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Abstract. Leaders clustering method is a fast one and can be used to derive pro-
totypes called leaders from a large training set which can be used in designing a
classifier. Recently nearest leader based classifier is shown to be a faster version
of the nearest neighbor classifier, but its performance can be a degraded one since
the density information present in the training set is lost while deriving the pro-
totypes. In this paper we present a generalized weighted k-nearest leader based
classifier which is a faster one and also an on-par classifier with the k-nearest
neighbor classifier. The method is to find the relative importance of each proto-
type which is called its weight and to use them in the classification. The design
phase is extended to eliminate some of the noisy prototypes to enhance the perfor-
mance of the classifier. The method is empirically verified using some standard
data sets and a comparison is drawn with some of the earlier related methods.
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1 Introduction

Nearest neighbor classifier (NNC) and its variants like k-nearest neighbor classifier
(k-NNC) are popular because of their simplicity and good performance [1]. It is shown
that asymptotically (with infinite number of training patterns) k-NNC is equivalent to
the Bayes classifier and the error of NNC is less than twice the Bayes error[2,1]. It
has certain limitations and shortcomings as listed below. (1) It requires to store the
entire training set. So the space complexity is O(n) where n is the training set size.
(2) It has to search the entire training set in order to classify a given pattern. So the
classification time complexity is also O(n). (3) Due to the curse of dimensionality effect
its performance can be degraded with a limited training set for a high dimensional data.
(4) Presence of noisy patterns in the training set can degrade the performance of the
classifier.

Some of the various remedies for the above mentioned problems are as follows. (1)
Reduce the training set size by some editing techniques where we eliminate some of
the training patterns which are redundant in some sense [3]. For example, Condensed
NNC [4] is of this type. (2) Use only a few selected prototypes from the training set [5].
Prototypes can be selected by partitioning the training set by using some clustering
techniques and then taking a few representatives for each block of the partition as the
prototypes. Clustering methods like Leaders [6], k-means [7], etc., can be used to derive
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the prototypes. (3) Reduce the effect of noisy patterns. Preprocessing the training set
and removing the noisy patterns is a known remedy.

With data mining applications where typically the training set sizes are large, the
space and time requirement problems are severe than the curse of dimensionality prob-
lem. Using only a few selected prototypes can reduce the computational burden of the
classifier, but this can result in a poor performance of the classifier. Leaders-Subleaders
method [5] applies the leaders clustering method to derive the prototypes. The classifier
is to find the nearest prototype and assign its class label to the test pattern. While the
Leaders-Subleaders method reduces the classification time when compared with NNC
or k-NNC which uses the entire training set, it also reduces the classification accuracy.

This paper attempts at presenting a generalization over the Leaders-Subleaders
method where along with the prototypes we derive its importance also which is used in
the classification. Further, we extend the method to k nearest prototypes based classifier
instead of 1-nearest prototype based one as done in the Leaders-Subleaders method. To
improve the performance, noisy prototypes, which is appropriately defined as done in
some of the density based clustering methods, are eliminated.

The rest of the paper is organized as follows. Section 2, first describes the leaders
clustering method briefly and then its extension where the weight of each leader is
also derived. It also describes regarding the noise elimination preprocessing. Section 3
describes the proposed method, i.e., the k nearest leaders classifier. Section 4 gives the
empirical results and finally Section 5 gives some of the conclusions.

2 Leaders and Weighted Leaders

2.1 Notation and Definitions

1. Classes: There are c classes viz., ω1, . . . , ωc.
2. Training set: The given training set is D. The training set for class ωi is Di, for

i = 1 to c. The number of training patterns in class ωi is ni, for i = 1 to c. The
total number of training patterns is n.

3. Apriori probabilities: Apriori probability for class ωi is P (ωi), for i = 1 to c. If
this is not explicitly given, then P (ωi) is taken to be ni/n, for i = 1 to c.

2.2 Leaders Method

Leaders method [6] finds a partition of the given data set like most of the clustering
methods. Its primary advantage is its running time which is linear in the size of the
input data set. For a given threshold distance τ , leaders method works as follows. It
maintains a set of leaders L, which is initially empty and is incrementally built. For
each pattern x in the data set, if there is a leader l ∈ L such that distance between x and
l is less than τ , then x is assigned to the cluster represented by l. In this case, we call
x as a follower of the leader l. Note that even if there are many such leaders, only one
(the first encountered one) is chosen. If there is no such leader then x itself becomes a
new leader and is added to L. The algorithm outputs the set of leaders L. Each leader
can be seen as a representative for the cluster of patterns which are grouped with it. The
leaders method is modified as enumerated below.
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1. For each class of training patterns, the leaders method is applied separately, but the
same distance threshold parameter, i.e., τ is used. The set of leaders derived for
class ωi is denoted by Li, for i = 1 to c.

2. Each leader l has an associated weight denoted by weight(l) such that 0 ≤weight(l)
≤ 1.

3. For a training pattern x which belongs to the class ωi, if there are p leaders that
are already derived such that their distance from x is less than τ , then weight of
all these p leaders is updated. Let l be a leader among these p leaders, then its new
weight is found by weight(l) = weight(l) + 1/(p · ni). If p = 0, then x itself
becomes a new leader whose weight is 1/ni.

The modified leaders method called Weighted-Leaders is given in Algorithm 1.

Algorithm 1. Weighted-Leaders(Di, τ )

Li = ∅;
for each x ∈ Di do

Find the set P = {l | l ∈ Li, ||l − x|| < τ};
if P �= ∅ then

for each l such that l ∈ P do
weight(l) = weight(l) + 1/(| P | ·ni).

end for
else

Li = Li ∪ {x};
weight(x) = 1/ni;

end if
end for
Output Li which is a set of tuples such that each tuple is in the form < l, weight(l) > where
l is a leader and weight(l) is its weight.

The leaders and their respective weights derived depends on the order in which the
data set is scanned. For example, for a pattern x, there might be a leader l such that
||l − x|| < τ which is created in a later stage (after considering x) and hence the
weight of l is not updated. By doing one more data set scan these kind of mistakes can
be avoided. But since the method is devised to work with large data sets, and as the
training set size increases the effect these mistakes diminishes, they are ignored.

We assume that the patterns are from a Euclidean space and Euclidean distance is
used.

2.3 Eliminating Noisy Prototypes

Since noise (noisy training patterns) can degrade the performance of nearest neighbor
based classifiers, we propose to eliminate noisy prototypes in this section.

A leader l which belongs to the class ωi is defined as a noisy prototype if (1) the class
conditional density at l is less than a threshold density and (2) there are no neighbors
for l which are dense (i.e., the class conditional density at each of these neighbors is
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less than the threshold density). This definition is similar to that used in density based
clustering methods like DBSCAN [8] and its variants [9].

This process is implemented as follows. For a given ε distance, for each leader l (say
this belongs to the class ωi), we find all leaders from class ωi which are at a distance
less than ε. Let the set of these leaders be S. Let the cumulative weight of these leaders
be W . Then we say that l is a non-dense prototype if W < δ, for a predefined threshold
weight δ. If all leaders in the set S are non-dense, then we say l is a noisy prototype and
is removed from the respective set of leaders.

Since any two leaders that belongs to a class are separated by distance of at least
τ (the threshold used in deriving the leaders), ε is normally taken to be larger than τ .
Section 4 describes about how these parameters are chosen.

The process of eliminating noise can take time atmost O(|L |2) where L is the set of
all leaders. Since | L | << n, where n is the data set size, the noise elimination process
will not take much time.

3 Weighted k-Nearest Leaders Classifier

This section describes the proposed classifier. Let Li be the set of leaders obtained after
eliminating noisy leaders for class ωi, for i = 1 to c. Let L be the set of all leaders.
That is, L = L1 ∪ . . . ∪ Lc. For a given query pattern q, the k nearest leaders from L is
obtained. For each class of leaders among these k leaders, their respective cumulative
weight is found. Let this for class ωi be Wi, for i = 1 to c.

Let the k nearest leaders are from the region R at q. Approximately class conditional
density at q for class ωi is:

p̂(q | ωi) =
mi

ni · V

where mi is the number of patterns that are present in the region R that belongs to
the class ωi and ni is the total number of training patterns for the class ωi, and V is
the volume of the region R. Asymptotically as ni → ∞, mi → ∞, mi/ni → 0 and
V → 0, it can be shown that p̂(q | ωi) → p(q | ωi) [1].

It is easy to see that

Wi ≈ mi

ni

and hence is proportionate to the p̂(q | ωi). So, Wi · P (ωi) is proportionate to the
posterior probability P̂ (ωi | q) where P (ωi) is the apriori probability for class ωi.

The classifier chooses the class according to argmaxωi{W1P (ω1), . . . , WcP (ωc)}.
If P (ωi) is not explicitly given then it is taken to be ni/n where ni is the number of
training patterns from class ωi and n is the total number of training patterns.

From the above argument, it is clear that the proposed method is approximately doing
the Bayes classification as done by the k-nearest neighbor classifier.

The proposed k nearest leader classifier is given in Algorithm 2.

4 Experimental Results

Experimental studies are done with one synthetic data set and two standard data sets,
viz., Covtype.binary available at the URL: htpp://www.csie.ntu.edu.tw/ cjlin/libsvmtools
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Algorithm 2. k-Nearest-Leader(L, q)
{L is the set of all leaders derived from all classes. q is the query pattern to be classified}
Find k nearest leaders of q from L.
Among the k nearest leaders find the cumulative weight of leaders that belongs to each class.
Let this be Wi for class ωi, for i = 1 to c.
Class label assigned for q = argmaxωi{W1P (ω1), . . . , WcP (ωc)}.

/datasets/binary.html and Pendigits available at http://www.ics.uci.edu/
mlearn/MLRepository.html.

A two dimensional synthetic data for a two class problem is generated as follows.
First class having 60000 patterns were i.i.d. drawn from a normal distribution having
mean as (0, 0)T and covariance matrix as I2×2(i.e.,identity matrix). Second class also
is of 60000 patterns which is also i.i.d. drawn from a normal distribution with mean
(2.56, 0)T and covariance matrix I2×2. The Bayes error rate for this synthetic data set
is 10%. The data set is divided randomly into two parts consisting of 80000 and 40000
patterns which are used as training and testing sets respectively.

Covtype.binary is a large data set consisting of 581012 patterns of 54 dimensions
which belongs to two classes. The data set is divided randomly into two parts consisting
of 400000 and 181012 patterns which are used as training and test sets respectively.

Table 1. Synthetic Data Set

Classifier Threshold #Leaders #Noisy Design k classification CA(%)
leader time time

1-NNC Nil 1 4692 85.17
k-NNC Nil 74 7884 89.61

0.06 7947 4.75 1 36.97 73.93
0.05 10327 6.81 1 53.74 75.52

1-NLC 0.04 13949 11.98 1 73.9 77.35
0.03 20164 22.53 1 105.2 79.80
0.02 31743 46.41 1 151.15 82.43
0.06 7947 4.75 25 152.57 87.42
0.05 10327 6.81 25 184.71 87.65

k-NLC 0.04 13949 11.98 25 250.26 88.48
0.03 20164 22.53 25 357.73 88.92
0.02 31743 46.4 25 561.84 89.24
0.06 7947 4.95 25 182.23 89.55
0.05 10327 7.35 25 240.16 89.56

wk-NLC 0.04 13949 12.50 25 322.75 89.57
0.03 20164 23.07 25 444.96 89.60
0.02 31743 47.33 25 714.25 89.50
0.06 5147 2800 10.61 25 112.97 89.56

wk-NLC 0.05 7067 3260 19.61 25 159.35 89.59
with noise 0.04 10123 3826 37.99 25 233.45 89.62
elimination 0.03 15789 4375 74.95 25 364.46 89.63

0.02 26784 4959 163.98 25 607.32 89.56
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Table 2. Covtype Data Set

Classifier Threshold #Leaders #Noisy Design k classification CA(%)
leader time time

1-NNC Nil 1 1373066 94.89
0.3 4129 90.41 1 538.15 68.81
0.25 6775 168.65 1 880.93 72.76

1-NLC 0.2 12385 380.57 1 1577.86 77.36
0.15 25746 1050.15 1 4137.72 82.78
0.1 63433 3395.42 1 11927.2 88.72
0.3 4129 90.41 23 765.46 70.28
0.25 6775 168.65 25 1311.98 73.28

k-NLC 0.2 12385 380.57 10 2177.86 77.87
0.15 25746 1050.15 7 4623.61 83.58
0.1 63433 3395.42 3 12527.4 89.62
0.3 4129 92.79 11 674.90 71.95
0.25 6775 171.56 7 1011.11 74.75

wk-NLC 0.2 12385 385.67 5 1744.37 78.49
0.15 25746 1059.80 3 4453.59 84.06
0.1 63433 3415.32 2 12154.6 90.46
0.3 3753 376 103.3 11 627.9 72.02

wk-NLC 0.25 6293 482 235.45 7 965.6 74.95
with noise 0.2 11772 613 565.63 5 1684.28 79.14
elimination 0.15 24844 902 1210.9 3 4086.28 84.98

0.1 61877 1556 3812.85 2 11657.66 91.65

Pendigits is a medium sized data set consisting of 7494 training patterns and 3498
test patterns. The dimensionality is 16 and the number of classes is 10.

The classifiers chosen for the comparative study are: (1) the nearest neighbor clas-
sifier(NNC), (2) the k-nearest neighbor classifier(k-NNC), (3) the nearest leader clas-
sifier(NLC), (4) the k-nearest leader classifier(k-NLC) and (5) the weighted k-nearest
leader classifier(wk-NLC) which is the proposed one in this paper. NLC and k-NLC are
similar to NNC and k-NNC, except that, instead of nearest neighbor(s), nearest leader(s)
are taken in to consideration. For wk-NLC experiments are done with noise elimination
preprocessing and without it.

The experiments are conducted for various leader’s threshold i.e., τ values. For Syn-
thetic data set the τ values chosen are {0.02, 0.03, 0.04, 0.05, 0.06}, for Covtype.binary
data set the τ values chosen are {0.1, 0.15, 0.2, 0.25, 0.3}, and for Pendigits data set
these are {20, 30, 40, 50, 60}. The ε value for noise elimination are 0.12, 0.6 and 120
for Synthetic data set, Covtype.binary data set and Pendigits data set respectively. The
parameter δ used as weight threshold to eliminate noise is chosen as 5% of the aver-
age weight of the leaders in the respective data sets. Similarly, the k value for k-NNC,
k-NLC and wk-NLC are chosen from a three fold cross validation from {1, 2, . . . , 40}.

The results are summarized in Tables 1, 2,and 3.
From the results it can be seen that the leader based classifies are considerably faster

than NNC and k-NNC. The classification time and classification accuracy(CA) of the
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Table 3. Pendigits Data Set

Classifier Threshold #Leaders #Noisy Design k classification CA(%)
leader time time

1-NNC Nil 1 302.6 97.74
k-NNC Nil 3 320.8 97.83

60 385 0.10 1 0.34 91.76
50 631 0.11 1 0.53 94.19

1-NLC 40 1165 0.13 1 0.94 95.85
30 2306 0.19 1 1.78 97.17
20 4821 0.40 1 4.70 97.48
60 385 0.10 4 0.40 92.28
50 631 0.11 4 0.63 94.72

k-NLC 40 1165 0.13 5 1.19 95.11
30 2306 0.19 3 2.16 96.04
20 4821 0.40 1 4.70 97.48
60 385 0.10 2 0.37 93.39
50 631 0.11 2 0.58 95.48

wk-NLC 40 1165 0.13 3 1.13 95.19
30 2306 0.19 2 2.20 96.68
20 4821 0.40 2 5.48 97.57
60 363 22 0.10 2 0.37 93.37

wk-NLC 50 606 25 0.13 2 0.57 95.43
with noise 40 1133 32 0.21 3 1.09 95.23
elimination 30 2260 46 0.47 2 2.11 96.71

20 4753 68 1.48 2 5.43 97.57

leader based classifiers depends on the threshold τ . As the value τ reduces, the clas-
sification time increases, and also the CA increases. With τ = 0 each distinct training
pattern becomes a leader and hence NLC is same as NNC and k-NLC, wk-NLC both are
same as k-NNC. With τ = 0.03 for synthetic data set, with τ = 0.1 for Covtype.binary
data set, and with τ = 20 for Pendigits data set, the CA of wk-NLC is almost simi-
lar to the CA of k-NNC but with much reduced classification time. The classification
time of wk-NLC when compared with that of k-NNC and NNC are less than 6%,1%
and 2% for Synthetic, Covtype.binary and Pendigits data sets respectively. With noise
elimination wk-NLC shows some improvement with respect to classification accuracy
over wk-NLC without noise elimination. Also with noise elimination wk-NLC can be
slightly faster than wk-NLC without noise elimination.

5 Conclusions

In this paper an improvement over using leaders as prototypes is given. For each of the
leaders an associated weight is found which gives its relative importance. These weights
are used in the k nearest leader based classifier called weighted k nearest leader classi-
fier. A preprocessing step to eliminate noisy prototypes is also presented. The proposed
method is experimentally compared with nearest neighbor classifier(NNC), k nearest
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neighbor classifier(k-NNC), nearest leader classifier and k nearest leader classifier. With
suitable parameters, the proposed method can achieve classification accuracy similar to
k-NNC and is superior than the other methods, but is a much fast classifier than k-NNC
or NNC. Hence the proposed method is a suitable one to be used with large data sets as
in data mining applications.
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