Tuomela, U., Laerhoven, K.V., de Velde,
W.V.: Advanced Interaction in Context. In: Proceedings of the 1st International
Symposium on Handheld and Ubiquitous Computing, pp. 89–101 (1999)

5. Siewiorek, D., Smailagic, A., Furukawa, J., Krause, A., Moraveji, N., Reiger, K.,
Shaffer, J., Wong, F.L.: SenSay: A Context-Aware Mobile Phone. In: Fensel, D.,
Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, Springer, Hei-
delberg (2003)

6. Schilit, B.N., Heimer, M.M.: Disseminating Active Map Information to Mobile
Hosts. IEEE Network 8(5), 22–32 (1994)

7. Schilit, B.N., Adams, N., Want, R.: Context-Aware Computing Applications. Mo-
bile Computing Systems and Applications, 85–90 (1994)

8. Long, S., Kooper, R., Abowd, G.D., Atkeson, C.G.: Rapid Prototyping of Mobile
Context-Aware Applications: the Cyberguide Case Study. In: International Con-
ference on Mobile Computing and Networking, pp. 97–107 (1996)

9. Brown, P.J., Bovey, J.D., Chen, X.: Context-Aware Applications: From the Labo-
ratory to the Marketplace. IEEE Personal Communications 4(5), 58–64 (1997)

10. Dey, A.K., Abowd, G.D.: Towards a Better Understanding of Context and Context-
Awareness. In: CHI 2000 Workshop on the What, Who, Where, When, and How
of Context-Awareness (2000)

11. Dourish, P.: What We Talk About When We Talk About Context. Personal and
Ubiquitous Computing 8(1), 19–30 (2004)

12. Tamminen, S., Oulasvirta, A., Toiskallio, K., Kankainen, A.: Understanding Mobile
Contexts. Personal and Ubiquitous Computing 8(3), 135–143 (2004)

13. Oulasvirta, A., Tamminen, S., Höök Comparing, K.: Two Approaches to Context:
Realism and Constructivism. In: Proceedings of the 4th Decennial Conference on
Critical Computing: Between Sense And Sensibility, pp. 195–198 (2005)

14. Noble, B.D., Satyanarayanan, M., Narayanan, D., Tilton, J.E., Flinn, J., Walker,
K.R.: Agile Application-Aware Adaptation for Mobility. In: Proceedings of the 6th
ACM Symposium on Operating Systems Principles, pp. 276–287 (1997)

15. Andersen, D., Bansal, D., Curtis, D., Seshan, S., Balakrishnan, H.: System support
for bandwidth management and content adaptation in Internet applications. In:
Proceedings of 4th Symposium on Operating Systems Design and Implementation,
pp. 213–226 (October 2000)

16. Ward, A., Jones, A., Hopper, A.: A New Location Technique for the Active Office.
IEEE Personal Communication 4(5), 42–47 (1997)

17. Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The Anatomy of a
Context-Aware Application. Wireless Networks 8(2-3), 187–197 (2002)

Towards Context-Awareness in Ubiquitous Computing 717

18. Small, J., Smailagic, A., Siewiorek, D.P.: Determining User Location for Context
Aware Computing Through the Use of a Wireless LAN Infrastructure, Project
Aura Report, Carnegie Mellon University (2000),
http://www.cs.cmu.edu/∼aura/publications.html

19. Aitenbichler, E., Muhlhauser, M.: An IR Local Positioning System for Smart Items
and Devices. In: Proceedings of the 23rd International Conference on Distributed
Computing Systems Workshops, pp. 334–339 (May 2003)

20. Nerguizian, C., Despins, C., Affes, S.: Geolocation in Mines With an Impulse
Response Fingerprinting Technique and Neural Networks. IEEE Transactions on
Wireless Communications 5(3), 603–611 (2006)

21. Orr, R.J., Abowd, G.D.: The Smart Floor: A Mechanism for Natural User Iden-
tification and Tracking. In: Proceedings of International Conference on Human
Factors in Computing Systems, pp. 275–276 (2000)

22. Bulusu, N., Heidemann, J., Estrin, D.: GPS-less Low-Cost Outdoor Localization
for Very Small Devices. IEEE Personal Communication 7(5), 28–34 (2000)

23. Krumm, J., Harris, S., Meyers, B., Brumitt, B., Hale, M., Shafer, S.: Multi-Camera
Multi-Person Tracking for EasyLiving. In: Proceedings of the 3rd IEEE Interna-
tional Workshop on Visual Surveillance, pp. 3–10 (July 2000)

24. Hightower, J., Borriello, G.: Location Systems for Ubiquitous Computing. IEEE
Computer 34(8), 57–66 (2001)

25. Yan, H., Selker, T.: Context-Aware Office Assistant. In: Proceedings of the 5th
International Conference on Intelligent user Interfaces, pp. 276–279 (2000)

26. Schmidt, A., Strohbach, M., van Laerhoven, K., Friday, A., Gellersen, H.W.: Con-
text Acquisition Based on Load Sensing. In: Proceedings of the 4th International
Conference on Ubiquitous Computing, pp. 333–350 (2002)

27. Moore, D.J., Essa, I.A., Hayes, M.H.: Exploiting Human Actions and Object Con-
text for Recognition Tasks. In: Proceedings of IEEE International Conference on
Computer Vision 1999 (ICCV 1999) (March 1999)

28. Schilit, B.N., Theimer, M.M., Welch, B.B.: Customizing Mobile Applications. In:
Proceedings of USENIX Symposium on Mobile and Location-Independent Com-
puting (USENIX Association), pp. 129–138 (August 1993)

29. Strang, T., Linnhoff-Popien, C.: A Context Modeling Survey. In: 1st International
Workshop on Advanced Context Modeling, Reasoning and Management, pp. 34–41
(2004)

30. Flinn, J., Satyanarayanan, M.: Energy-aware Adaptation for Mobile Applications.
In: Proceedings of the 17th ACM Symposium on Operating System Principles, pp.
48–63 (December 1999)

31. Tekinerdogan, B., Aksit, M.: Adaptability in object-oriented software development
workshop report. In: Cointe, P. (ed.) ECOOP 1996. LNCS, vol. 1098, Springer,
Heidelberg (1996)

32. Biyani, K.N., Kulkarni, S.S.: Building Component Families to Support Adapta-
tion. In: Proceedings of the 2005 workshop on Design and evolution of autonomic
application software (DEAS 2005), St. Louis, Missouri, USA (May 2005)

33. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing adaptive
software. IEEE Computer 37(7), 56–64 (2004)

http://www.cs.cmu.edu/~aura/publications.html

	Towards Context-Awareness in Ubiquitous Computing
	Introduction
	Definitions of Context
	Acquiring Contexts
	Acquiring Physical Contexts
	Acquiring Computing Contexts
	Acquiring User Contexts

	Modeling Context
	Data Structure
	Integrity
	Manipulation

	Adapting to Contexts
	What to Adapt
	How to Adapt
	When to Adapt

	Challenges for Context-Awareness in Ubiquitous Computing

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

