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Abstract. Most of the state-of-the-art localization algorithms in wire-
less sensor networks (WSNs) are vulnerable to attacks from malicious
or compromised network nodes, whereas the secure localization schemes
proposed so far are too complex to be applied to power constrained
WSNs. This paper provides a novel secure scheme “Bilateration” which
is derived from multilateration but can be calculated more accurately
and quickly to resolve the positions of unknown nodes without explic-
itly distinguishing what kind of location attacks the WSN is facing. This
paper also compares Bilateration with three existing multilateration so-
lutions that optimize the location estimation accuracy via LS, LMS and
LLMS respectively in a simulated threat environment. The experiment
results show that Bilateration gets the best tradeoff among estimation
error, filtering ability and computational complexity.
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1 Introduction and Related Work

A WSN may run in a hostile environment without any supervision, where the
attackers may easily threat the functionality of position-aware applications by
exploiting the vulnerabilities of the localization schemes. There are mainly two
types of attacks aiming at the localization process in WSNs [2]. The first type is
launched by malicious nodes that are not a part of the network and controlled by
an attacker. Typical attacks include modifying distance, jamming communica-
tion and creating wormholes [3] [4] in the network. The second type is launched
by compromised nodes that are a part of the network and can authenticate
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themselves as honest nodes, but are controlled by an attacker. They report false
positions and disseminate false topology information. Most of the existing local-
ization algorithms don’t have the ability to filter out incorrect information, thus
are vulnerable to various location attacks.

Recently, some secure localization schemes have been proposed to resist the
attacks launched by compromised or malicious nodes. The most common tech-
niques include location-verification[5], distance-verification[6][7], distance-
bounding plus some symmetric key cryptography[8], RSS measurements[10] and
“packet leashes”[4]. However these methods always require powerful calculation
ability, precise synchronization, fast transmission, or somewhat training, etc,
which are not suitable for such tiny, low-cost, power constrained sensor nodes.
Alternatively, localization based on least median squares (LMS)[9] has been in-
troduced to improve the resilience and accuracy of localization, which however
is not suitable to WSN as well due to the heavy burden of calculation. Then
[9] chooses to formulate a linearization of the LS (LLMS) location estimator in
order to reduce the computational complexity of LMS at the cost of accuracy.

The main contributions of our work are in two aspects. Firstly, unlike the tra-
ditional secure localizations which introduce countermeasures to every possible
attack, we propose a novel secure localization mechanism Bilateration, which
is efficient in calculation and independent of the type of attacks. Secondly, we
compare the performance of Bilateration with three multilateration solutions
using LS, LMS, LLMS in the simulated settings, and the results show that our
method outperforms the other secure schemes in estimation accuracy, filtering
ability and computational complexity.

The remainder of this paper is organized as follows. Section 2 formulates
the secure localization problem; section 3 overviews the basic idea of LS, LMS
and LLMS; section 4 describes Bilateration algorithm; section 5 compares the
performance of the above four algorithms; section 6 concludes the paper.

2 Problem Formulation

We consider a homogeneous network consisting of a set of wireless sensor nodes,
including anchors and unknown nodes. Sensor nodes are equipped with radio
transceivers, and two nodes can communicate with each other if the distance
between them is within node’s radio range. Each node can measure the distance
to other nodes through TDOA, RSSI or something like DV-HOP with a white
Gaussian noise:

dmeasured=dreal+noise, noise∼N(0,V D) (1)

The most remarkable feature of Bilateration is that it only cares about the
result of attack, i.e., the received distance and/or reference location might be
false, but needs not distinguish who launches the attack or what kind of attack
it is. To simply the description, in this paper we use compromised nodes to refer
to both malicious nodes and compromised nodes that issue false distance and/or
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reference location information in the network. The threat model we consider is as
follows: a few anchor nodes have been compromised and purposely disseminate
randomly false reference positions; moreover compromised nodes may not be
detected by other means.

Suppose an unknown node located at (x0,y0) has collected a set of reference
positions {(x1,y1),···,(xn,yn)} and measured distances {d1,···,dn} to these nodes.
In an idealistic environment setting without any noise and threat, these positions
and distances satisfy the following n equations:[-4mm]

(x1−x0)2+(y1−y0)2=d2
1

...

(xn−x0)2+(yn−y0)2=d2
n

(2)

If n≥3, (x0,y0) can be uniquely determined by solving any 3 of the equations
if the selected anchors are not in a line. This method is the classical trilateration
algorithm. In a 2D plane, solution of trilateration is the intersection of three
circles centered at three anchors(fig.1(a)), and solution of multilateration (2) is
the intersection of all n circles (fig.1(b)). However, in a real noisy environment
with imprecise reference location and/or distance measurements, n circles do not
intersect at one point. Therefore an objective function (3) is used to minimize
the error between estimated position and real position.

(a) Trilateration (b) Multilateration (c) Outliers

Fig. 1. Multilateration and Outliers

Generally speaking, in a noisy environment without compromised nodes, mul-
tilateration with LS is not a bad choice. However, in an environment with some
compromised nodes, LS is not good since the estimated position (x̂0,ŷ0) may be
adversely “removed” far away from the optimal position by compromised nodes.
In order to get rid of the “outliers” (see fig.1(c)) caused by compromised nodes,
LMS and linear LMS are applied to replace LS in estimation process.
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3 LS, LMS and LLMS

3.1 Least Square

Multilateration with LS is to minimize the difference between the estimated
position (x̂0,ŷ0) and the real position (x0,y0) of a node, see (3).

(x̂0,ŷ0)=arg min
(x0,y0)

n∑

i=1

[
√

(xi−x0)2+(yi−y0)2−di]2 (3)

This method usually involves some kind of iterative searching technique such
as gradient descent or Newton method. To avoid local minimum LS must run
several times with different initial starting points, which is expensive in terms of
computing overhead. Moreover, it is vulnerable in the presence of compromised
nodes, e.g., if an unknown node receives a false position sent by a compromised
node, the estimated position may deviate significantly from its true value even
if the measured distance is accurate. This is because pure LS tries to achieve a
global optimality of all samples including outliers.

3.2 Least Median Square

To increase the resilience of multilateration with LS, least median squares (LMS)
is proposed in [9]. Instead of minimizing the summation of the residue squares,
LMS tries to minimize the median of the residue squares:

(x̂0,ŷ0)=arg min
(x0,y0)

medi[
√

(xi−x0)2+(yi−y0)2−di]2 (4)

According to [9], the procedure for implementing the robust LMS algorithm is
summarized as follows:

1. Set n=4 as the appropriate subset size.

2. Set M=

{
20, if n>6(
n
4

)
, otherwise

as the appropriate total number of subsets.

3. Randomly draw M subsets of size n from the heard anchors {(x0,y0),···,
(xn,yn)}. Calculate the estimation (x̂0,ŷ0)j using LS for each subset and the
corresponding median of residues {r2

ij} for every (x̂0,ŷ0)j . Here i=1,2,···,n is
the index for heard anchors, while j=1,2,···,M is the index for the subsets.

4. Set m=arg minj medi{r2
ij}, then (x̂0,ŷ0)mis the subset estimation with the

least median of residues, and {rim} is the corresponding residues.
5. Calculate s0=1.4826(1+ 5

n−2 )
√

medir2
im.

6. Assign weight ωi to each heard positions with equation ωi=

{
1,

∣∣∣ ri

s0

∣∣∣≤λ

0, otherwise
.

7. Do LS to all heard positions with weights {ωi} to get the final (x̂0,ŷ0).
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3.3 Linear LMS

Considering that finding estimation for M subsets requires a lot of computation,
[9] transforms nonlinear LS into linear LS, which is a suboptimal but more
computationally efficient algorithm.

1. Average all the left parts and right parts of (2):

1
n

n∑

i=1

[(xi−x0)2+(yi−y0)2]=
1
n

n∑

i=1

d2
i (5)

2. Subtract (5) from each equation in (2), and linearizes to get the following
new equations:

(x1−
1
n

n∑

i=1

xi)x0+(y1−
1
n

n∑

i=1

yi)y0=
1
2
(x2

1+y2
1−d2

1−
1
n

n∑

i=1

(x2
i +y2

i −d2
i ))

...

(xn− 1
n

n∑

i=1

xi)x0+(yn− 1
n

n∑

i=1

yi)y0=
1
2
(x2

n+y2
n−d2

n− 1
n

n∑

i=1

(x2
i +y2

i −d2
i ))

(6)

3. Estimate (x̂0,ŷ0) by linear least squares.

Transforming nonlinear LS into linear LS saves much computation, since the
solution can be calculated directly from (6) without iterative searching and re-
peating. Furthermore, the solution of linear LS can be used as the starting point
of nonlinear LS to prevent nonlinear LS from getting trapped in a local mini-
mum. In our simulation, we use this starting point to do nonlinear LS.

However, due to the subtraction, the optimal solution of linear equations in
(6) is not exactly the same as that of nonlinear LS in (2), which means much
accuracy is lost, especially when the number of heard anchors is small. In the
experiments of [9], as the number of heard anchors is fixed to 30, linear LS is
acceptable as it still performs very well. However, 30 heard anchors per unknown
node is not practical in the realistic settings.

4 Bilateration

Due to inherent limitation, the performance of LMS and LLMS is poor when
the number of heard anchors is small, or the percentage of outliers exceeds
50% even if there are still many usable samples. The goal of bilateration is to
achieve the same accuracy as LMS and the same computational speed as LLMS,
meanwhile its performance is less affected by the number of heard anchors and
the percentage of outliers.

In an idealistic environment without measurement noise and attacks, if n=2
we can solve (2) as follows:
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x0=
−(mn−ny1−x1)

1+n2 ±
√

2(nx1+m)y1−y2
1−n2x2

1−2mnx1−m2+(1+n2)d2
1

1+n2

y0=m+nx0

m=
1
2

(x2
1−x2

2)+(y2
1−y2

2)−(d2
1−d2

2)
y1−y2

n=−x1−x2

y1−y2

(7)

Evaluation of (7) is very fast given the value of {(x1,y1),(x2,y2),d1,d2}. The
real solutions for (x0,y0) are called candidate positions, which in a 2D plane
are the intersections of two circles (see fig.2(a)); the complex solutions are not
considered in this paper (see fig.2(b)). If another two anchors (at least one of
the them doesn’t belong to {(x1,y1),(x2,y2)}) and corresponding distances are
selected, another two candidate positions are solved for (x0,y0). Among the 4
candidate positions, at least 2 positions overlap each other, and this overlapped
point is the correct solution for (x0,y0) (see fig. 2(c)). If more anchor positions
and distances are available, more overlapped points will occur. In this way, even
most of the heard anchors are compromised, this method can correctly locate
an unknown node as long as at least three anchors and corresponding distance
measurements are accurate.

(a) Two real solutions (b) No real solutions (c) Overlapped solutions

Fig. 2. Bilateration

In real noisy environment, there may be no overlapped points due to distance
error. However, there is reason to believe that correct positions should be close
to each other if the distance error is bounded. We define:

Correct candidate positions: a group of candidate positions, in which there
is at least one position whose distances to the other members are less than the
threshold δ.
Candidate neighbors: two candidate positions between which the distance is
within δ.

For an unknown node μ, the procedure for implementing our Bilateration
algorithm is summarized as follows:

1. If n≤3, set μ as un-localized and terminate the algorithm. This situation
will not be considered in our performance comparison, because there is no
way to distinguish which position is false.
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Fig. 3. Who is the compromised node

2. Exhaust all the combinations of two anchors and the corresponding measured
distances {(ai,di),(aj ,dj)} to evalute (7), and suppose M candidate positions
{c1,···,cM} have been solved from the

(
n
2

)
combinations.

3. For each candidate position ci, calculate {Di1,···,Dii−1,Dii+1,···,DiM}, where
Dij is the distance between ci and cj , i,j=1,2,···,M is the index to candidate
positions.

4. For each ci, find out all the distances shorter than the threshold δ and get
{Dip,···,Dit|Dip<δ∧···∧Dit<δ,Dip,···,Dit∈{Di1,···,Dii−1,Dii+1,···,DiM}}, set
ni=|Dip,···,Dit|. (|·|denotes the cardinality of a set).

5. Find out m=argmaxi{ni}, suppose {Dmp,···,Dmt} are the distances between
cm and its candidate neighbors {cp,···,ct}; find out the corresponding anchors
{al,···,aq}⊆{a1,···,an} from which {cm,cp,···,ct} are solved; set the weights of
{al,···,aq} as 1; set the weights of the other heard anchors as -1.

6. Exchange the weight table with its neighbors.
7. Collect all the weight tables from its neighbors; pick out the common heard

anchors; add their weights together; set the anchors whose weight is less than
the average weight as the compromised nodes. (see fig.3)

8. Delete the candidate positions caused by compromised nodes from {c1,···,
cM}; set the average of all the left candidate positions as the final estimated
position eμ.

If the unknown node hears 4 different positions including 1 false position, LMS
and LLMS are unable to deal with this situation, whereas our scheme can find
out the correct positions if the distance between the correct candidate positions
is shorter than δ .

5 Simulation

To evaluate Bilateration, we simulated it and multilateration with LS, LMS,
and LLMS (abbr. to LS, LMS and LLMS) on Matlab, and compared them in
terms of estimation error, ability of false position filtering, and computational
complexity in simulation environment. Estimation error is the average variance
between estimated locations and real locations. Ability of false position filtering
is the average number of false positions that are used in the location estimation
of each unknown node. Each data point represents the average value of 500 trials
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with different random seeds. We use ideal LS as a benchmark in the performance
comparisons, which can filter out all the compromised anchors before estimation.

In our simulation settings, we have the following definitions and assumptions.

– Anchors and unknown nodes are uniformly distributed in an area of 200×
200m2.

– The coordinates of false positions, x and y, are independent and identically
follow normal distribution N(100,V P ), where VP varies from 20 to 200m.

– The noise of measured distance obeys normal distribution N(0,V D), where
VD varies from 0 to 50m.

– R is the radio range of node, and is fixed to 50m in our experiments.
– NA is the average number of heard anchors by each unknown node.
– NU is the average number of heard unknown nodes by each unknown node.
– CP is the percentage of compromised anchors, and varies from 0 to 1.

In the following experiments, without specification, the default environment
settings are: V P=20m, V D=5m, NA=7.5, NU=7.5 and CP=0.2. After a lot of
experiments with different δ and λ, we find out that the optimal δ for Bilateration
is 10, and the optimal λ for both LMS and LLMS is 1.5. We omit the detailed
performance comparison due to limitation of space.

5.1 Influence of Average Number of Anchors

In this experiment, we investigate the influence of average number of heard
anchors (NA) on the performance of the four localization algorithms.

In fig.4(a), except for LS whose estimation error increases about 5% when
NA increases from 5 to 25 due to its lack of filtering ability, the estimation error
of other four algorithms (including Ideal LS) decreases. Bilateration has lower
estimation error than LMS and LLMS, but their gap shrinks when NA increases.

Fig.4(b) compares the filtering ability of all algorithms. Since LS doesn’t filter
out outliers and CP is fixed, the false positions used by LS increases with NA.
The number of unfiltered false positions used by Bilateration is smaller than that
used by LMS and LLMS; that is to say, Bilateration has stronger filtering ability

(a) Estimation Error (b) Unfiltered False Positions

Fig. 4. Influence of Average Number of Anchors
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than LMS and LLMS. This explains why Bilateration has lower estimation error
than LMS in a hostile environment: the stronger filtering ability compensates
for the suboptimal estimation accuracy.

In fig.4(a), the estimation error of Bilateration is close to that of Ideal LS all
the time, whereas LMS and LLMS requires many more anchors to get the same
accuracy. Since there are only a few anchors in a real wireless sensor network,
this result shows that Bilateration is more suitable to real settings.

5.2 Influence of Percentage of Compromised Nodes

In this experiment, we investigate the influence of compromised percentage (CP)
on the performance of algorithms. It is interesting to observe that ideal LS
terminates when CP reaches 0.6, this is because the number of un-compromised
anchors is smaller than 3 for each unknown nodes with NA=7.5. Therefore it is
meaningless to discuss the performance for CP larger than 0.6.

(a) Estimation Error (b) Unfiltered False Positions

Fig. 5. Influence of Percentage of Compromised Nodes

In fig.5(a), the estimation error of Bilateration is lower than that of LS, LMS
and LLMS all the time when CP is smaller than 0.6, which shows that Bilat-
eration is less affected by CP. However the four curves tend to approach when
CP increases, since there is no difference among them when no right position is
available.

In fig.5(b), the number of unfiltered false positions used by Bilateration is
smaller than that used by LS, LMS and LLMS, which shows that Bilateration
has the strongest filtering ability.

5.3 Influence of Distance Measurement Error

In this experiment, we investigate the influence on distance measurement error
on the performance of algorithms.

In fig.6(a), the estimation error of Bilateration increases rapidly as the vari-
ance of distance (VD) increases. The estimation error of Bilateration is lower
than that of LS, LMS and LLMS when VD is less than 13, then it exceeds them
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(a) Estimation Error (b) Unfiltered False Positions

Fig. 6. Influence of Distance Measurement Error

quickly. We observe that the estimation error of Bilateration does not reach 0
even when VD is 0, since δ=10 allows some false positions to participate in the
location estimation (fig.6(b)). If δ is set to 0, then Bilateration can filter out all
the false positions when VD is 0. LMS and LLMS outperform LS when VD is
less than 22 and 15 respectively, and then lost their advantage as well.

In fig.6(b), the number of unfiltered false positions used by all the four algo-
rithms increase as VD increase, since large distance error makes it more difficult
to distinguish between correct position and false position. Therefore if the mea-
sured distance is not accurate enough, the filtering ability of algorithm has no
meaning.

This experiment shows that Bilateration is more suitable to work in an envi-
ronment with moderate noise that is less than 24% or radio range.

5.4 Tradeoff Between Performance and Communication Complexity

Bilateration is the only algorithm which needs to communicate with heard un-
known nodes to identify the compromised nodes. However, the performance of
Bilateration with small NA is not sensitive to the average number of unknown
nodes. Meanwhile, the performance of the other three algorithms are not sensitive
to the average number of unknown nodes (Fig.7(a)(b)). So, in this experiment,
we only evaluate Bilateration with NA=25 and different CPs.

Fig.7(c)(d) evaluate Bilateration with different CPs. The estimation error and
unfiltered false positions of Bilateration with bigger CP decreases more rapidly
than those with smaller CP as NU increases. So the strategy of exchanging weight
tables is more useful for Bilateration with big NA and CP. In other words, if CP
or NA is not big we can abandon this strategy to save energy.

5.5 Computation Complexity Analysis

Since Bilateration, LMS and LLMS primarily differ in the means of estimation,
we only analyze the amount of computation involved in estimation. Suppose that
an unknown node μ hears n anchors.
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(a) Estimation Error (b) Unfiltered False Positions

(c) Estimation Error (d) Unfiltered False Positions

Fig. 7. Influence of Average Number of Unknown nodes

In LMS, μ needs to do LS estimation
(
n
4

)
+1 times, when n≤6 or 21 times

when n>6. In each round of LS estimation except for the last round, four anchor
positions are involved in the estimation calculation, and in the last round all the
unfiltered positions are involved. In order to avoid local minimum, solution of
linear LS is used as a start point to search the global optimality, which adds
another

(
n
4

)
+1 or 21 times of linear LS calculation. It is possible to use LS

without preliminary linear LS, however, LS may need to search more times for
optimal solution from different start point, and moreover the solution may be
trapped into local minimum.

In LLMS, μ needs to do linear LS
(
n
4

)
+1 times when n≤6 or 21 times when

n>6. The amount of computation involved in linear LS is much less than that
involved in LS.

In Bilateration, μ needs to evaluate (7)
(
n
2

)
times to find out all the candidate

positions, and then perform 4
(
n
2

)2 times of distance calculation between each
candidate position to every other candidate position. All the computation only
involves simple algebraic calculation, so Bilateraton runs much faster than LMS
and comparable with LLMS, which was verified by our experiments as well.

6 Conclusion and Future Work

In this paper we propose Bilateration, an attack-resistant localization algorithm
that tries to find a set of close-by positions from all candidate positions and use
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the average of these close-by positions as the estimated position. Bilateration is
resilient to all kinds of position and distance cheating attacks in the sense that
it only cares about the result of attacks rather than the process of attacks; and
is more close to the real world.

In the threat model of this paper, we assume that compromised nodes do
not cooperate and disseminate randomly false positions. If some or all of the
compromised nodes cooperate to give false but specious positions, e.g., each
compromised node reports a position that is a fixed displacement to its real
position, then detecting and filtering these nodes is difficult. In the future, we
will evaluate Bilateration and other three localization algorithms under this kind
of attack.
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