
Integrated Global and Local Quality-of-Service
Adaptation in Distributed, Heterogeneous Systems

Larisa Rizvanovic1, Damir Isovic1, and Gerhard Fohler2

1 Department of Computer Science and electronics, Mälardalen University, Sweden
{larisa.rizvanovic,damir.isovic}@mdh.se

http://www.mrtc.mdh.se
2 Department of Electrical and Computer Engineering,

University of Kaiserslautern, Germany
fohler@eit.uni-kl.de

http://www.eit.uni-kl.de/

Abstract. In this paper we have developed a method for an efficient Quality-of-
Service provision and adaptation in dynamic, heterogeneous systems, based on
our Matrix framework for resource management. It integrates local QoS mecha-
nisms of the involved devices that deal mostly with short-term resource fluctua-
tions, with a global adaptation mechanism that handles structural and long-term
load variations on the system level. We have implemented the proposed approach
and demonstrated its effectiveness in the context of video streaming.

Keywords: Quality-of-Service adaptation, distributed resource management, het-
erogenous systems, networked architectures, resource limitations and fluctuations.

1 Introduction

In distributed heterogeneous environments, such as in-home entertainment networks
and mobile computing systems, independently developed applications share common
resources, e.g., CPU, network bandwidth or memory. The resource demands coming
from different applications are usually highly fluctuating over time. For example, video
processing results in both temporal fluctuations, caused by different coding techniques
for video frames, and structural fluctuations, due to scene changes [1]. Similarly, wire-
less networks applications are exposed to long-term bandwidth variations caused by
other application in the system that are using the same wireless network simultane-
ously, and short-term oscillations due to radio frequency interference, like microwave
ovens or cordless phones. Still, applications in such open, dynamic and heterogeneous
environments are expected to maintain required performance levels.

Quality-of-Service (QoS) adaptation is one of the crucial operation to maximize over-
all system quality as perceived by the user while still satisfying individual application
demands. It involves monitoring and adjustment of resources and data flows in order
to ensure delivering of certain performance quality level to the application. This can be
done locally on a device, i.e., local resource adaptation mechanisms on devices detect
changes in resource availability and react to them by adjusting local resource consump-
tion on host devices, or globally, on the system level, i.e., the QoS adaptation is per-
formed by a global QoS manager with a full knowledge of the system resources. The

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 219–233, 2007.
c© IFIP International Federation for Information Processing 2007

http://www.mrtc.mdh.se
http://www.eit.uni-kl.de/

220 L. Rizvanovic, D. Isovic, and G. Fohler

first approach has the advantage that the application can use domain specific knowl-
edge to adapt its execution to the available resources. For example, in a video streaming
application, this could be achieved by decreasing the stream bit rate or skipping video
frames. On the other hand, a global resource management is aware of the demand of
other applications and it has an overview of the total resource availability on the sys-
tem level. In this way, it may reassign budgets, or negotiate new contracts to maximize
system overall performance.

While most of the existing approaches provide mechanisms for either local or global
adaptation, we believe that both methods should be used together in order to respond
properly to both local and global fluctuations. Hence, we propose an integrated global
and local QoS adaptation mechanism, where the structural and long-term load varia-
tions on the system level are object for global adaptation, while the temporal load and
short-term resource variations are taken care locally on devices. The task of the local
adaptation mechanism is to adjust resource usage locally on a device as long as the
fluctuation is kept within a certain QoS range. If the resource usage exceeds the range’s
threshold, the global adaptation mechanism takes over and performs resource realloca-
tion on the system level.

QoS-aware applications are usually structured in such a way that they can provide
different discrete quality levels, which have associated estimations of the required re-
sources. We use the notion of abstract quality levels for defining QoS ranges, such as
high, medium and low resource availability. This provides a general QoS framework
that is not application or device specific. As long as an application or a device can ex-
press its resource demand and consumption in terms of an abstract level, it can benefit
from our method.

Implementation of the proposed integrated QoS mechanism is enabled by our pre-
vious work, the Matrix framework for efficient resource management in distributed,
heterogeneous environments [2]. It provides a global abstraction of device states as
representation of the system state for resource management and it decouples device
scheduling and system resource allocation. In this work, we use the Matrix as the in-
frastructure to develop global and local adaptation mechanisms and to integrate them
into a single QoS adaptation unit in a system. While some parts of the resource manage-
ment mechanism are adopted from the original Matrix approach and further developed
here in terms of the newly proposed global adaptation mechanism, the local adaptation
and the integrated mechanism are entirely new contributions. Furthermore, the original
parts of this paper include a new module in the Matrix, the application adapter used
for application adaptation, the quality level mapping and interfacing, the closed-loop
control model for resource monitoring and adaptation, as well as the deployment of our
approach in the context of video streaming and video stream adaptation.

The rest of this paper is organized as follows. In the next section we give an overview
of the related work. In Section 3 we describe the extended Matrix framework used in
our approach. In Section 4 we describe the global and the local adaptation mechanism
and show how to integrate them in a single approach. In the same section, we present an
example of how our method can be used in the context of media streaming. In Section 5
we describe the current implementation status, followed by Section 6, which concludes
the paper.

Integrated Global and Local Quality-of-Service Adaptation 221

2 Related Work

Comprehensive work on distributed QoS management architectures has been presented
in [3,4,5,6,7]. However, those architectures are mostly designed to work over networks
like ATM or the Internet with Integrated Services (IntServ) and Differentiated Services
(DiffServ) support, i.e., networks that can provide guarantees on bandwidth and delay
for data transfer. In our work, we do not make any assumptions that the underlying
system (OS or network) can offer any QoS guarantees. We consider a distributed, het-
erogeneous environment where applications share resources, such as CPU and network
bandwidth. Applications can either execute on a single device, or on several devices
(e.g., a video streaming application that involves reading a stream on a server and send-
ing it through a network to a hand held device to be decoded and displayed). Further-
more, we assume that handovers and other network related issues are done by lower
level in the system architecture, and those are not task of our research.

While architectures like [8] give an overall management system for end-to-end QoS,
covering all aspects from a user QoS policies to network handovers, in our work we
focus on QoS management and resource adaptation in application domain. Our work is
related to [9,10], which present application-aware QoS adaptation. Both of them make
a separation between the adaptations on the system and application levels. While in [9]
the application adjustment is actively controlled by a middleware control framework, in
[10] this process is left to the application itself, based on upcalls from the underlying
system.

Our work differs in how an application adaptation is initiated and performed. We do
adaptation on different architectural levels, but unlike the mentioned work, we address
global and local adaptation and the integration of both approaches.

We perform global adaptation of all resources within the system, while the work
above focus on adjustment of resources on the end system, where the adaptation is based
on the limited view of the sate of one device. We also provide an application indepen-
dent approach, i.e., it can be used with different types of applications. Furthermore our
approach can support component-based, decoupled approaches, where different com-
ponents, like CPU or network schedulers can easily be replaced.

More recently, control theories have been examined for QoS adaptation. The work
presented in [11] shows how an application can be controlled by a task control model.
Method presented in [12] uses control theory to continuously adapt system behaviour
to varying resources. However, a continuously adaptation maximizes the global quality
of the system but it also causes large complexity of the optimization problem. Instead,
we propose adaptive QoS provision based on a finite number of quality levels.

3 Resource Management Framework

Here we present the resource management framework used in our QoS adaptation
method. First we give an overview of our previous work on distributed resource man-
agement, and then we extend it to suit the needs of the integrated QoS adaptation ap-
proach that will be presented in the next section.

222 L. Rizvanovic, D. Isovic, and G. Fohler

3.1 Matrix Framework

The Matrix is an adaptive framework for efficient management of resources in dis-
tributed, heterogeneous environments. Figure 1 shows the data flow (information flow)
between the Matrix components. The Resource Manager (RM) is used to globally
schedule and reserve resources in the system, i.e., it makes decisions for resource usage
for all devices in the system. Likewise, each time a new application is about to enter the
system, the RM performs admission control.

For example, in a video streaming application, if the display device, e.g., a PDA,
cannot manage to decode and display all video frames on time, the Resource Manager
will notice this and instruct the sender device to send a less demanding version of the
stream (e.g., with lower resolution).

In order to deal with resource reservation, the Resource Manager has to have knowl-
edge about currently available resources in the system. This is provided in the Status
Matrix (SM). For the example above, the Status Matrix will contain the information that
CPU availability on the PDA is low while the bandwidth for the wireless link between
the streaming server and the PDA device is high. The SM also provides information
about active applications resource requirements, priorities, sink and source destinations.

Based on the information stored in the Status Matrix, the Resource Manager will
make decisions for resource reallocation in the system, and store the orders for devices
the Order Matrix (OM). An example of such an order could be one given to the stream-
ing server to decrease the quality of streamed video.

Resource
Manager

(RM)

Status Matrix
(SM)

Order Matrix
(OM)

Order
Manager
(OMR)

Order
Manager
(OMR)

Local
Monitor

(LM)

Local
Monitor

(LM)

Local
Scheduler

(LS)

Local
Scheduler

(LS)

Fig. 1. The Matrix: Information flow

time

Resource
availability

QoS
mapping
algorithm

Abstract QoS levels
(q1,q2,q3,….,qn)

Fig. 2. Abstract QoS levels

The resource status information in the Status Matrix is provided by the Order Man-
agers (OMR), located on the devices. For each type of shared resources, there is an Or-
der Manager responsible for publishing the current resource availability on the device
in the Status Matrix. This information is provided to the Order Manager through Local

Integrated Global and Local Quality-of-Service Adaptation 223

Monitors (LM), that are responsible for continuous monitoring of a resource availabil-
ity on a device, e.g., the available CPU or the network bandwidth. The accuracy of the
information depends on a chosen temporal granularity.

Furthermore, an Order Manager receives orders from the Order Matrix and makes
sure to adjusts local resource usage according to them. This is done through Local
Schedulers (LS), which are responsible for scheduling of a local resources, e.g., a net-
work packets scheduler that can adjust the packet sending rate according to available
bandwidth.

For further details on Matrix framework we refer to our previous work [2,13].

3.2 QoS Levels

We want to use the minimum relevant information about devices states as needed for
resource management, in order to reduce the system state presentation, and to abstract
over fluctuations, which could overload scheduling of resources. Thus, we use the no-
tion of a few abstract QoS levels that represent a resource’s availability and an appli-
cation’s quality. For example, the variations in the quality of network link connection
between two devices can be represented by e.g., three abstract QoS level values, (L)ow,
(M)edium and (H)igh. H means that the data can be transmitted through the link with
full available capacity, while L indicates severe bandwidth limitations. Likewise, quality
of each application using certain resources is mapped to a finite number of application
QoS levels.

In general, the availability of each resource is represented in our approach as a vector
of discrete range of n QoS performance levels {q1, q2, ...qk, qk+1, ..., qn}, see Figure 2.
The value range of a QoS level qk is defined by its threshold values [qmin

k , qmax
k].

In this work, we apply linear mapping between the resources and the QoS levels,
e.g., based on experimental measurements [14]. For example, one simple mapping for
the CPU bandwidth based on the CPU utilization U could be e.g., 0 ≤ U ≤ 0.3 ⇒ H ,
0.3 < U ≤ 0.6 ⇒ M , 0.6 < U ≤ 1.0 ⇒ L. A more advanced mapping could, for
instance, use fuzzy logic to provide a larger number of QoS levels with finer granularity,
but QoS mapping is an ongoing work and it is out of the scope of this paper.

3.3 Application Adapter

The Matrix is an application independent framework, and application adaptation is not
the main focus of our work. However, in order to advance the usage of the Matrix along
with various types of applications, we have extended the original Matrix architecture
with an additional component, the Application Adapter (AA). The Application Adapter
performs the mapping of QoS levels to the application specific parameters, and vice
versa. For example, the AA for a video streaming application could map abstract qual-
ity levels, such as H, M and L, into real possible frame-per-second (fps) values for the
stream, e.g., for a 30 fps MPEG-2 stream high quality could mean the fps-interval be-
tween 24 and 30 fps, medium quality is 16 to 23 fps and low quality could be defined
as 10 to 15 fps.

Since this process is application specific, our ambition was to provide an interface
for this component, and than is up to the application designer to implement it. If there is

224 L. Rizvanovic, D. Isovic, and G. Fohler

a way in an application to map its resource fluctuations into some abstract levels, then it
can be used with our design. Also, upon resource reallocation, the Application Adapter
will receive orders about new abstract levels from the Order Manager, which must be
translated into some concrete actions on the application level.

4 Integrated QoS Adaptation Approach

In this section we present our integrated global and local adaptation mechanism that
uses the Matrix framework. In our approach, global adaptation is performed by the
Resource Manager, while the local adaptation is taken care of locally on the devices.

Consider the following motivating example: A person uses a PDA to watch a video
stored on a local video server, which is delivered to the PDA through a wireless network.
As the person moves around with the PDA, at some point it becomes almost out of
range for the server, which results in video interruption due to packet losses. A local
adaptation on the PDA does not really help in this case, since the video disruption
is caused by the buffer underflow in PDAs decoder (in the case of buffer overflow,
this could be treated locally on the PDA by e.g., speeding up the video decoding task).
However, if there is a mechanism at the system level that can detect the lower bandwidth
of the wireless link, i.e., the Matrix framework described in previous section, it could
instruct the video server to stream a lower quality video stream that takes less network
bandwidth.

Expressed in more general terms, resource consumption is adjusted locally on de-
vices as long as the fluctuation stays within the range of requested QoS. For example,
the Local Monitor detects a change in available CPU for a certain application, but this
change is not large enough to enforce a different quality level to the application. Instead,
the Local Scheduler could perform some local countermeasures, e.g., prioritize the ap-
plication on the cost of some other application running on the same device. However, if
the resource availability passes the defined thresholds (abstract QoS levels), the entire
system gets involved via the global adaptation mechanism. The whole idea is illustrated
in Figure 3.

L

M

H

x x x

x x x

x

x x

Global adaptation
changes in resource
availability overstep
the range of
requested QoS

Available
Resources

Time

Local adaptation
changes in
resource
availability
within the range
of requested
QoS

Fig. 3. Different types of resource variations handled on different architectural levels

Integrated Global and Local Quality-of-Service Adaptation 225

4.1 Local Adaptation Mechanism

Local adaptation involves detecting the changes in resource availability and reacting to
those via the local scheduler. The ideas from control theory can be used to achieve this.
We use the closed loop model, i.e., a control model that involves feedback to ensure
that a set of conditions is met. It involves the Local Monitor, the Local Scheduler, and
the Order Manager, see Figure 4. Expressed by terminology of the control theory, we
use the following terms for inputs and outputs variables in our control model; control
variable, vctrl, is the value observed by the local monitor (e.g. network packet loss,
CPU utilization), reference variable, vref , is concrete performance specification for
Local Schedulers made by the order manager, error ε is the difference between the value
observed by the Local Monitor and the reference variable, and control input variable,
vin, is the value calculated by the adaptation algorithm in order to adapt scheduling of
the local resources. The Local Monitor continuously monitors available resources in the

Local
Monitor

control
variable vctrl

Quality Level
(from RM)

[qmin, qmax]

no

error
-

sample

yes

Order Manager

control input
variable vin

Local
Scheduler

Quality Level
(to RM)

reference
variable vref

Run-Time Mechanism (System)

Application
adapter

data

Application Mapping
[qmin, qmax]

Mapping to
QoS level

Fig. 4. Local QoS Adaptation Mechanism

system (e.g., CPU or bandwidth). Thus, in our control model it acts as an observer of the
controlled system. It send the observed control value to the Order Manager. The Order
Manager calculates the difference between the desired value, defined by the currently
used QoS level, and the observed control value, i.e., it calculates the error value of the
control loop. As long as resource availability stays within the boundaries for the given
QoS level, i.e., the error falls in the range of the current QoS level, the output of the
adaptation algorithm, control input, is passed to the Local Scheduler, i.e., the adapter
part of control loop.

In the case that the error value implies a change in QoS levels, the values in the Status
Matrix are updated and the Resource Manager is informed about the change. From this
point, the global adaptation mechanism takes over, which we describe next.

226 L. Rizvanovic, D. Isovic, and G. Fohler

4.2 Global Adaptation Mechanism

Whenever a local mechanism detects that a local resource availability has exceeded the
current QoS level, a global adaptation mechanism will be initiated. The objective of
the global adaptation is to adjust the resource usage among all involved applications.
If the resource availability has increased, it will be given to involved applications (in
terms of increased quality levels). Similarly, if the resource availability has decreased,
the quality levels of the consumer applications will be decreased.

We support user defined priorities to be used when redistributing resources, i.e., the
higher the priority of an application, the faster the quality increase of the application.
However, it is up to the user to use priorities or not. Based on this, we distinguish
between three reallocation policies in our approach, fair, fair prioritized and greedy.

Fair reallocation – If the priorities are not used, then the resources are adjusted
(increased or decreased) in a strictly fair fashion: for each consumer applications the
quality is adjusted step-by-step, one QoS level at the time, and then, if there are still
resources to increase/decrease, we repeat the procedure for all applications once again,
until the resource is consumed/replanished. For example, consider four different appli-
cations a1,a2, a3 and a4 that are using the same resource r. The current quality level
for each applications is set to L. Assume that a4 gets terminated and the resource avail-
ability of r gets increased by the portion used by a4. The freed resource is given back
to the remaining three application such that we first increase the the QoS level of a1,a2
and a3 to M, and then, if there are still resources left, all QoS levels are increased to H .

Fair-prioritized reallocation – Note that in the fair approach, there is no guarantee
that a certain application will change its QoS level. In the example above, there could
be a case where the freed resource is entirely consumed after increasing the level of
a1 and a2 to level M, so that a3 will remain running on level L, despite the fact that
a3 might be the most important one in the system. However, if we use priorities, we
could instruct RM to start by increasing the QoS levels of high priority applications
first, i.e., a3 in the example above. In other words, the resources are reallocated in a fair
fashion, i.e., each application’s quality level is changed by one step before changing any
other application’s level one more step, but also we use priorities to determine which
applications should be served first.

Greedy reallocation – Moreover, priorities enable for an another reallocation policy,
i.e., greedy redistribution. This means to increase (decrease) QoS level of an application
with the highest (lowest) priority until it reaches its maximum (minimum) QoS level,
before we start with the next one application (in the priority order). For the example
above, we would continue increasing the QoS level of a3 until it reaches H, before
doing any QoS increase of a1 and a2. Furthermore, the priorities can be used when
selecting which applications to drop first if that becomes necessary.

If an application is processed by several different devices, then, before changing its
quality level, we need to check if the new level can be supported by all involved de-
vices on the application’s playout route. For example, in a video streaming application
where a video stream is sent from a video server to a hand held device via a laptop, the

Integrated Global and Local Quality-of-Service Adaptation 227

bandwidth increase between the server and the laptop does not necessarily mean that we
should start streaming a higher bit rate stream, since the link between the laptop and the
hand held device might not be able to support it. Likewise, we have to consider if this
increased quality can be supported by all other types of resources that the application is
consuming e.g., there is no point to send more data over the communication link than it
cannot be timely processed at the receiver device (by the local CPU).

Our admission control approach for new applications is quite similar to the adapta-
tion approach described above. Thus, each time a new application is about to enter the
system, the Resource Manager has to determine if sufficient resources are available to
satisfy the desired QoS of the new connection, without violating QoS of existing ap-
plications. If yes, then we accept the new application and publish orders for resource
reservation/reallocation into the Order Matrix. If no, we check if there are any existing
application with the the lower priority than the new one, and if so, decrease their QoS
(starting with the lowest priority application) to free some resources for the new appli-
cation. If there are no available resources, and no lower priority applications, the new
applications is rejected.

4.3 Pseudo-Code for Integrated Approach

Here is the pseudo-code for our current implementation of the integrated local and
global QoS adaptation mechanism. We introduce some additional terms, as a comple-
ment to the terms presented earlier:

– A = {a1, a2, .., an}, a set of applications in the system.
– R = {r1, r2, ..., rm}, a set of resources in the system.
– D = {d1, d2, ..., dp}, a set of devices in the system.
– A(ri) ∈ A, a subset of applications that currently use resource ri.
– R(aj) ∈ R, a subset of resources currently used by application aj .
– R(dl) ∈ R, a subset of resources currently consumed on device dl.
– D(aj) ∈ D, a subset of devices currently used for processing of application aj .
– S(ri), current resource supply (availability) of resource ri.
– D(ri), current resource demand of all applications using ri.
– qk(ri) and qk(aj), the k-th QoS level of resource ri, respective application aj , as

described in section 3.2.

/* For the sake of simpler explanation, we omit in the pseudo-code for the start up
activities where the devices has reported the local resource availability, and the RM has
published initial QoS levels in the Status Matrix */

∀ di ∈ D /* For each device */
∀ ri ∈ R(di) /* For each resource on a device */

/* Invoke local adaptation based on the currently assigned quality level */
map qk(ri) ⇒[qmin

k (ri),qmax
k (ri)]

vref = qmax
k (ri), εmax = qmax

k (ri) − qmin
k (ri)

228 L. Rizvanovic, D. Isovic, and G. Fohler

Do
get vctrl from LM
ε = vref - vctrl

calculate vin(ε) and send it to LS
While (0 ≤ ε ≤ εmax)

/* Prepare for global adapt. when the error exceeds the limit of current QoS level */
map ε ⇒ ql(ri), l �= k
publish ql(ri) in SM

⇒ break! invoke global adaptation

/* RM performs global adaptation based on new info in SM */

/* Case 1: total resource supply is greater than the total demand ⇒ increase QoS levels */
If (S(ri) > D(ri)) Then

Do
/* Based on the chosen realloc. policy get an application to increase its QoS level */
If (aj = getApplication(POLICY, INCREASE)) Then

/* Check if all aj ’s proc. devices (other than di), support the next QoS level of aj*/
If (∀dj ∈ D(aj), dj �= di, dj supports qk+1(aj)) Then

/* Check if the new QoS level of aj can be served by all other aj’s resources*/
If (∀rn ∈ R(aj), rn �= ri, rn supports qk+1(aj)) Then

increase quality of aj to qk+1(aj)
/* incr/decr dem/sup for ri by the amount used to jump to next QoS lev.*/
Δ = qmax

k+1 (ri) − qmax
k (ri)

D(ri)+ = Δ; S(ri)− = Δ

While (S(ri) > D(ri) AND aj �= NULL)

/* Case 2: total resource supply is less than the total demand ⇒ decrease QoS levels */
Else

/* Similar as above, but the QoS levels are decreased. Also, we do not need to check
other devices and resources, since the decr. quality will not put extra demands on them.
...(omitted)

4.4 Example

Here we illustrate our approach in the context of video streaming. Consider the example
scenario with the PDA and the streaming video server from Section 3, where the quality
of the streamed video was dependent on the distance between the PDA and the server.
At some point in time, the PDA is so far away from the server so it only makes sense to
stream a low quality video stream, i.e., stream S1 with the abstract quality level L and
priority p1. Assume also that there is another video stream in the system, S2, streamed
from the server to a laptop with a quality level H and higher priority p2. The CPU

Integrated Global and Local Quality-of-Service Adaptation 229

availability (bandwidth) on all devices is initially assumed to be high. The reallocation
policy used is fair-prioritized. The whole situation is depicted in Figure 5. The values
within the parentheses are the new QoS levels (obtained after adaptation).

Now, assume that the person with the PDA starts moving closer to the server. The
local adaptation mechanism on the one of the involved devices, i.e., either on the server
or on the PDA, will detect that more and more packets can be sent between them (let’s
assume the PDA will detect this first). As the PDA is coming closer to the server, at
some point the quality of the link connection will exceed the assigned threshold for the
local adaptation, and the global adaptation mechanism will take over, with the following
steps involved (see Figure 5 in parallel; the numbers below correspond to the numbers
in the figure; some of the steps are merged):

1. The Local Monitor on the PDA detects that the link quality between the server and
the PDA has increased.

2. This is reported to the Order Manager, who will map the new values to the quality
level H (we can assume a sudden large connection improvement e.g., by entering
the room where the server is placed).

3. Order Manager publishes the new quality level H in the Status Matrix.
4. Assume also that there has been some change in the CPU availability on the laptop,

i.e., it gets decreased from H to L due some new, CPU intensive application that
has started to run on the laptop. Initially, the local adaptation mechanism on the
laptop will react to the changes in the CPU load by e.g., by performing selective
frame skipping in the video decoder that is processing the stream S2. However, at
some point the CPU QoS threshold will be exceeded and the new QoS value will
be calculated and published in the Status Matrix for the CPU.

5. The Resource Manager is notified about the new quality level values.
6. Now, it is up to the Resource Manager to take a decision about the resource reallo-

cation. Considering the available bandwidth and the streams priorities, one solution
could be to set the quality of S1 to M (since it has lower priority), and left the quality
of S2 unchanged. However, streaming the high quality video stream to the laptop
may not be a good solution, since the CPU on the laptop is overloaded and video
frames will be skipped anyway. Hence, the Resource Manager, who has the total
resource usage view of the system, decides to set L for stream S2. This decision
will not only reflect the resource status on the laptop correctly, but also it will al-
low for S1 to be set to H (which can be done because the quality of the connection
between the server and the PDA has been changed to H).

7. The Order Managers on respective devices are informed about the new values (ar-
rows to the OMRs of the PDA and the laptop are omitted in the figure to ease
readability).

8. The Order Managers then enforce the new settings via their local schedulers and
application adapters. For example, in the case of the server, the stream application
adapter will make sure to decrease the quality of stream S2. This can be done in
several ways, e.g., by reading a lower quality version of S2 that has been stored on
the server in advance, or by using an online modification of original S2 by using
the quality-aware preventive frame skipping methods that we have developed in our
previous work [15].

230 L. Rizvanovic, D. Isovic, and G. Fohler

Video server
PDA

RM

(1)

OMR

LM LS

OMR

LMLS

OMR

LMLS

Laptop
Stream S2 Stream S1

SM LAP SER PDA

CPU H (L) H H

BW H L (H)

S1 L L

HS2 H

(2)

(3)
(4)

(6)
(5)

(8)

(7)

AA

OM LAP SER PDA

CPU H (L) H H

BW H (L) L (H)

S1 L (H) L (H)

H (L)S2 H (L)

Fig. 5. Example global adaptation

5 Implementation and Evaluation

The Matrix framework is quite complex and we are still working on its full implemen-
tation. However, we have implemented a mock-up of Matrix approach [2] using HLA
[16]. Moreover, some basic benefits of our method, has been demonstrated by simula-
tions.

5.1 Implemented Modules

The hierarchical architecture and the loose coupling between system modules makes
it possible to work on different parts independently. Current implementation includes
Local Monitors and Schedulers for CPU and network bandwidth, and a Video Stream
Adapter.

Local Network Scheduler – For network scheduling we use the traffic shaping ap-
proach, which provides different QoS by dynamically adapting the transmission rate of
nodes, to match the currently available bandwidth of a wireless network. The Traffic
Shaper adjusts the outbound traffic accordingly to input parameters (i.e., the amount of
available bandwidth assign to the Local Scheduler). Please see [14] for full implemen-
tation details.

Local Network Monitor – For monitoring and estimation of available bandwidth
(over 802.11b wireless Ethernet), we use a method that provides us with the average
bandwidth that will be available during a certain time interval. The architecture consists

Integrated Global and Local Quality-of-Service Adaptation 231

of a bandwidth predictor that first uses a simple probe-packet technique to predict the
available bandwidth. Then, exponential averaging is used to predict the future available
bandwidth based on the current measurement and the history of previous predictions,
see [14] for details.

Local CPU Scheduler – The allocation of CPU to the applications depends on the
scheduling mechanism that is used. We have developed a predictable and flexible real-
time scheduling method that we refer to as slot shifting [17]. The basic idea is to guar-
antee a certain quality of service to applications before run-time, and then adjust it at
run-time according to the current status of the system.

Local CPU Monitor – Since we use a real-time scheduling mechanism, the CPU
monitoring is very simple to achieve. The spare capacity mechanism of slot shifting
provides easy access of the amount and the distribution of available resources at run-
time [17].

Video Stream Adapter – We have implemented an Application Adapter for MPEG-2
video stream adaptation, based on quality-aware, selective frame skipping. Order Man-
ager sends allowed abstract quality level to the video adapter, which then adjusts the
stream according to available resources by skipping the least important video frames.
For the frame priority assignment algorithm we have proposed a number of criteria to
be applied when setting priorities to the frames. Please see our previous work [15] for
details.

5.2 Evaluation

We have evaluated our method in the context of video streaming. Here we present re-
sults from a 15 minutes video streaming simulation using our integrated approach for
global and local adaptation. We simulate usage of 30 devices in the system and show
how a MPEG-2 video stream is adapted based on current resource availability (net-
work bandwidth). We use the following quality levels for available bandwidth (given
in Mbps): q1(BW) = [qmax

1 , qmin
1] = [1.5, 2.5] (L), q2(BW) = [qmax

2 , qmin
2] =

[2.5, 4] (M), q3(BW) = [qmax
3 , qmin

3] = [4, 11] (H). Figure 6 shows that the local
adaptation mechanism is deployed most of the time (77%), while the global mechanism
is triggered only when necessary (23%), i.e., the QoS has changed that much that the
system reallocation must take place.

1

2

3

4

5

6

0 20 40 60 80 100 120

av
ai

la
bl

e
ba

nd
w

id
th

 (
M

bp
s)

time (sec)

resource fluctuation
global adaptation

Fig. 6. Invocation of global adaptation

0

1

2

3

4

5

0 20 40 60 80 100

ba
nd

w
id

th
 Q

oS
 le

ve
s

(M
bp

s)

time (sec)

QoS level based on global system view
QoS level published by the device

Fig. 7. Global vs Local system view

232 L. Rizvanovic, D. Isovic, and G. Fohler

Figure 7 shows the difference between QoS levels based on one device’s local view
and those assigned by global adaptation, i.e. the possible spared resources (available
bandwidth) on just one device due to global adaptation. It illustrates efficiency of our
integrated approach where adjustment of resources is not just based on the limited local
system view of one device, but also on the current available resources of all involved
devices. In that way, our approach enables a system wide optimization.

6 Conclusions and Future Work

We proposed a method for efficient Quality-of-Service adaptation in dynamic, heteroge-
nous environments.

It integrates global and local adaptation, where the first one takes care of the struc-
tural resource fluctuations on the system level, while the second one is performed lo-
cally on devices to handle short-term variations.

The idea is to perform local adaptation as long as possible, using a control model for
resource monitoring and adjustment, and if a resource availability passes the range of
the currently assigned QoS level, the global adaptation mechanism takes over.

Our current and future work include further developing the local control model by
formally describing the system’s behaviour with a set of differential equations. Fur-
thermore, we are working on a more general model for mapping between resources
demands and abstract QoS levels and exploiting the proposed framework in other ap-
plication domains than in-home networks.

References

1. Otero Perez, C., Steffens, L., van der Stok, P., van Loo, S., Alonso, A., Ruı́z, J.F., Bril,
R.J., Garcı́a Valls, M.: QoS-based resource management for ambient intelligence, Ambient
intelligence: impact on embedded system design. Academic Publishers, Norwell, MA, USA
(2003)

2. Rizvanovic, L., Fohler, G.: The MATRIX: A QoS Framework forStreaming in Heterogeneous
Systems. In: International Workshop on Real-Time for Multimedia, Catania, Italy (2004)

3. Nahrstedt, K., Smith, J.M.: Design, Implementation an Experiences of the OMEGA End-
Point Architecture, Distributed Systems Laboratory, University of Pennsylvania, Philadel-
phia

4. Nahrstedt, K., Chu, H., Narayan, S.: QoS-Aware Resource Management for Distributed Mul-
timedia Applications, UIUCDCS-R-97-2030 (1997)

5. Campbell, A., Coulson, G., Hutchison, D.: A quality of service architecture, ACM SIG-
COMM Computer Communication Review (1994)

6. Gopalakrishna, G., Parulkar, G.: Efficient Quality of Service in Multimedia Computer Oper-
ating Systems, Washington University (1994)

7. Shankar, M., De Miguel, M., Liu, J.W.S.: An end-to-end QoS management architecture,
Real-Time Technology and Applications Symposium (1999)

8. Kassler, A., Schorr, A., Niedermeier, C., Schmid, R., Schrader, A.: MASA - A scalable QoS
Framework. In: Proceedings of Internet and Multimedia Systems and Applications (IMSA),
Honolulu, USA (2003)

9. Li, B., Nahrstedt, K.: A Control-Based Middleware Framework for Quality-of-Service Adap-
tations. Selected Areas in Communications, IEEE Journal (1999)

Integrated Global and Local Quality-of-Service Adaptation 233

10. Noble, B.D., Satyanarayanan, M., Narayanan, D., Tilton, J.E., Flinn, J., Walker, K.R.: Agile
Application-Aware Adaptation for Mobility. In: 16th ACM Symposium on Operating Sys-
tems Principles, France (1997)

11. Li, B., Nahrstedt, K.: Impact of Control Theory on QoS Adaptation in Distributed Middle-
ware Systems. In: American Control Conference (2001)

12. Stankovic, J.A., Abdelzaher, T., Marleya, M., Tao, G., Son, S.: Feedback control scheduling
in distributed real-time systems. In: RTSS (2001)

13. Rizvanovic, L., Fohler, G.: The MATRIX - A Framework for Real-time Resource Manage-
ment for Video Streaming in Networks of Heterogenous Devices. In: Conference on Con-
sumer Electronics, Las Vegas, USA (2007)

14. Lennvall, T., Fohler, G.: Providing Adaptive QoS in Wireless Networks by Traffic Shaping,
Resource management for media processing in networked embedded systems (RM4NES),
Netherlands (2005)

15. Isovic, D., Fohler, G.: Quality aware MPEG-2 Stream Adaptation in Resource Constrained
Systems, ECRTS, Catania, Italy (2004)

16. IEEE Standard for Modeling and Simulation, High Level Architecture (HLA) - Federate
Interface Specification, No.:1516.1-2000

17. Isovic, D., Fohler, G.: Efficient Scheduling of Sporadic, Aperiodic, and Periodic Tasks with
Complex Constraints, 21st IEEE RTSS, USA (2000)

	Integrated Global and Local Quality-of-Service Adaptation in Distributed, Heterogeneous Systems
	Introduction
	Related Work
	Resource Management Framework
	Matrix Framework
	QoS Levels
	Application Adapter

	Integrated QoS Adaptation Approach
	Local Adaptation Mechanism
	Global Adaptation Mechanism
	Pseudo-Code for Integrated Approach
	Example

	Implementation and Evaluation
	Implemented Modules
	Evaluation

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

