Automatic Detection of Human Fall in Video

Vinay Vishwakarma, Chittaranjan Mandal, and Shamik Sural

School of Information Technology
Indian Institute of Technology, Kharagpur, India
{vvinay,chitta,shamik}@sit.iitkgp.ernet.in

Abstract. In this paper, we present an approach for human fall detec-
tion, which has important applications in the field of safety and security.
The proposed approach consists of two parts: object detection and the
use of a fall model. We use an adaptive background subtraction method
to detect a moving object and mark it with its minimum-bounding box.
The fall model uses a set of extracted features to analyze, detect and
confirm a fall. We implement a two-state finite state machine (FSM) to
continuously monitor people and their activities. Experimental results
show that our method can detect most of the possible types of single
human falls quite accurately.

1 Introduction

Human fall is one of the major health problems for elderly people. Falls are
dangerous and often cause serious injuries that may even lead to death. Fall
related injuries have been among the five most common causes of death amongst
the elderly population. Falls represent 38% of all home accidents and cause 70%
of death in the 754 age group. It is shown in [1] that the number of reported
human falls per year was around 60,000 with an associated cost of at least £400
million in the UK.

Early detection of a fall is an important step in avoiding any serious injuries.
An automatic fall detection system can help to address this problem by reducing
the time between the fall and arrival of required assistance. Here, we present an
approach for human fall detection using a single camera video sequence. Our
approach consists of two steps: object detection and the use of a fall model. We
apply an adaptive background subtraction method to detect a moving object
and mark it with its minimum-bounding box. The fall model consists of two
parts: fall detection and fall confirmation. It uses a set of extracted features to
analyze, detect and confirm a fall. In the fall model, the first two features (aspect
ratio, horizontal and vertical gradient values of an object) are responsible for fall
detection and the third feature (fall angle) is used for fall confirmation. We also
implement a two-state finite state machine to continuously monitor people and
their activities.

The organization of the paper is as follows. Section 2 explains the related
work on fall detection. Section 3 describes the object detection method. Section 4
elaborates the fall model. In Section 5, we present experimental results followed
by conclusion in section 6.

A. Ghosh, R.K. De, and S.K. Pal (Eds.): PReMI 2007, LNCS 4815, pp. 616 2007.
© Springer-Verlag Berlin Heidelberg 2007

Automatic Detection of Human Fall in Video 617

2 Related Work

Primarily, there are three methods of fall detection, classified in the following
categories:

1. Acoustics based Fall Detection
2. Wearable Sensor based Fall Detection
3. Video based Fall Detection

In video based fall detection, human activity is captured in a video that is
further analyzed using image processing techniques. Since video cameras have
been widely used for surveillance as well as home and health care applications,
we use this approach for our fall detection method.

Due to the advancements in vision technologies, many individuals and organi-
zations are concentrating on fall detection using video based approaches. In [2],
authors have used background modeling and subtraction of video frames in HSV
color space. An on-line hypothesis-testing algorithm is employed in conjunction
with a finite state machine to infer fall incident detection. However, they only
use aspect ratio of a person as an observation feature based on which fall inci-
dent is detected. Lue and Hu [3] have presented a fall detection algorithm using
dynamic motion pattern analysis. They assume that a fall can only start when
the subject is in an upright position and characterizes a big change in either X or
Y direction when a fall starts. In [5], Toreyinet al. have used a background esti-
mation method to detect moving regions. Using connected component analysis,
they obtain the minimum bounding rectangles (blob) and calculate the aspect
ratio. They also use audio channel data based decisions and fuse it with video
data based decisions to reach a final decision. In [6], authors subtract the current
image from the background image to extract the foreground of interest. To ob-
tain the associated threshold, they consider a subject’s personal information such
as weight and height. Each extracted aspect ratio is validated with the user’s
personal information to detect the fall. In [7], McKenna and Nait-Charif [7] have
used a particle filtering method to track a person and extract his trajectories
using 5-D ellipse parameter space in each sequence. An associated threshold on a
person’s speed is used to label the inactivity zone and human fall. In [8], authors
use 3-D velocity as a feature parameter to detect human fall from a single cam-
era video sequence. At first, 3-D trajectory is extracted by tracking a person’s
head with the help of a particle filter as it has a large movement during a fall.
Next, 3-D velocity is computed from 3-D trajectory of the head.

Most of the existing vision based fall detection systems use either motion
information or a background subtraction method for object detection. An abrupt
change in the aspect ratio is analyzed in different ways such as Hidden Markov
Model (HMM), adaptive threshold and the user’s personal information to detect
falls in video. A person’s velocity is often used to classify a human either as
walking or falling in a video. There are also some other existing models, but
they work well only in restricted environment.

618 V. Vishwakarma, C. Mandal, and S. Sural

In our approach, we use an adaptive background subtraction method using
a Gaussian Mixture Model (GMM) in YCbCr color space for object detection.
We propose a fall model that consists of two steps, first fall detection and then
fall confirmation. We extract three features from an object and use the first two
features for fall detection and the last for fall confirmation. We implement a
simple two-state finite state machine (FSM) to continuously monitor people and
their activities.

3 Object Detection

The first and the most important task of human fall detection is to detect hu-
mans accurately so we apply an adaptive background subtraction method using
a Gaussian mixture model (GMM) and then extract a set of features for fall
modeling.

3.1 Background Modeling and Subtraction

A recorded video is used as an input which is stored as a sequence of frames
using the Berkeley MPEG Decoder. For every frame, we convert its pixel from
the RGB color space to the YCbCr color space. We use mean values of image
pixels for further processing.

GMM considers each background pixel as a mixture of Gaussians. The Gaus-
sians are evaluated using a simple heuristic to hypothesize pixels which are most
likely to be part of the background process. The probability that an observed
pixel has intensity value X; at time ¢ is modeled by a mixture of K Gaussians as

k

P(Xt) = Zwi,t #1)(Xes e, Xit). (1)
i=1

where

N(Xe, pie, Viye) = ez (X — p)TE X, —). (2)

1
((2m)2]2]%)

Wit = (]. — a)wi,tq + Q(Mk)t). (3)

Here m is the mean, « is the learning rate and My is 1 for the model which
matches and 0 for the rest.

The background estimation problem is addressed by specifying the Gaussian
distributions which have the most supporting evidence and the least variance.
Since a moving object has larger variance than a background pixel, in order to
represent background process, first the Gaussians are ordered by the value of
w

2 in decreasing order. The background process stays on top with the lowest
variance by applying a threshold T, where

Automatic Detection of Human Fall in Video 619

b
B= argminb(z wr >T). (4)
k=1

All pixels X; which do not match any of these components will be marked as
foreground.

Pixels are partitioned as being either in the foreground or in the background
and marked appropriately. We apply connected component analysis that can
identify and analyze each connected set of pixels to mark the rectangular bound-
ing box over an object.

3.2 Feature Extraction

We extract a set of features from each object and its bounding box such as aspect
ratio, horizontal (G,) and vertical (G,) gradient values and fall angle, which we
use further in the fall model.

Aspect Ratio. The aspect ratio of a person is a simple yet effective feature for
differentiating normal standing pose from other abnormal pose. In Table 1(a),
we compare the aspect ratio of an object in different human pose.

Horizontal and Vertical Gradients of an Object. When a fall starts, a
major change occurs in either X or Y direction. For each pixel, we calculate its
horizontal (G,) and vertical (G,) gradient values. In Table 1(b), we compare
horizontal and vertical gradient value of an object’s pixel in different human
pose.

Fall Angle. Fall angle (0) is the angle of a vertical line through the centroid of
object with respect to the horizontal axis of the bounding box. Centroid (Cy, Cy)
is the center of mass co-ordinates of an object. In Table 1(c), we compare fall
angles of an object in different pose such as walking and falling.

Table 1. Comparison of features distribution of object in different pose

| — Hirimatel Grdient — Verticl G |

Walking

g

Falling
Falling

g

Aspect Ratio
]
Gradient Value

Walking

N

]

3
. Fall Apgle, |

z

, &

IEEREEETENEEEEREEEE T

Frame Number Frane Nuber

(a) (b) (<)

Frame Number

620 V. Vishwakarma, C. Mandal, and S. Sural

4 Fall Model

Building a fall Model consists of two steps: fall detection and fall confirmation.
For the fall detection step, we use aspect ratio and object’s horizontal and vertical
gradient values. For the fall confirmation, we use fall angle with respect to the
horizontal axis of its bounding box. We use rule-based decisions to detect and
confirm the fall.

4.1 Fall Detection

1. Aspect ratio of human body changes during fall. When a person falls, the
height and width of his bounding box changes drastically.

2. When a person is walking, the horizontal gradient value is less than the
vertical gradient value (G, < G) and when a person is falling, the horizontal
gradient value is greater than the vertical gradient value (G, > G).

3. For every feature, we assign a binary value. If the extracted feature satisfies
the rules, we assign binary value 1 otherwise 0.

4. We apply OR operation on the feature values. If we get the resultant binary
value as 1 then we detect the person as falling, otherwise not.

4.2 Fall Confirmation

When a person is standing, we assume that he is in an upright position and the
angle of a vertical line through the centroid with respect to horizontal axis of the
bounding box should be approximately 90 degree. When a person is walking, the
6 value varies from 45 degree to 90 degree (depending on their style and speed of
walking) and when a person is falling, the angle is always less than 45 degrees.

For every frame where a fall has been detected, we apply the fall confirmation
step. We calculate the fall angle (0) and if 0 value is less than 45 degree, we
confirm that the person is falling. Similarly, we take next few (in our approach,
it is seven) frames and analyze their features using the fall model to confirm a
fall situation.

4.3 State Transition

To continuously monitor human behavior, which changes from time to time, we
implement a simple two-state finite state machine (FSM). As shown in Fig. 1,
the two states are "Walk’ and ’Fall’ respectively.

Rule 1: Feature values should satisfy fall detection model.
Rule 2: Feature values should satisfy fall confirmation model.

When current state is "Walk’, the system begins to perform Rule 1 testing. If
Rule 1 is not satisfied, the state remains unchanged; otherwise the state transits
to 'Fall’. When current state is "Fall’, the system begins to perform Rule 2 testing.
If Rule 2 is satisfied, the state remains unchanged; otherwise it transits back to
"Walk’ state, which is the case when a person has fallen and again started to
walk. Alarms will be triggered once a person remains in the state of 'Fall’ for a
period longer than a pre-set duration.

Automatic Detection of Human Fall in Video 621

Rule 1
sailsfied

/

(L v) (Tl))
Rule I not Rule !
satisfied isfied

Rule 2 not
satisfied

Fig. 1. A finite state machine for human fall detection

5 Experimental Results

We have implemented our proposed approach using C as the programming lan-
guage in linux and tested it intensively in a laboratory environment. To verify
the feasibility of our proposed approach, we have taken 45 video clips (indoor,
outdoor and omni-video) as our test target. A handycam (SONY DCR-HC40E
MiniDV PAL Handycam Camcorder) was used to capture indoor and outdoor
video clips. Video clips contain a number of different possible types of human
fall (sideway, forward and backward) and no fall condition. In every video clip,
one or more moving object exists in the scene. In this paper, we use a set of
criteria to evaluate our system including accuracy, sensitivity and specificity [6].

Table 2. Recognition results

Video Types Scene Types Total Frames Fall Types TP FP FN TN

Indoor Single 93 Forward 20 0 0 73

Indoor Single 216 Backward 56 0 0 150
Indoor Single 286 Sideway 76 0 0 210
Indoor Single 100 NoFall 0 O 0 100
Outdoor Single 87 Forward 47 0 0 40

Outdoor Single 141 Backward 14 0 0 127
Indoor Multiple 175 Sideway 80 30 15 50

Outdoor Multiple 624 Sideway 144 10 120 350
Omni-video single 376 Forward 100 10 10 256
Omni-video Multiple 1007 Forward 257 50 440 260

In Table 2, we show results of indoor, outdoor and omni-video clips containing
different types of possible human fall. In our experiment, a fixed threshold is set
for every feature. For aspect ratio, we set the threshold between 0 and 1. For hori-
zontal (G) and vertical (G) gradient values of an object, G, is less than G, in the
case of a walking person and G, is greater than G, in the case of a falling person.

622 V. Vishwakarma, C. Mandal, and S. Sural

For fall angle (0), 6 is between 45 degree to 90 degree in the case of a walking person
and 0 is less than 45 degree in the case of a falling person. We have selected these
thresholds empirically. In our experiments, we first evaluate the system perfor-
mance (accuracy, sensitivity and specificity) using aspect ratio as a feature. Next,
we evaluate system performance using our proposed fall model as shown in table 3.
Results of aspect ratio as a feature parameter are shown in parenthesis. The ex-
perimental results show that the proposed method can accurately detect most of
the possible types of fall in video. Some successful and unsuccessful image frames
of human fall detected by our approach are shown in Table 4.

Table 3. System performance of proposed fall model and aspect ratio approach

Video Content Accuracy (%) Specificity (%) Sensitivity (%)
Indoor + Single 100 (95) 100 (97) 100 (90)
Outdoor + Single 100 (93) 100 (90) 100 (95)
Indoor + Multiple 74 (62) 84 (50) 62 (73)
Outdoor + Multiple 79 (64) 97 (85) 54 (37)
Omni-video + Single 94 (89) 96 (92) 90 (81)
Omni-video 4+ Multiple 51 (40) 83 (49) 36 (29)

Our approach is able to achieve promising results only when there is a single
person in the scene. For multiple people in the scene or in a crowd, this approach
is not able to detect the fall accurately. For all video, we consider that first few
frames contain only background scene.

Automatic Detection of Human Fall in Video 623

6 Conclusion

We have presented a method for automatic detection of human fall in video.
The proposed approach contains two main components, object detection and
the use of a fall model. For object detection, we use an adaptive background
subtraction method using a Gaussian Mixture Model in YCbCr color space. For
the fall model, we extract a set of features such as aspect ratio, horizontal and
vertical gradient values of an object as well as fall angle. In our experiments, we
have taken three types of video clips (indoor, outdoor and omni-video) for both
single and multiple people in the scene. Our experimental results show that the
proposed method can accurately detect a single falling person. In future work,
we plan to improve the fall model and apply it for multiple people in the scene.

References

1. Marquis-Faulkes, F., McKenna, S.J., Newell, A.F., Gregor, P.: Gathering the re-
quirements for a fall monitor using drama and video with older people. Technology
and Disability 17, 227-236 (2005)

2. Tao, J., Turjo, M., Wong, M., Wang, M., Tan, Y.: Fall incidents detection for intel-
ligent video surveillance. In: Fifth International Conference on Information, Com-
munication and Signal Processing, pp. 1590-1594 (2005)

3. Luo, S., Hu, Q.: A dynamic motion pattern analysis approach to fall detection. In:
IEEE International workshop in Biomedical Circuit and Systems (2004)

4. Alwan, M., Rajendran, P.J.: A smart and passive floor-vibration based fall detector
for elderly. Information and Communication Technologies 1, 1003—1007 (2006)

5. Ugur Toreyin, B., Dedeoglu, Y., Enis Cetin, A.: HMM based falling person de-
tection using both audio and video. In: Proc. IEEE Conf. Signal Processing and
Communication Application (14th) (2006)

6. Miaou, S., Sung, P., Huang, C.: A Customized Human Fall Detection System using
omni-camera images and personal information. In: Proc. of the 1st Distributed Di-
agnosis and Home Healthcare (D2H2) Conference, Arlington, Virginia, USA (2006)

7. McKenna, S.J., Nait-Charif, H.: Summarising contextual activity and detecting un-
usual inactivity in a supportive home environment. Pattern Analysis Application
(14th) 7, 386-401 (2005)

8. Rougier, C., Meunier, J.: Demo: Fall detection using 3D head trajectory extracted
from a single camera video sequence. Journal of Telemedicine and Telecare 11(4)
(2005)

9. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture model for real time
tracking. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition CVPR
1999, pp. 246-252 (1999)

	Automatic Detection of Human Fall in Video
	Introduction
	Related Work
	Object Detection
	Background Modeling and Subtraction
	Feature Extraction

	Fall Model
	Fall Detection
	Fall Confirmation
	State Transition

	Experimental Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

