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Abstract. In this paper, we present a new identity-based signature
scheme with message recovery based on bilinear map. Our scheme is
proved secure against existential forgery on adaptive chosen message
and ID attack under the random oracle model. This new scheme short-
ens the total length of the original message and the appended signature
and adapts to the ubiquitous network scenario very well.
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1 Introduction

In ubiquitous computing, the bandwidth of ubiquitous network is usually con-
strained, so it is desirable to shorten the total length of the original message M
and the appended signature x. In this research area, there are two kinds of ideas
adopted: one which is to directly produce short signature for message M , the
other which is to “fold”part of message into the signature in such a way that
it is “recoverable ”by the verifier (i.e, signature scheme has the partial message
recovery property). The former is taken by schemes proposed by D. Boneh et al.
[10], F. Zhang et al. [11], D. Boneh and X. Boyen [12] and so on. In this paper, we
mainly focus on the latter. On the whole, the existing digital signatures with mes-
sage recovery may be classified into two types: RSA-based schemes and discrete-
logarithm-based schemes. PSS–R [3] and ISO/IEC 9796-1,9796-2 are signature
schemes with message recovery in the RSA type. The Nyberg-Rueppel [4,5,6],
Miyaji [7] and Okamoto et al. [9] schemes are in DL (discrete logrithm) type.

The concept of identity-based cryptography was proposed in 1984 by Shamir
[14]. The idea behind identity-based cryptography is that the user’s public key
can be derived from arbitrary string (e-mail address, IP address combined to a
user name, social security number,...) which identifies him in a non ambiguous
way. This greatly reduces the problems with key management. This kind of
system needs trusted authority called private key generator (PKG) whose task

� This work is supported by the National Natural Science Foundation of China (No.
60577039).

M. Denko et al. (Eds.): EUC Workshops 2007, LNCS 4809, pp. 704–715, 2007.
c© IFIP International Federation for Information Processing 2007



A Practical Identity-Based Signature Scheme from Bilinear Map 705

is to compute user’s private key from user’s identity information (users do not
generate their key pairs themselves). Several practical identity-based signature
schemes [1,2,13] have been devised since 1984, but no identity-based signature
scheme with message recovery goes out into the world until the scheme proposed
by F. Zhang et al. [15] in 2005. F. Zhang et al. didn’t quantify the security of
their signature schemes in [15]. In addition, there are some problems occur in F.
Zhang et al.’s schemes (see section 3).

In this paper, we present a new identity-based signature scheme with message
recovery based on bilinear map, referred to as IDSMR. Its security is based
on Computational Diffie-Hellman Assumption, CDH for short. IDSMR can deal
with any message with arbitrary length.

Signature schemes from three move identification schemes such as Fiat-Shamir
[1] are a typical class of practical signature schemes. To prove the security of
such a class of signature schemes, K. Ohta and T. Okamoto presented a new
key technique ”ID reduction”, in which the identification scheme correspond-
ing to the signature scheme was used. In [8], K. Ohta and T. Okamoto thought
that ID reduction technique had advantage over the previous technique, ”forking
lemma”, by Pointcheval and Stern [16], and partly owed the advantage of ID
reduction technique over forking lemma to the case that analyzing the identifi-
cation scheme corresponding to the signature scheme was easier than analyzing
the signature scheme. To prove that IDSMR is existentially unforgeable against
adaptive chosen message and ID attack under the random oracle model, we make
use of the ID reduction Technique and the results in [8,9].

The paper will proceed as follows. In section 2, we review some preliminaries
used throughout this paper. In section 3, we review and analyse F. Zhang et al.’s
schemes. In section 4, we present our signature scheme with message recovery.
In section 5, we give security analysis of IDSMR. In section 6, we compare our
scheme with other schemes. Section 7 concludes this paper.

2 Preliminaries

2.1 Notations

Throughout this paper, we will use the following notations. |q| denotes the length
of q in bit. If |q| = 0, q is denoted as ∅. Z+ denotes the set of natural numbers
and {0, 1}∗ denotes the the space of finite binary strings. Let [m]l1 denote the
most significant l1 bits of m and [m]l2 denote the least significant l2 bits of m.
We denote by a||b the string which is the concatenation of strings a and b. We
also denote [x]= y if y ≤ x < y + 1 and y ∈ Z+. a

⊕
b denotes the bitwise XOR

of bit strings a and b. If G is a group and P ∈ G, (P )2 denotes the binary string
representation of P .

2.2 Bilinear Map

Let G1 be a cyclic additive group, whose order is a prime p, and G2 be a cyclic
multiplicative group with the same order p. Let ê : G1 × G1 → G2 be a bilinear
map with the following properties:
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(1) Bilinearity: ê(aP, bQ) = ê(P, Q)ab for all P, Q ∈ G1, a, b ∈ Zp

(2) Non-degeneracy: There exists P, Q ∈ G1 such that ê(P, Q) �= 1, in other
words, the map does not send all pairs in G1 × G1 to the identity in G2;

(3) Computability: There is an efficient algorithm to compute ê(P, Q) for all
P, Q ∈ G1.

The Weil and Tate pairings associated with supersingular elliptic curves can
be modified to create such bilinear maps.

Definition 1. CDH: Let G1 be a cyclic additive group generated by P , whose
order is a prime p. For a, b ∈ Zp, given P, aP, bP , compute abP . An algorithm
A has advantage ε in solving CDH in G1 if

Pr[A(P , aP , bP )=abP ]≥ε

where the probability is over the random choice of generator P∈G1, the random
choice of a,b∈ Z∗

p and the random bits consumed by A.

Definition 2. We say that the (t, ε)-CDH assumption holds in G1 if no t-time
algorithm has advantage at least ε in solving CDH in G1.

3 Analysis of F. Zhang et al.’s Scheme

Zhang et al. proposed two schemes in [15]: an ID-based message recovery sig-
nature scheme for messages of fixed length, and an ID-based partial message
recovery signature scheme for messages of arbitrary length. Here we review their
scheme for messages of fixed length and analyze its problems.

– Setup: The private key generator(PKG) chooses a random number s∈ Z∗
p

and sets Ppub = sP . PKG also publishes system parameters {G1, G2, ê, p,
λ, P , Ppub, H1, H2, F1, F2, k1, k2}, and keeps s as the master-key, which is
known only by itself. Here |p|=k1 +k2, H1 : {0, 1}∗ →Z∗

p , H2 : {0, 1}∗ → G∗
1,

F1 : {0, 1}k2 → {0, 1}k1, F2 : {0, 1}k1 → {0, 1}k2 are four cryptographic hash
functions

– Extract: A user submits his/her identity information ID to PKG. PKG com-
putes the user’s public key as QID=H2(ID), and returns SID=sQID to the
user as his/her private key.

– Sign: Let the message be m ∈ {0, 1}k2

1. Randomly choose k ∈ Z∗
p , and compute v=ê(P, P )k.

2. Compute f = F1(m)||(F2(F1(m))
⊕

m).
3. Compute r = H1(v) + f modp
4. Compute U = kP − rSIDA .

The signature is (r, U).
– Verify: Given IDA, a message m, and a signature (r, U), compute

r − H1(ê(U, P )ê(QIDA , Ppub)r) = f
and

m = [f ]k2

⊕
F2([f ]k1)
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Check whether [f ]k1 = F1(m) holds. If it is correct, then accept this signature
and output true. Otherwise, output ⊥.

In the above scheme, if f∈ Zp and |f | < |p|, then, in the verification phase,
we need padding (|p| − |f |)0s in the left of the binary string representation of f .
Otherwise, the signature will be rejected. If f > p and |f | = |p|, we say f = p+f

′

then, in the verification phase, we get
r − H1(ê(U, P )ê(QIDA , Ppub)r) = f

′
and m = [f

′
]k2

⊕
F2([f

′
]k1)

With a large probability [f
′
]k1 �= F1(m), so the signature will be rejected, al-

though it is generated correctly. Zhang et al.’s second scheme for partial message
recovery in [15] also suffers the similar problems.

In addition, their two schemes can’t seem to deal with the message whose
length in bits is less than some fixed length.

4 IDSMR Scheme

This section introduces our signature scheme with message recovery. It works as
follows.

– Setup: Given a security parameter l ∈ Z+, the private key generator(PKG)
chooses two groups G1 and G2 of prime order p (here, l=|p| ), a genera-
tor P of G1, a bilinear map ê :G1 × G1→G2. Then PKG picks a master-
key s ∈ Z∗

p and computes Ppub = sP and w=ê(P, P ). PKG also chooses
cryptographic hash functions H1 : {0, 1}∗ →G1, H2 : {0, 1}∗ → {0, 1}l,
F1 : {0, 1}[l/2] → {0, 1}[(l+1)/2], F2 : {0, 1}[(l+1)/2] → {0, 1}[l/2]. The sys-
tem’s public parameters are

Param= {p, G1, G2, ê, P, Ppub, w, H1, H2, F1, F2}

– Extract: for an identity ID, the private key is dID=sQID=sH1(ID).
– Sign: To sign a message m = m1||m2( If |m| = [l/2], m2 = m, m1 = ∅; if

|m| > [l/2], m1 = [m]|m|−[l/2], m2 = [m][l/2]; ), Alice follows the steps below
1. Randomly choose x ∈ Z∗

p , and compute τ=wx.
2. Compute f = F1(m2)||(F2(F1(m2))

⊕
m2).

3. Compute r = [(τ)2]l
⊕

f
4. Compute r0 = H2(r||m1)
5. Compute S = xP − r0dIDA .
6. Alice sends σ = (m1, r, S) to verifier Bob.

– Verify: When receiving σ = (m1, r, S), Bob follows the steps below.
1. Compute r0 = H2(r||m1)
2. Compute τ=ê(S, P )ê(QIDA , Ppub)r0

3. Compute f = r
⊕

[(τ)2]l
4. Compute m2 = [f ][l/2]

⊕
F2([f ][(l+1)/2])

5. Accept signature if and only if [f ][(l+1)/2] = F1(m2).
– Remark 1: If |(τ)2|<l, we need padding 0 in the left of (τ)2. If |m| < [l/2],

we need some redundancy to sign message m. We choose a hash function
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H : {0, 1}∗ → {0, 1}[l/2] and set m
′

= m||H(m), then we sign message m
′

similar to message m
′′
(|m′′ | ≥ [l/2]). We don’t discuss it any more here.

Throughout this paper, we assume |m| ≥ [l/2] if message m need to be
signed.

5 Security

In this section we prove the security of our signature scheme in the random ora-
cle model, with CDH assumption. In order to prove the security of our signature
scheme with ID reduction technique, we need to introduce an non-identity-based
signature scheme, referred to as NIDS, and an identification scheme correspond-
ing to NIDS, referred to as IFNIDS.

5.1 Attack Model for Identity-Based Signature Schemes

The most general known notion of security of a non-identity-based signature
scheme is existential unforgery under adaptive chosen message attacks (EUF-
ACMA); in this model, an adversary wins the game if he outputs a valid pair
of a message and a signature, where he is allowed to ask the signer to sign any
message except the output. We consider the following natural generalization of
this notion, which is acceptable as a standard model of security for identity-based
signature schemes with message recovery.

Definition 3. An identity-based signature scheme with message recovery, which
consists of four algorithms Setup, Extract, Sign, and Verify playing the same
role as ours, has the existential unforgery for adaptive chosen message and ID
attacks (EUF-ID-ACMA) property if no polynomial time algorithm A has a non-
negligible succeed probability in the following game:

1. Challenger C runs Setup of the scheme. The resulting system parameters are
given to A.

2. A issues the following queries as he wants:
(a) Hash function query: C computes the value of the hash function for the

requested input and sends the value to A.
(b) Extract query: Given an identity ID, C returns the private key corre-

sponding to ID which is obtained by running Extract.
(c) Sign query: Given an identity ID and a message m, C returns a signature

which is obtained by running Sign.
3. A output (ID, σ, m1), where ID is an identity, and σ is a signature of m(m =

m1||m2. If |m| > [l/2], m1 = [m]|m|−[(l+1)/2], m2 = [m][l/2]; if |m| = [l/2],
m2 = m, m1 = ∅), such that ID and (ID, m) are not equal to the input of
any query to Extract and Sign, respectively. A wins the game if σ is a valid
signature of m for ID.
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5.2 NIDS and IFNIDIS

Descriptions of NIDS Scheme. NIDS is described by three algorithms Key-
gen, Sign and Verify.

–Keygen: Given a security parameter l ∈ Z+, signer S chooses the same system
parameters as PKG of IDSMR except that it chooses its public key QID and
computes its private key dID=sQID, doesn’t choose hash function H1. The
system’s public parameters are

Param={p,G1,G2,ê,P ,Ppub, QID, w, H2, F1, F2}
–Sign: To sign a message m = m1||m2( If |m| = [l/2], m2 = m, m1 = ∅; if

|m| > [l/2], m1 = [m]|m|−[l/2], m2 = [m][l/2] ), S follows the steps below
1. Randomly choose x ∈ Z∗

p , and compute τ=wx.
2. Compute f = F1(m2)||(F2(F1(m2))

⊕
m2).

3. Compute r = [(τ)2]l
⊕

f
4. Compute r0 = H2(r||m1)
5. Compute S = xP − r0dID.
6. S sends σ = (m1, r, S) to verifier V .

–Verify: When receiving σ = (m1, r, S), V follows the steps below:
1. Compute r0 = H2(r||m1)
2. Compute τ=ê(S, P )ê(QID, Ppub)r0

3. Compute f = r
⊕

[(τ)2]l
4. Compute m2 = [f ][l/2]

⊕
F2([f ][(l+1)/2])

5. Accept signature if and only if [f ][(l+1)/2] = F1(m2).

Descriptions of IFNIDS Scheme. In IFNIDS, prover P publishes its public
system parameters while keeping the corresponding secret key, and proves its
identity to verifier V . Here hash functions F1, F2 are shared by P and V . IFNIDS
works as follows.

–Keygen: Given a security parameter l ∈ Z+, prover P chooses its public
key QID, computes its private key dID=sQID, chooses the same system
parameters as signer S of NIDS except that it doesn’t choose hash function
H2. The system’s public parameters are

Param={p,G1,G2,ê,P ,Ppub,QID, w,F1, F2}
–Identification Protocol: P proves its identity and V checks the validity of

P ’ proof as follows:
(1) P chooses message m ( m = m1||m2. If |m| = [l/2], m2 = m, m1 = ∅; if
|m| > [l/2], m1 = [m]|m|−[l/2], m2 = [m][l/2] ) and generates r as follows:

f = F1(m2)||(F2(F1(m2))
⊕

m2), τ = wx, r = f
⊕

[(τ)2]l

Here x ∈ Z∗
p is uniformly selected. P sends (r, m1) to verifier V .

(2) V generates random challenge u ∈ Z∗
p and sends it to P .

(3) P generates an answer S as follows and send it to V .

S = xP − udID
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(4) V checks the validity of P ’ proof through whether [f ][(l+1)/2] = F1(m2)
holds or not, where

τ = ê(S, P )ê(QID, Ppub)u, f = r
⊕

[(τ)2]l, m2 = [f ][l/2]
⊕

F2([f ][(l+1)/2]).

Security of NIDS and IFNIDS. In order to analyze the security of NIDS
and IFNIDS, we firstly introduce the following notions similar to those [8,9].
Here we assume all hash functions are modeled as random oracles.

Definition 4. An EUF-ACMA adversary A breaks NIDS with (t, qsig, qF1 , qF2 ,
qH2 , ε) if and only if A queries Sign at most qsig times, queries hash functions
F1, F2, H2 at most qF1 , qF2 , qH2 times respectively, and can forge a signature
of NIDS within time t with success probability greater than ε.

Definition 5. NIDS is (t, qsig, qF1 , qF2 , qH2 , ε)-secure if and only if no adver-
sary can not break it with (t, qsig, qF1 , qF2 , qH2 , ε).

Definition 6. An adversary A breaks IFNIDS with (t, qF1 , qF2 , ε) if and only if
A as a prover queries hash functions F1, F2 at most qF1 , qF2 times respectively,
and can cheat honest verifier V within time t with success probability greater
than ε.

Definition 7. IFNIDS is (t, qF1 , qF2 , ε)-secure if and only if no adversary can
not break it with (t, qF1 , qF2 , ε).

Using the ID Reduction Technique and the results in [9], we can straightforwardly
obtain the following lemma.

Lemma 1. ID Reduction Lemma

(1) If A breaks NIDS with (t, qsig , qF1 , qF2 , qH2 , ε), there exists A1 which
breaks NIDS with (t

′
, 0, qF1 , qF2 , 1, ε

′
), where ε

′
= (1/qH2 − qsig/2l)(ε − 1/2l),

and t
′
= t + (the simulation time of qsig signatures).

(2) If A1 breaks NIDS with ( t
′
, 0, qF1 , qF2 , 1, ε

′
), there exists A2 which

breaks IFNIDS with ( t
′
, qF1 , qF2 , ε

′
)

(3) If A2 breaks IFNIDS with (t
′
, qF1 , qF2 , ε

′
), there exists A3 which breaks

IFNIDS with (t
′
, 1, 1, ε

′′
), Where ε

′′
= ε

′−1/2[l/2]

qF1

Theorem 1. Let ε ≥ 5
p . Suppose CDH in G1 is (t∗, ε∗)-secure, then IFNIDS is

(t, 1, 1, ε)-secure, where

t∗ = 6t
′

ε−2/p + O(tpm), ε∗ = 1
2 (1 − e−1)2 > 9

50 , t
′
= t + O(2tp + te)

Here tpm denotes the computation time of point multiplication over additive
group G1, tp denotes the computation time of bilinear map, te denotes the compu-
tation time of exponentiation over G2 and e is the base of the natural logarithm.

Due to lack of space, the proof of the above theorem is omitted in this version
of the paper. The basic idea of proof is to use boolean matrix and heavy row
introduced [9] and is similar to that of proof on Lemma 4 in [9].
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5.3 Security of IDSMR

In order to analyze security of IDSMR, we introduce the following quantifiable
notions.

Definition 8. An EUF-ID-ACMA adversary A breaks IDSMR with (t, qsig,
qH1 , qH2 , qF1 , qF2 , ε) if and only if A queries Extract at most qE times, queries
Sign at most qsig times, queries hash functions H1, H2, F1, F2 at most qH1 ,
qH2 , qF1 , qF2 times respectively, and can forge a signature of IDSMR within time
t with success probability greater than ε.

Definition 9. IDSMR is (t, qsig, qH1 , qH2 , qF1 , qF2 , ε)-secure if and only if no
adversary can not break it with (t, qsig , qH1 , qH2 , qF1 , qF2 , ε).

The following theorem shows the relation between IDSMR and NIDS in security.

Theorem 2. In the random oracle model, suppose that an EUF-ID-ACMA ad-
versary A0 exists which makes at most qE Extract queries, at most qsig Sign
queries, and at most qH1 queries to hash function H1, and which succeeds within
time t0 of making an existential forgery of IDSMR signature with probability
greater than ε0, then there is an EUF-ACMA adversary A1 which succeeds within
time t = O(t0) of making an existential forgery of NIDS signature with proba-
bility ε > ε0(1 − 1/p)/qH1 . In addition, the numbers of queries to other hash
functions asked by A1 are the same as those of A0.

Proof. We show how to construct an EUF-ACMA adversary A1 that uses A0
to gain advantage ε0(1 − 1/p)/qH1 against NIDSMR. The game between the
challenger and A1 starts with the challenger first generating random public
system parameters Param={p, G1, G2, ê, P , Ppub,QID w, H2, F1, F2} (Here
Ppub = sP ,QID ∈ G1), and a private key dID = sQID. The challenger gives
Param to algorithm A1. The algorithm A1 interacts with A0 as follows and
maintains list L1 that is initially empty and is used to keep track of answers to
queries asked by A0 to oracle H1, and challenger maintains lists L2, L3 and L4
that are initially empty and are used to keep track of answers to queries asked
by A0 to oracle H2, F1 and F2.

–Setup: The algorithm A1 gives the algorithm A0 the system parameters {p,
G1, G2, ê, P , Ppub, w, H1, H2, F1, F2} of IDSMR scheme. Here p, G1, G2,
ê, P , Ppub, w, H2, F1, F2 are taken from Param.

–H1 queries: When A0 asks queries on the hash values of identities, A1 checks
the list L1. If an entry for the query is found, the same answer will be given
to A; otherwise, a value dj from Z∗

p will be randomly chosen and djP will be
used as the answer, (IDj , djP ) will then be stored in the list L1. The only
exception is that A1 has to randomly choose one of the H1 queries from A0,
say the ith query, and answers H1(IDi)=QID for this query.

Note that we assume that A0 must ask for H1(ID) before ID is used in
any Sign and Extract queries.
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–H2, F1 and F2 queries: When A0 asks queries on these hash functions, A1
relays these queries to Challenger. Challenger checks the corresponding list.
If an entry for the query is found, the same answer will be given to A1;
otherwise, a randomly generated value will be used as an answer to A1, the
query and the answer will then be stored in the list. A1 relays challenger’s
responses to A0.

– Key extraction queries: When A0 asks a private key extraction to IDj ,
if j = i, then A1 fails and stops. If j �= i, then the list L1 must contain
(IDj , djP ). A1 sends (IDj , djP ) to challenger and relays this query to chal-
lenger. Challenger computes private key dIDj =sdjP which corresponds to
IDj , and sends dIDj to A1. A1 relays dIDj to A0.

– Sign queries: Given an identity ID and a message m(= m1||m2), A1 works
as follows.
(1) A1 gets Q

′

ID = H1(ID) by simulation for H1.
(2) A1 sends Q

′

ID to challenger and relays this signature query to challenger.
(3) Challenger randomly selects x ∈ Z∗

p , computes d
′

ID=sQ
′

ID and τ=wx,
gets the hash values by simulation for H2, F1 and F2, computes signature
σ = (m1, r, S) to the signature query (ID, m)(here m = m1||m2), and sends
σ to A1. A1 relays this signature σ to A0.

– A0 outputs (IDout, m1, r, S), where IDout is an identity, m1 is part of message
m, and (m1, r, S) is a signature to m, such that IDout and (IDout, m) are
not equal to the input of any query to Extract and Sign, respectively.

– If IDout = IDi and (IDout, m1, r, S) is valid, then outputs (IDout, m1, r, S).
Otherwise output fail.

If algorithm A1 does not abort during simulation, algorithm A0’s view is identical
to its view in the attack, furthermore

Pr[(IDout, m1, r, S)is valid|A1 does not abort] > ε0

Let E1 be the event that algorithm A1 does not abort during simulation. Let
E2 be the event that (IDout, m1, r, S) is valid. Since H1 is a random oracle, the
probability that the output (IDout, m1, r, S) of A0 is valid without any query of
H1(IDout) is negligible. Explicitly,

Pr[IDout = IDj for some j, j ≤ qH1 |E1∧E2] ≥ 1 − 1/p

Since i is independently and randomly chosen, we have

Pr[IDout = IDi|(IDout = IDj for some j, j ≤ qH1)∧E1∧E2] ≥ 1/(qH1 − qE)

A1’s failure during simulation is caused by A issuing a private query to IDi, we
have

Pr[E1]= ( qH1−1
qH1

)( qH1−2
qH1−1 ) . . . ( qH1−qE

qH1−qE+1 ) = qH1−qE

qH1

Therefore, we have

Pr[(IDout = IDi) ∧ ((IDout, m1, r, S) is valid) ∧ E1] > ε0(1 − 1/p)/qH1

Combing theorem 9 and 12 and lemma 8, we have
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Theorem 3. (Security of IDSMR) Let ε ≥ qH1 × p
p−1 × ((5qF1

p + 1
2[l/2] )/( 1

qH2
−

qsig

2l ) + 1
2l ). Suppose CDH is (t∗, ε∗)-secure, then IDSMR is (t, qsig , qH1 , qH2 ,

qF1 , qF2 , ε)-secure, where

t∗ = 6t
′

ε′−2/p
+ O(tpm) and ε∗ = 1

2 (1 − e−1)2 > 9
50

Here

t
′
= O(t) + O(qsig(te + 2tpm) + te + 2tp)

ε
′
=

1
qF1

((
p − 1
pqH1

ε − 1
2l

)(
1

qH2

− qsig

2l
) − 1

2[l/2] )

where tpm denotes the computation time of point multiplication over additive
group G1, tp denotes the computation time of bilinear map, te denotes the com-
putation time of exponentiation over G2 and e is the base of the natural loga-
rithm.

6 Comparison of Schemes

In table 1 below, we compare our scheme with schemes [13,15,17,18] in terms
of the total length of the original message and the appended signature, and the
number of the dominant operations required by them. In table we use mls , exps,
and pcs as abbreviations for point multiplications in G1, exponentiations in G2
and computations of bilinear map respectively.

Table 1. Comparison of Schemes

Total Length∗ Efficiency
Schemes |m|=[l/2] |m|>[l/2] Sign Verify

(m1 = [m]|m|−[l/2]) mls exps pcs mls exps pcs
F. Hess [13] |m| + |p| + |G1| |m| + |p| + |G1| 1 1 1 1 2

Cha-Cheon [17] |m| + 2|G1| |m| + 2|G1| 2 1 2
Libert et al.[18] |m| + |p| + |G1| |m| + |p| + |G1| 1 1 1 1 1

F. Zhang et al[15] |p| + |G1| |m1| + |p| + |G1| 2 1 1 1 2
IDSMR |p| + |G1| |m1| + |p| + |G1| 2 1 1 2

(∗) Total length is the length of the original message and the appended signature.

7 Conclusion

This paper presented a signature scheme with message recovery. It is proved to
be secure in the strongest sense (i.e., existentially unforgeable under adaptive
chosen message and ID attacks) in the random oracle model under the CDH
assumption. Furthermore, our scheme can deal with any message with arbitrary
length and shortens the length of the original message and the appended signa-
ture by “folding”part of message into the signature.
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