
Self Adaptable Recognizer for Document Image
Collections

Million Meshesha and C.V. Jawahar

Center for Visual Information Technology,
International Institute of Information Technology,

Hyderabad - 500 032, India
jawahar@iiit.ac.in

Abstract. This paper presents an architecture that enables the recog-
nizer to learn incrementally and, thereby adapt to document image col-
lections for performance improvement. We argue that the recognition
scheme for a book could be considerably different from that designed for
isolated pages. We employ learning procedures to capture the relevant
information available online, and feed it back to update the knowledge
of the system. Experimental results show the effectiveness of our design
for improving the performance on-the-fly.

1 Adaptable OCR System

The success of document image indexing and retrieval in the newly emerging
digital libraries considerably depends on the availability of robust OCRs that
can take care of the diversity in the document image collections. Performance
of the state of the art OCRs are not very encouraging for these collections [1,2].
Recent study by Lin [3] shows that document recognition research is still in great
need for better accuracy and reliability, as well as for effective information re-
trieval and delivery. We need a recognition system that is capable of intelligently
adapting to the characteristics of documents of interest, and improving the per-
formance over time. Machine learning offers one of the most cost effective and
practical approaches to the design of pattern classifiers for a broad range of pat-
tern recognition applications like character recognition [4]. Learning algorithm
could be supervised, unsupervised or reinforcement-based [5]. Supervised tech-
niques have been successfully demonstrated for character recognition application
as offline training in OCR systems. However applicability of semi-supervised and
reinforcement learning algorithms are not yet explored in their full potential.

Most of the recent research in OCR has been centered around building fully
automatic, high performing intelligent classification systems with good general-
ization capability [6]. Intelligent OCRs with excellent performance on a given
page are reported for Latin scripts [7]. However, when it comes to the suitabil-
ity of converting an old book to text and providing a text-like access, even the
present day OCRs are found to be insufficient [1]. The performance of these
recognizers decline as the diversity in the collection of documents (with unseen

A. Ghosh, R.K. De, and S.K. Pal (Eds.): PReMI 2007, LNCS 4815, pp. 560–567, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Self Adaptable Recognizer for Document Image Collections 561

fonts and poor in quality) increases. We argue that an adaptive recognition sys-
tem, which can learn from its experience and improve its performance over time,
is better suited for such document collections (that vary in printing and quality).

In this paper, we argue that:

1. The technique for recognizing a book (a reasonably large collection of docu-
ments in single font and consistent formatting) can be different from OCRs
that are designed to be part of scanner drivers or meant for isolated pages.

2. The notion of generalization from a small set of training samples, which is
critical to the design of pattern classifiers, need not be the only performance
goal. One can positively look for ‘overfitting’ to a book, as long as the recog-
nition engine can provide better results on that specific collection. In general,
the multimodality of the data distribution need not be completely modeled;
but can be accepted as a reality.

An approach for designing a semi-automatic adaptive OCR for document im-
ages in digital libraries is reported in [8]. The OCR is designed to support an
interactive retraining (based on users feedback) for performance improvement.
In this paper, we present an intelligent and self adaptable OCR that employs
machine learning algorithms for validation, labeling, sampling and incremen-
tal learning in a recognition cycle. Post-processor based feedback mechanism is
enabled to provide additional knowledge to the system.

Recognizer

Samples
Database

Sampler

Validator

Labeler

Postprocessor

Labeled Samples

Labelled
Samples

Samples
Refined

Samples
Validated

Samples
Training

Model

Unlabeled Samples

Samples
Training

Model

(BRU)

Parameter

alpha−Base
(Parameter)

Classifier
Training

Fig. 1. An architecture of OCR learning framework employed for the recognition of
document collection

2 Learning Schemes

There are possibly two ways in which the continuous performance improvements
can take place in recognizers for document collections in digital libraries.

562 M. Meshesha and C.V. Jawahar

1. Learn from the direct or indirect user feedback (as in the case of relevance
feedback models, search engines etc.) captured during the search.

2. Improve the performance of recognizers by adapting to a specific collection
by absorbing the input from language models (e.g.. Dictionaries).

In this paper, we do not model the user interactions, and follow the second
approach, where knowledge from the post-processor is used for developing new
labeled examples, and thereby improving the recognition accuracy. In the con-
ventional OCRs also, language models are integrated for improving the perfor-
mance of the base-classifier. However they are not designed to learn from their
experience. If a word which is misclassified once is given to the base classifier,
it repeats the mistake again. However, we are interested in a framework, which
will make the classifier intelligent and correct the mistake in the future.

Algorithm 1. Recognition of Text in Document Collections
1: Document images are preprocessed and words are extracted for recognition.
2: BRU outputs the recognized text.
3: Post-processor checks the validity of the word based on some language model and

outputs the corrected word, if found to be invalid.
4: Validator visually validates the result of post-processing. By matching the rendered

text and word image, visual similarity is carefully computed. Errors introduced by
the post-processor results in outliers.

5: Those with visually similar appearance are considered as new training samples.
Semi-supervised learning is used in labeling the new samples.

6: Bagging is used to create a sample set and classifier is trained (preferably incre-
mentally) to obtain the new set of parameters and stored in α-base.

7: Base-classifier is incrementally learn for knowledge updation.

Overview: Architecture of the proposed recognition system is shown in Figure 1,
and also explained in Algorithm 1. Given a word image for recognition, the Ba-
sic Recognizer Unit (BRU) converts it into text. A post-processor is then used
to rectify/verify the recognized word. In our present implementation, we use a
simple dictionary-based post-processor which is designed following a reverse dic-
tionary approach with the help of a trie data structure. Our Basic Recognition
Unit is an SVM-based classifier trained offline on few apriori available synthetic
training examples (that are prepared in single font, style and size) by extracting
vector representation of the entire image. In this work, the conventional open-
loop system of classifier followed by post-processor is closed by automatically
generating training data from the “test” image and retraining (in fact incre-
mentally modifying) the BRU. Before passing mis-recognized samples as new
training datasets we run a validator to detect outliers that deviate from the
original sample. Samples that are similar to the original ones are labeled using
labeler and transferred to the sample database. This system, thus, has a frame-
work for the creation, validation, labeling and use of mis-recognized samples as
new training examples for performance improvement over time.

Self Adaptable Recognizer for Document Image Collections 563

This character recognition system is highly data-driven. It employs feedback
for performance improvement. Initial recognition errors are immediately detected
and corrected. This technique is also useful when sufficient training samples or
apriori knowledge is lacking (for example recognizing in a new font/style). The
implementation of this approach could be computationally intensive. However,
today’s OCR environment especially the ones for digitizing books and large
document image collections can afford to do so.

Automatic Preparation of Labeled Data: One of the basic problem of the learning
process in a dynamic environment is getting high quality new training samples.
Once the BRU recognises a word and outputs a textual representation, post-
processor verifies the validity of the word with the help of a dictionary (or a
language model) and either accepts the word as valid or corrects with an alter-
native. There are six possible situations.

1. BRU correctly recognizes a word and post-processor accepts it as valid word.
2. BRU correctly recognizes, but post-processor fails to accept it as valid and

suggests an alternative.
3. BRU makes a mistake, and post-processor corrects to the right word.
4. BRU makes a mistake, and post-processor corrects/modifies to a wrong word.
5. BRU correctly recognizes, but post-processor modifies to a wrong word.
6. Post-processor fails to suggest an acceptable alternative to a text provided

by BRU.

We employ the knowledge from the post-processor in creating a new set of labeled
examples. For this, we validate the result of the post-processing, by matching
in the image space. This is more of verification rather than recognition. Given
the text, it is rendered into an image, and matched in the image space. Let
p1, p2, . . . pm and q1, q2, . . . qn be a set of feature vectors, extracted by scanning
(column-wise) the vertical strips of the rendered text and word images, where m
and n are width of a given words. They are aligned using dynamic time warping
(DTW) for similarity measure. If all the symbols match (one-to-one), then we
have achieved the labeling of all the connected components in the document
image (situation 1). When only some of the symbols match, they are labeled
and the rest of the symbols are treated as unlabeled. In short, at the end of the
first phase of validation using a DTW-based algorithm, most of the components
from a given document image gets labeled automatically and gets added to the
database of training examples. The rest of the samples are treated as unlabeled.
Note that, at this stage, our interest is limited to improving the performance of
BRU, rather than addressing the problem of merges and splits in the document
images.

For each unlabeled data xi we attach probabilities pij of belonging to class i,
i.e. pij = prob(xi ∈ wj). This is an initialization. These probabilities are then it-
eratively improved by an Expectation Maximization (EM) [9] based formulation.
The E-Step uses the current parameter estimates to find the best probabilistic
labels for class membership using a multivariate normal (Gaussian) distribution.
The M-Step then refines the parameters to maximize the total likelihood. The

564 M. Meshesha and C.V. Jawahar

2

3

4

0

1

It
er

at
io

ns

Sampling Rate

(a) (b)

Fig. 2. (a) A change in accuracy and learning rate at different sampling rate (ζ). (b) An
improvement in the performance of the recognizer through learning from poor quality
documents.

steps are iterated until the change in parameter values falls below some prede-
fined threshold. In a way, it allows to put the unlabeled examples into a cluster
with most of the samples already labeled. When most of the samples are labeled,
it converges in one step, and assigns label to the unlabeled samples.

Sampling: The ability to actively select the most useful training samples is an
important aspect of building an efficient classifier. Boosting and bagging are
being increasingly used for this purpose [5,10]. Boosting uses all instances of the
datasets at each iteration, but associates a weight for each sample. Bagging, on
the other hand, takes the available training samples and generates a new sample
set by selecting them randomly and with replacement. In our implementation,
training examples are generated throughout the recognition process. We need to
use these samples as new training datasets in subsequent iterations; as a result of
which we use bagging for sampling. For each session k = 1, 2, . . . , n, new training
set of size N is sampled from the database. Bagging works as follows. Consider
a training dataset D = dci

1 , dci
2 , . . . , dci

m where m is the total samples available in
class ci. Bagging selects a subset of representative samples randomly from the
available training sample collections that are accumulated through feedback. In
each session k, a re-sampled training set Dk is built for constructing/training a
classifier Ck. Classifier Ck has better accumulated knowledge than the previous
Ck−1 increasing its applicability to the given document collection.

Incremental Updation: We use SVM classifier [5] as the basic recognition unit,
and employ an incremental learning approach [11] to train it. By identifying the
decision boundary with maximal margin, SVM results in better generalization
during classification. Margin maximization leads to an optimization problem the
solution of which is expressed uniquely in terms of support vectors si. An input
pattern x is classified into class y ∈ {−1, +1} according to the decision function:

y = sgn(
∑

i

αiyiK(si, x)) (1)

Self Adaptable Recognizer for Document Image Collections 565

Table 1. Performance improvement with the use of incremental learning vs. retraining
during the learning process.

Iterations Retraining Incremental
1 0.652475 0.652475
2 0.867845 0.882446
3 0.898620 0.907383
4 0.901226 0.910813
5 0.929970 0.939294
6 0.941537 0.948294
7 0.943962 0.959026
8 0.952096 0.959026
9 0.952096 0.959026
10 0.952096 0.959026

which takes the form of a linear combination of kernels K(si, x) weighted by
training labels yi and coefficients αi. The coefficients αi are nonzero only for
training data that are support vectors, so that

∑
i αiyiK(si, x) is sparse and the

support vectors capture the relevant information present in the training data.
Incremental SVM works as follows. The representation of the data seen so

far for each class is given by the set of support vectors describing the learned
decision boundary. These support vectors are combined with the new incoming
datasets to provide the training data for the incremental step. The incremental
step then updates the solution for addition of a single training sample xi by
incrementing the coefficient i and simultaneously adjusting previously assigned
coefficients αj(j < i) on the present and all previous training samples.

3 Implementation, Results and Discussions

Our implementation in c/c++ is tested on document image collections. The
design of our system is based on a multi-core approach [2]. Keeping the futuristic
large scale computational applications, it is implemented as layers with plugin
interfaces for modules to ease replacing one module with another. SVM based
classifier could be modified as a cascaded classifier combination with out major
changes in other parts of the code. Each module internally can decide on multiple
algorithm implementations of the same functionality that may be interchanged
at run-time. This helps in selection and use of an appropriate algorithm or a set
of parameters for a document collection or script. The system allows transparent
run-time addition and selection of modules thereby enabling the decoupling of
the application and the plug-ins.

The learning scenario involves post-processor based feedback mechanism to
update the knowledge of the recognizer. Machine learning procedures are inte-
grated for labeling, sampling and validating the new training samples collected
online. Scanned images are segmented into words and submitted for recognition
in a batch. Recognition results are post-processed to resolve ambiguity among

566 M. Meshesha and C.V. Jawahar

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1 2 3 4 5 6 7

A
c
c
u

ra
c
y

No. of Iterations

Learning Graph

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 1 2 3 4 5 6

A
c
c
u

ra
c
y

No. of Iterations

Learning Graph

(a) (b)

Fig. 3. Recognition accuracy of the OCR through learning in presence of (a) font
variations and (b) style variations

the candidate words. Mis-recognized words are validated and fedback as new
training datasets for learning incrementally. The labeler is used to split these
words into components and assign their membership category (class). The sam-
pler selects subset of these datasets and pass them for learning. Sampling speeds
up the learning rate η if proper sampling rate ζ is used. As shown in Figure 2(a)
the learning rate and improvements in recognition accuracy are related with the
sampling rate used. Initially the accuracy jumps from 71.23% to 76.95%, 90.27%
and 88.23% for sampling rate 0.167, 0.3. 0.5 respectivelly. We can observe that
the number of iterations decrease as the sampling rate increase, but with better
accuracy obtained at sampling rate ζ of 0.3. This shows that sampling at 30%
of the original training datasets speeds the learning rate with better improve-
ments in recognition results. This is only an empirical observation. We use this
sampling rate for our experimentation.

Once new training samples are selected, incremental SVM classifier is used for
updating the knowledge of the recognizer. Table 1 presents performance of incre-
mental learning vis-a-vis retraining. The result shows that the two approaches
have comparable performance. However, the use of incremental learning has fur-
ther advantage in terms of both computational time and space complexity. In a
way, it eases the implementation of SVM classifier on large datasets.

We validate the performance of the learning framework on real-life printed
document images (of English) that are (i) poor in quality and (ii) varies in fonts
and styles as depicted in Figures 2(b) and 3, respectively. The result demonstrate
the advantage of our learning strategy for performance improvement. Because of
the quality and printing variations in document images, a very low recognition
result is obtained at the initial stage, which amounts to less than 70%. Within
few iterations of learning, however, the recognition accuracy improved, on the
average, to 95%. Most of the recognition errors happen since characters do not
always look the way they should because of degradation or printing variations.
A character’s hole is filled, e.g. ’o’, ’u’ and ’n’ are recognized as ’dot’, some part
of the character (e.g. dot of ’i’) is missing and recognized as ’1’ or ’l’, etc. Different

Self Adaptable Recognizer for Document Image Collections 567

fonts produce a character with different shape that may visually similar with
other character. It has been observed that the recognizer is able to adopt to the
given document images based on the additional samples of confusing components
that are fedback for learning. In this way, the learning framework can enable the
OCR to learn from its experience and adapt to varying document image col-
lections in printing and quality. Further work is needed for (i) Extending this
framework for many of the complex Indian scripts (ii) Addressing the segmenta-
tion errors at various stages. The present design assumes that segmentation (of
pages into words as well as words into recognizable symbols) is available. This
assumption needs to be relaxed in future.

4 Conclusion

We have presented a novel approach for learning during the recognition of doc-
ument image collections. The architecture integrates advanced learning proce-
dures that automatically interacts and pass feedback for further learning. This
enables the OCR to easily accumulate knowledge for performance improvement.
This strategy is promising for the recognition of large digitized document im-
ages in applications, like digital libraries. Experiments are ongoing to validate
our approach on diverse collections with changes in script, font, etc.

References

1. Feng, S., Manmatha, R.: A hierarchical, HMM-based automatic evaluation of OCR
accuracy for a digital library of books. In: Joint Conference on Digital Libraries
(JCDL), pp. 109–118 (2006)

2. Sankar, P., et al.: Digitizing a million books: Challenges for document analysis. In:
Proc. of the Seventh IAPR Workshop on Document Analysis Systems, pp. 425–436
(2006)

3. Lin, X.: DRR research beyond COTS OCR software: A survey. In: SPIE Conference
on Document Recognition and Retrieval XII, San Jose, CA, pp. 16–20 (2005)

4. Xu, Y., Nagy, G.: Prototype extraction and adaptive OCR. IEEE Transactions on
Pattern Analysis and Machine Intelligence 21, 1280–1296 (1999)

5. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning.
Springer, Heidelberg (2001)

6. Nagy, G.: Twenty years of document image analysis in PAMI. IEEE Transactions
on Pattern Analysis and Machine Intelligence 22, 38–62 (2000)

7. Kahan, S., Pavlidis, T., Baird, H.S.: On the recognition of printed characters of any
font and size. IEEE Transactions on Pattern Analysis and Machine Intelligence 9,
274–288 (1987)

8. Rawat, S., et al.: A semi-automatic adaptive OCR for digital libraries. In: Proc. of
the Seventh IAPR Workshop on Document Analysis Systems, pp. 13–24 (2006)

9. Ivanov, Y., Blumberg, B., Pentland, A.: Expectation maximization for weakly la-
beled data. In: Proc. of the Int. Conf. on Machine Learning, pp. 218–225 (2001)

10. Iyengar, V.S., Apte, C., Zhang, T.: Active learning using adaptive resampling. In:
Sixth Int. Conference on Knowledge Discovery and Data Mining, pp. 92–98 (2000)

11. Diehl, C., Cauwenberghs, G.: SVM incremental learning, adaptation and optimiza-
tion. In: Proc. IEEE Int. Joint Conf. Neural Networks, pp. 2685–2690 (2003)

	Self Adaptable Recognizer for Document Image Collections
	Adaptable OCR System
	Learning Schemes
	Implementation, Results and Discussions
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

