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Abstract. Data analysis methods and techniques are revisited in the
case of biological data sets. Particular emphasis is given to clustering and
mining issues. Clustering is still a subject of active research in several
fields such as statistics, pattern recognition, and machine learning. Data
mining adds to clustering the complications of very large data-sets with
many attributes of different types. And this is a typical situation in
biology. Some cases studies are also described.
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1 Introduction

Bio-informatics is a new discipline devoted to the solution of biological prob-
lems, usually on the molecular level, by the use of techniques including applied
mathematics, statistics, computer science, and artificial intelligence. Major re-
search efforts regard sequence alignment [I], gene finding [2], genome assembly,
protein structure alignment [3] and prediction [4], prediction of gene expression,
protein-protein interactions, and the modeling of evolution [5].

Mining in structured data is particularly relevant for bio-informatics applica-
tions, since the majority of biological data is not kept in databases consisting of
a single, flat table [6]. In fact, bio-informatics databases, BDB, are structured
and linked objects, connected by relations representing a rich internal struc-
ture. Examples of BDB are databases of proteins [7], of small molecules [§],
of metabolic and regulatory networks [9]. Moreover, biological data represen-
tations are structured and heterogeneous; they consist of large sequences (e.g.
105 gene sequences), 2D large structures (e.g. 10° ~ 10° spots on DNA chips),
3D structures (e.d. DNA phosphate model, Figure [Ik), graphs, networks, ex-
pression profiles, and phylogenetic trees (Figure [Ib). Several issues are dealing
with mining biological data, among them there are kernel methods for classifi-
cation of microarray time series data [10]. This classification of gene expression
time series has many potential applications in medicine and pharmacogenomics,
such as disease diagnosis, drug response prediction or disease outcome prognosis,
contributing to individualized medical treatment. Graph kernels representations
of proteins have been designed to retrieve structure and bio-chemical informa-
tion and protein function prediction. Feature graphs are considered to represent
potential docking sites and retrieve activity maps 3D protein databases.

A. Ghosh, R.K. De, and S.K. Pal (Eds.): PReMI 2007, LNCS 4815, pp. 373E384, 2007.
© Springer-Verlag Berlin Heidelberg 2007



374 V. Di Gesu

Phylogenetic Tree of Life

Bacteria Archaea Eucaryota

Fig. 1. (a) 3D structure of the DNA phosphate model; (b) an example of phylogenetic
tree

Concept of similarity play a relevant role in search both 2D and 3D shape
matching in bio-molecular databases. For example, similar 3D shape can be re-
trieved by using a similarity model based on 3D shape histograms, 3D surface
segments, and parametric surface functions including paraboloid and trigono-
metric polynomials that approximate surface segments.

Finally, methods for finding all subspaces of high-dimensional data containing
density-based clusters are necessary because finding clusters in high-dimensional
data is usually futile. Moreover, high-dimensional data may be clustered differ-
ently in varying subspaces of the feature space. Subspace clustering aims at
finding all subspaces of high-dimensional data in which clusters exist.

Specific topics include: preprocessing tasks such as data cleaning and data in-
tegration as applied to biological data; classification and clustering techniques for
microarrays; comparison of RNA structures based on string properties and ener-
getics; discovery of the sequence characteristics of different parts of the genome;
mining of haplotype to find disease markers; sequencing of events leading to
the folding of a protein; inference of the subcellular location of protein activity;
classification of chemical compounds based on structure; special purpose metrics
and index structures for phylogenetic applications; query languages for protein
searching based on the shape of proteins, and very fast indexing schemes for
sequences and pathways.

The paper is structured as follows: Section 2] outlines both the descriptive and
the predictive mining in databases; Section [Breviews recent clustering algorithms
for biological data; in Section[ltwo cases studies are described; Section[H provides
final remarks and new perspectives in mining biological data.

2 Mining in Biological Database

Data mining techniques are classified in descriptive and predictive. In descriptive
mining, local structures are searched to discover pattern embedded in data. In
predictive mining, models are designed to make predictions for new, unseen cases.
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2.1 Descriptive Data Mining

The problem of finding patterns of interest in a data-set is a typical pattern
recognition problem, that depends on the nature of problem. For example,
the problem of finding frequent item-sets in coregulated genes by estimating
number of motif instances has been considered in [IT]. Authors ground their
analysis on TOUCAN system [12] and Hidden Markov Model inference nets
[13]. The prediction of Cis-Regulatory Elements is analyzed in [14] combin-
ing different algorithms (Clover, Cluster-Buster, sequence identity, and ITB-
algorithm).

Search technique have been developed to solve pattern matching problems in
other domains, such as approximate string matching on large DNA sequences
[I5/16]. These methods include star alignments and tree alignments, which are
usually based on dynamic programming. In [I7] a polynomial-time dynamic pro-
gramming algorithm for solving the maximum common subtree of two trees is
considered to implement an accurate and efficient tool for finding and aligning
maximally matching glycan trees (see Figure[Z). For a review on trees matching
see [18].
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Fig. 2. (a) An example of biological tree-structure

Structure similarity of two proteins from the matching of pairs of secondary
structure elements. In [19] the matching is performed using a fast bipartite graph-
matching algorithm that avoids the computational complexity of searching for
the full subgraph isomorphism between the two sets of interactions. More infor-
mation on graph matching in biology can be found in [20].

Matching algorithms are interesting to find all sub-patterns occurring with
a minimum frequency in a database of patterns (strings, trees, graphs). The
problem can be extended in finding all patterns with a minimum frequency in
one data-set and a maximum frequency in another. This is a question relevant
for the analysis of differentially expressed genes with applications to protein
structure folding prediction and drug discovering, both of them are characterized
by 3D structures (see Figures Bh,b).
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Fig. 3. (a) 3D structure of a protein molecule; (b) an example of binding drug molecule
into a protein molecule

2.2 Predictive Mining

Data Mining is an analytic process designed to explore a large amount of data to
find consistent patterns and/or systematic relationships between variables, and
then to validate the findings by applying the detected patterns to new subsets of
data. Predictive Data Mining (PDM) is usually applied to identify a statistical
models that can be used to predict some response of interest [21]. For example,
a PDM may be more exploratory in nature to identify cluster or to aggregate or
amalgamate the information in very large data sets into useful and manageable
chunks. PDM techniques can be very useful in the case of inductive databases.
The process of data mining consists of three stages:

1) The initial exploration usually starts with data preprocessing followed by
data transformations to select subsets of records. In case of data sets with large
numbers of variables (”fields”), preliminary feature selection operations are per-
formed to lower the number of variables to a manageable range. Depending on
the nature of the analytic problem, data mining may involve a simple choice of
straightforward predictors for a regression model, and a wide variety of graphi-
cal and statistical methods in order to identify the most relevant variables and
determine the complexity and/or the general nature of models that can be taken
into account in the next stage.

2) Model building and wvalidation considers and evaluates various models to
chose the best one based on their predictive performance. This may be a very
elaborate process. There are a variety of techniques developed to achieve this
goal - many of which are based on the so-called ” competitive evaluation of mod-
els”, that is, applying different models to the same data set and then comparing
their performance to choose the best. These techniques - which are often consid-
ered the core of predictive data mining - include: Bagging (Voting, Averaging),
Boosting, Stacking (Stacked Generalizations), and Meta-Learning.
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3) Deployment uses the model selected as best and applies it to new data
in order to generate predictions or estimates of the expected outcome (i.e., the
application of the model to new data in order to generate predictions).

Traditionally PDM has been applied to business or market related. Recently,
PDM, due to the enormous growing of biological repositories of gene expres-
sion data generated by DNA microarray experiments, is providing a new tool
for both medical diagnosis and genomic studies. In [22] a systematic approach
for learning and extracting rule-based knowledge from gene expression data is
presented. A class of predictive self-organizing network, known as Adaptive Res-
onance Associative Map (ARAM), is used for modeling gene expression data,
whose learned knowledge can be transformed into a set of symbolic IF-THEN
rules for interpretation.

3 Survey on Clustering Methods in Bioinformatics

Clustering is the process of grouping data objects into a set of disjoint classes
so that objects within a class have high similarity to each other, while objects
in separate classes are more dissimilar. Clustering is part of exploratory data
analysis, where rules are eventually found as a creative induction scheme that
implies the need for experimental and theoretical models validations.

Currently, typical microarray experiments may contain 106 genes. One of the
characteristics of gene expression data is that it is meaningful to cluster both
genes and samples [2324]. Here, genes are treated as elements, while samples
are features. On the other hand, samples can be partitioned into homogeneous
groups that may correspond to some particular macroscopic phenotype. The
distinction of gene-based clustering and sample-based clustering is grounded
on different characteristics of clustering tasks for gene expression data. Some
clustering algorithms, such as K-means and hierarchical approaches, can be used
both to group genes and to partition samples. In the following a list of most used
clustering techniques to analyze biological data is listed.

K-means [25] is a partition-based clustering method. Given a pre-specified
number K, K-means partitions the data set into K disjoint clusters such that the
sum of the squared distances of elements from their cluster centers is minimized.

K-means has been applied on gene expression data [26], finding clusters that
contain a significant portion of genes with similar functions. Moreover, upstream
sequences of DNA-genes within the same cluster allowed to extract 18 motifs,
which are promising candidates for novel cis-regulatory elements. The K-means
algorithm has some drawbacks (setting of number of clusters, it produces a large
number of outliers). To overcome them, several algorithms have been proposed.
For example, the K-medoids algorithm uses an element closest to the center of
a cluster as the representative (medoid) such that the total distance between
the K selected medoids and the other elements is minimized. This algorithm
is more robust to the outliers than K-means. Another group of algorithms use
some thresholds to control the coherence of clusters. For example, the maximal
similarity between two separate cluster centroids and the minimal similarity
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between an element and its cluster centroid, [27]. In [2§], clusters are constrained
to have a diameter no larger than d (compact clusters); in [29] a more efficient
algorithm (Adapt Cluster) is proposed. Here, an element will be assigned to a
given cluster if the assignment has a higher probability than a given threshold.
It turns out that only clusters with qualified coherence from the data set are
extracted. Therefore, users do not need to input the number, K of clusters.

In any case, K-means algorithm and its derivatives require either the number
of clusters or some coherence threshold. The clustering process is like a black
box. Therefore, they are not flexible to the local structures of the data set, and
can hardly support interactive exploration for coherent expression patterns.

SOM (Self-Organizing Maps) were developed on the basis of a single layered
neural network [30]. Elements, usually of high dimensionality, are mapped onto a
set of neurons organized with low dimensional structures, e.g., a two dimensional
p x g grid. Each neuron is associated with a reference vector, and each element
is mapped to the neuron with the closest reference vector. During the clustering
process, each data object acts as a training sample that directs the movement
of the reference vectors towards the denser areas of the input vector space, so
that those reference vectors are trained to fit the distributions of the input data
set. When the training is complete, clusters are identified by mapping all data
points to the output neurons.

One of the remarkable features of SOM is that it allows one to impose par-
tial structure on the clusters, and arranges similar patterns as neighbors in the
output neuron map. This feature facilitates an easy visualization and interpre-
tation of clusters, partly supporting the explorative analysis of gene expression
patterns. However, similar to the K-means algorithm, SOM requires the number
of clusters, which is typically unknown in advance for gene expression data.

In [3T] the SOM algorithm is applied to study hematopoietic differentiation.
The expression patterns of 1,036 human genes are mapped to a 6 x 4 SOM.
The SOM organizes genes into biologically relevant clusters that suggest novel
hypotheses about hematopoietic differentiation and this provides interesting in-
sights into the mechanism of differentiation.

Recently, the Department of Information Technology (National University
of Ireland) has developed the system SOMBRERO (Self-Organizing Map for
Biological Regulatory Element Recognition and Ordering). SOMBRERO finds
regulatory binding sites by using SOM to find over-represented motifs in a set
of DNA sequences [32I33]. It includes prior knowledge in the initialization phase
that significantly improves accuracy when known motifs are present in the input
data, while accuracy is not negatively affected for the discovery of novel motifs.

MBA (Model Based Algorithms) [34] provides a statistical framework to
model the cluster structure of gene expression data. The data set is assumed to
come from a mixture of underlying probability distributions, with each compo-
nent corresponding to a different cluster. The goal is to estimate the parameters
O ={6;]1 <i<k}and I' = {7|]1 <i < k;1 <r < n} that maximize the
likelihood L. (0, 17) = Zle yifi(xy, 0;), where n is the number of elements, k
is the number of components, x, is a data object (i.e., a gene expression profile),
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fi(x,, 0;) is the density function of z, in component C; with some unknown set
of parameters 6;; 7. represents the probability that z, belongs to C;.

An important advantage of MBA approaches is that they provide an estimated
probability that an elements belongs to a given cluster. The probabilistic feature
of MBA is particularly suitable for gene expression data because it is typical for
a gene to participate multiple cellular processes, so that a single gene may have
a high correlation with two different clusters. Moreover, MBA does not need to
define a distance (or similarity) between two gene profiles. Instead, the measure
of coherence is inherently embedded in the statistical framework.

However, MBA assumes that the data set fits a specific distribution. This may
not be true and there is currently no well-established general model for gene
expression data. Several MBA approaches claim a multivariate Gaussian distri-
bution. Although the Gaussian model works well for gene-sample data where
the expression levels of genes are measured under a collection of samples, it may
not be effective for time-series data (the expression levels of genes are monitored
during a continuous series of time points).

To better describe the gene expression dynamics in time-series data, several
new models have been introduced. For example, each gene expression profile
can be modeled as a cubic spline so that each time point influences the overall
smooth expression curve [35]. In addition, time-series may follow an autoregres-
sive model, where the value of the series at time ¢ is a linear function of the
values at several previous time points [36].

Time series data are often treated with Hidden Markov model (HMM) as an
extension of a Markov model, in which a state has a probability of emitting some
output. Formally, an HMM is a finite state machine with probabilities for each
transition, that is, a probability of the next state is given by the current state.
The states are not directly observable; instead, each state produces one of the
observable outputs with a certain probability.

HMM'’s can be used to represent the alignment of multiple sequences or se-
quence segments by attempting to capture common patterns of residue conver-
sion. They are widely used in the analysis of biological sequences to take in
account for the dependencies in time-series bio-data [37].

GBA (Graph Based Algorithm) models a gene expression data set as a undi-
rected weighted graph G(V, E, W), where each gene is represented by a vertex
v € V,an arc (z,y) € F connects a pair of genes z,y € V with a weight, W (z, y),
based on the similarity between the expression patterns of x and y. The similarity
is often normalized to [0, 1], where 0 imply the non existence of an arc, and 1 the
perfect fit of two genes. The problem of clustering a set of genes is then isomorph
to some classical graph-theoretical problems, such as searching for the minimum
cut [38], the minimum spanning tree [39], or the mazimum cliques [23] in graph G.
Other algorithms recursively split G into a set of Highly Connected Components
(HCC) along the minimum cut, and each HCC is considered as a cluster. For ex-
ample, the algorithm CLICK (CLuster Identification via Connectivity Kernels)
sets up a statistic framework to measure the coherence within a subset of genes
and determine the criterion to stop the recursive splitting process.
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The graph-based algorithms stem from some classical graph theoretical prob-
lems. Although with solid mathematical ground, they may not be suitable for
gene expression data without adaption. For example, in gene expression data,
groups of co-expressed genes may be highly connected by a large amount of in-
termediate genes. In this case, the approaches based on minimum spanning tree
and minimum cut may lead to clusters including genes with incoherent profiles
but highly connected by a series of intermediate genes [40].

HA’s (Hierarchical Algorithms) fall in two categories:

Agglomerative (i.e., bottom-up approach) that initially regards each data ob-
ject as an individual cluster. Agglomerative approaches merge, at each step, the
closest pair of clusters until all the groups are merged into one cluster.

Divisive (i.e., top-down approach) that starts with one cluster containing all
the data objects. Divisive approaches iteratively split clusters until each clus-
ter contains only one data object or certain stop criterion is met. For divisive
approaches, the essential problem is to decide how to split clusters at each step.

An example of agglomerative hierarchical clustering is proposed in [41]; it com-
bines tree-structured vector quantization and partitive K-means clustering. This
hybrid technique reveals clinically relevant clusters in large publicly available
data sets. The system is less sensitive to data preprocessing and data normal-
ization. Moreover, results obtained have strong similarities with those obtained
by self-organizing maps.

A clique graph is an undirected graph that is the union of disjoint complete
graphs. In [23] the idea of a corrupted clique graph data model is introduced.
Clustering a dataset is equivalent to identifying the original clique graph from the
corrupted version with as few errors as possible. CAST Algorithm is an example
of graph theoretic approach that relies on the concept of a clique graph and
uses a divisive clustering approach. Thus, the model assumes that there is a true
biological partition of the genes into disjoint clusters bases on the functionality
of the genes. In [42] an enhanced version of CAST, called E-CAST, is described.
The main difference with CAST is the use of a dynamic threshold is introduced.
The threshold value is computed at the beginning of each new cluster.

PBCA (Pattern-based Clustering Algorithms) have been proposed to capture
coherence exhibited by a subset of genes on a subset of attributes. This approach
takes in account the fact that in molecular biology any cellular process may take
place only in a subset of the attributes (samples or time points). For example,
in [43] the concept of bicluster to measure the coherence between genes and
attributes is introduced. Biclustering was first introduced in [4445] , it finds a
partition of the vectors and a subset of the dimensions such that the projections
along those directions of the vectors in each cluster are close to one another.
Then the problem requires to cluster vectors and dimensions simultaneously,
thus the name biclustering.

The complexity of the biclustering problem depends on the exact problem
formulation, and particularly on the merit function used to evaluate the quality of
a given bicluster. The exact solution of biclustering is NP-complete so that clever
heuristics are considered to solve it with small lossy of information. For example,
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in [46] a stochastic algorithm based on Simulated Annealing [47] is presented
and validated on a variety of data-sets showing that Simulated Annealing find
significant biclusters in many cases. Evolutionary algorithms have been used
in [48] to implement biclustering clustering of gene expression on yeast and
lymphoma data-sets.

A multi-objective evolutionary clustering for gene expression data is described
in [49]. Here, a set of solutions, which are all optimal and involving trade-offs be-
tween conflicting objectives, are considered. Unlike single-objective optimization
problems, the multiple-objective approach tries to optimize m > 2 conflicting so-
lutions evaluated by fitness functions. Validation was carried out on microarray
data consisting of a benchmark gene expression dataset, viz., Yeast.

ECA (Evolutive Clustering Algorithms) have been recently proposed to an-
alyze biological data to overcome both the computational complexity of greedy
algorithms and to improve the space solution scan.

In [50] the GenClust (Genetic Clustering) algorithm has been introduced for
clustering of gene expression data. GenClust has two key features: (a) a novel
coding of the search space that is simple, compact and easy to update; (b) it can
be naturally used in conjunction with data driven internal validation methods.

In [5I] a new classifier, based on fuzzy-integration schemes, is introduced.
Schemes are controlled by a genetic optimization procedure. Two versions of in-
tegration are proposed and validated by experiments on real data representing:
(a) biological cellsBreast cancer databases from the University of Wisconsin and
Waveform ((ftp://ftp.ics.uci.edu/pub/machine-learning-databases)); (b) Urine
analysis cells database kindly provided by IRIS Diagnostic, CA, USA. Compar-
ison with feed-forward neural network and Support Vector Machine classifiers
have been considered for comparison. Results show the good performance and
robustness of the integrated classifier.

In [62] an incremental Genetic K-means Algorithm (IGKA) is presented.
IGKA is an extension of previously proposed genetic algorithm to improve the
computation of K-means algorithm. The main idea of IGKA is to calculate the
objective value Total Within-Cluster Variation and to cluster centroids incre-
mentally whenever the mutation probability is small. IGKA always converges
to the global optimum. Experiments indicate that IGKA algorithm has a better
time performance when the mutation probability decreases to some point.

4 Case Studies

4.1 An Example of Evolutive Algorithm: GenClust

GenClust [50] is one of the most recent evolutive clustering algorithm, that can
be seen as a genetic variant of ISODATA and it is an incarnation of the technique
devised in [53] for clustering based on Genetic Algorithms. The main difference
between Genetic algorithms for clustering already present in the literature [54]
and GenClust consists in the generated solution space. GenClust codes a solution
(label) for each element instead of coding the whole partition of the data set.
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Such much simpler coding technique allows a very efficient update of the state of
the algorithm and also guarantees a more efficient search of the solution space.

The general idea behind GenClust is quite simple. The algorithm proceeds in
stages; at each stage, t, a partition P; of X € R? into K classes C;,Ca,--- ,Ck
is generated. The initial partition, Py, is obtained by a random assignment of el-
ements to classes or by the computation of the partition through another cluster-
ing algorithm. Based on P; and using genetic operators (cross-over and mutation)
and a suitable fitness function, the algorithm computes P;41. Note that, there
is no guarantee that the new partition is such that VAR(Pi11) < VAR(P:).
Where, VAR(P) denoted the internal partition variance.

Each element © € X is coded via a 32 bit string «a, (referred to as chromo-
some). The chromosome encodes the class that x belongs to in a partition using
the 8 least significant bits. We refer to it as the label A\,. The remaining 24 bits
give the position of x within its cluster, referred to as pos,. The chosen coding
is compact and easy to handle and allows to represents up to 256 classes and
data sets of size up to 1.6793.604 elements. These values are adequate for real
applications. The genetic operators of one point crossover and mutation are ap-
plied to each chromosome with probability 0.9 and 0.1, respectively. The fitness
function of individual (x,\) in partition P is given by:

d i — )2
CSUENIDY m;j@jf‘;;)y 1)

where, p* is centroid of the cluster A in P.

GenClust has been validated using the FOM methodology, conceived for gene
expression data [58]. GenClust has been validated on several set of biological
data; among them the Rat Central Nervous System data set [59], Yeast Cell
Cycle [60], Reduced Yeast Cell Cycle [61], and Peripheral Blood Monocytes [62].

4.2 Analysis of Genes Expression Patterns

Analyzing coherent gene expression patterns is an important task in bioinfor-
matics research and biomedical applications. This issue is important because
co-expressed genes may belong to the same or similar functional categories and
indicate co-regulated families, while coherent patterns may characterize impor-
tant cellular processes and suggest the regulating mechanism in the cells. Ex-
amples of co-expressed gene groups are shown in Figure dl adapted or proposed
to identify clusters of co-expressed genes and recognize coherent expression pat-
terns as the centroids of the clusters. However, the interpretation of co-expressed
genes and coherent patterns mainly depends on the knowledge domain, which
presents several challenges for coherent pattern mining. In such cases, the de-
sign of interactive clustering systems may be useful. An examples of interactive
exploration system is GeneX (Gene eXplorer) for mining coherent expression
patterns [63]. GeneX is composed of a preprocessing module to perform to es-
timate missing values, logarithmic transformation and standardization of each
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Fig. 4. Examples of co-expressed gene groups.

gene expression profile. A pattern manager module allows users to explore co-
herent patterns in the data set and save/load the coherent patterns. A working
zone integrates parallel coordinates, coherent pattern index graphs (pulses of
coherent pattern index graphs indicate the potential existence of a coherent pat-
tern), and tree views. For example, users can select a node in the tree view, then
the working zone will display the corresponding expression profiles and coherent
pattern index graph.

4.3 Study of Proteins Sequences

The analysis of stochastic signals aims to both extract significant patterns from
noisy background and to study their spatial relations (periodicity, long term vari-
ation, burst, etc.). Examples of such kind of data are protein-sequences in molec-
ular biology where protein folding are studied [64] and the positioning of nucleo-
somes along chromatin [55]. The analysis carried out in both cases has been tack-
led by using probabilistic networks (e.g., Hidden Markov Models [13], Bayesian
networks,...). However, probabilistic networks may suffer of high computational
complexity, and results can be biased from locality that depends on the mem-
ory steps they use [56]. In [57] a Multi-Layers Model (M LM) is proposed that
is computational efficient, providing a better structural view of the input data.
The M LM consists in the generation of several sub-samples from the input sig-
nal. For example, in the case of input signal fragment, representing the Saccha-
romyces cerevisiae microarray data, each value in the x axes represents a spot
on the microarray and its intensity is the log ratio Green/Red (see Figure [Gh).
The problem is the identification of particular patterns in the DNA called nu-
cleosome and linker regions. Nucleosomes correspond to peaks of about 140
base pairs long, or six to eight microarray spots (black circle in Figure [Bh),
surrounded by lower ratio values corresponding to linker regions (marked by
dashed circles). The multi-layer view is obtained by intersecting the signal with
horizontal lines, each one representing a threshold value t; (see Figure Bb). The
persistence of the signal at increasing threshold values together with its width
and power is considered to perform the discrimination of linkers from nucle-
osomes. From the biological point of view, the accurate positioning of nucle-
osomes provides useful information regarding the regulation of gene expression
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Fig.5. An example of analysis by M LM: (a) Input Signal; (b) Pattern identification
and extraction

in eukaryotic cells. In fact, how eukaryotic DNA is packaged into a highly com-
pact and dynamic structure called chromatin may provide information about a
variety of diseases, including cancer.

5 Final Remarks and Perspectives

A survey of current data analysis methods in bioinformatics has been provided.
Main emphasis has been given to clustering techniques because of their impact
in many biological applications, as the mining of biological data. The topic is so
wide that several aspects have been omitted or not fully developed. The aim was
to introduce main ideas and to stimulate new research directions. Challenges
with bioinformatics are the need to deal with interdisciplinary directions, the
difficulties in the validation of development data analysis methods, and, more
important to be addressing important biological problems.
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