
Fully Anonymous Group Signatures Without Random
Oracles

Jens Groth�

University College London, United Kingdom
jgroth@adastral.ucl.ac.uk

Abstract. We construct a new group signature scheme using bilinear groups. The
group signature scheme is practical, both keys and group signatures consist of a
constant number of group elements, and the scheme permits dynamic enrollment
of new members. The scheme satisfies strong security requirements, in particular
providing protection against key exposures and not relying on random oracles in
the security proof.

Keywords: Group signatures, certified signatures, bilinear groups.

1 Introduction

Group signatures make it possible for a member of a group to sign messages anony-
mously so that outsiders and other group members cannot see which member signed
the message. The group is controlled by a group manager that handles enrollment of
members and also has the ability to identify the signer of a message. Group signatures
are useful in contexts where it is desirable to preserve the signer’s privacy, yet in case
of abuse we want some authorities to have the means of identifying her.

Group signatures were introduced by Chaum and van Heyst [CvH91] and have been
the subject of much research. Most of the proposed group signatures have been proven
secure in the random oracle model [BR93] and now quite efficient schemes exist in the
random oracle model [ACJT00, BBS04, CL04, CG04, FI05, KY05]. The random oracle
model has been the subject of criticism though. Canetti, Goldreich and Halevi [CGH98]
demonstrated the existence of an insecure signature scheme that has a security proof in
the random oracle model. Other works showing weaknesses of the random oracle model
are [Nie02, GK03, BBP04, CGH04].

There are a few group signature schemes that avoid the random oracle model. Bel-
lare, Micciancio and Warinschi [BMW03] suggested security definitions for group sig-
natures and offered a construction based on trapdoor permutations. Their security model
assumed the group was static and all members were given their honestly generated keys
right away. Bellare, Shi and Zhang [BSZ05] strengthened the security model to include
dynamic enrollment of members. This security model also separated the group man-
ager’s role into two parts: issuer and opener. The issuer is responsible for enrolling
members, but cannot trace who has signed a group signature. The opener on the other

� Work done while at UCLA supported by NSF ITR/Cybertrust grant No. 0456717.

K. Kurosawa (Ed.): ASIACRYPT 2007, LNCS 4833, pp. 164–180, 2007.
c© International Association for Cryptology Research 2007

Fully Anonymous Group Signatures Without Random Oracles 165

hand cannot enroll members, but can open a group signature to see who signed it. More-
over, it was required that this opener should be able to prove that said member made
the group signature to avoid false accusations of members. [BSZ05] demonstrated that
trapdoor permutations suffice also for constructing group signatures in this model. Both
of these schemes use general and complicated primitives and are very inefficient. Groth
[Gro06] used bilinear groups to construct a group signature scheme in the BSZ-model,
with nice asymptotic performance, where each group signature consists of a constant
number of group elements. Still the constant is enormous and a group signature consists
of thousands or perhaps even millions of group elements.

There are also a few practical group signature schemes with security proofs in the
standard model. Ateniese, Camenisch, Hohenberger and de Medeiros [ACHdM05] give
a highly efficient group signature scheme, where each group signature consists of 8
group elements in prime order bilinear groups. This scheme is secure against a non-
adaptive adversary that never gets to see private keys of honest members. If a member’s
key is exposed, however, it is easy to identify all group signatures she has made, so their
scheme is not secure in the BMW/BSZ-models.

Boyen and Waters [BW06, BW07] suggest group signatures that are secure against
key exposure attacks. Their constructions are secure in a restricted version of the BMW-
model where the anonymity of the members relies on the adversary not being able to
see any openings of group signatures. In the latter scheme [BW07], the group signatures
consist of 6 group elements in a composite order bilinear group. The public key in
[BW07] grows logarithmically in the size of the message space though and will for
practical purposes typically contain a couple of hundred group elements.

OUR CONTRIBUTION. We propose a new group signature scheme based on prime order
bilinear groups. All parts of the group signature scheme, including the group public key
and the group signatures, consist of a constant number of group elements. The constants
are reasonable for practical purposes; for instance using 256-bit prime order bilinear
groups, a group public key would be less than 1kB and a group signature less than 2kB.

We prove under some well-known assumptions, the strong Diffie-Hellman assump-
tion [BB04] and the decisional linear assumption [BBS04], as well as a new assumption
that the scheme is secure in the BSZ-model. This means the scheme permits dynamic
enrollment of members, preserves anonymity of a group signature even if the adversary
can see arbitrary key exposures or arbitrary openings of other group signatures, and
separates the role of the issuer and opener such that they can operate independently.

TECHNIQUE. We use in our group signature scheme a certified signature scheme. Cer-
tified signatures, the notion stemming from Boldyreva, Fischlin, Palacio and Warinschi,
allow a user to pick keys for a signature scheme and use them to sign messages. The
user can ask a certification authority to certify her public verification key for the sig-
nature scheme. The verification algorithm checks both the certificate and the signature
and accepts if both of them are acceptable. A trivial way to build a certified signature
schemes is just to let the certification authority output a standard signature on the user’s
public verification key. Non-trivial solutions such as for instance using an aggregate
signature scheme [BGLS03] also exist. Certified signature schemes may be more effi-
cient though since the certificate does not have to be unforgeable. In a certified signature

166 J. Groth

scheme, the requirement is just that it is infeasible to forge a certificate together with a
valid signature. We refer to Section 3 for a formal definition.

In our group signature scheme, enrolling members will create a key for a signature
scheme and ask the issuer to issue a certificate on their verification key. To make a
group signature, the member will make a certified signature. To be anonymous she
will encrypt the certified signature and use non-interactive witness-indistinguishable
and non-interactive zero-knowledge proofs to demonstrate that the ciphertext contains
a valid certified signature.

In order to have efficient non-interactive proofs, it is essential to preserve as much
of the bilinear group structure of the encrypted certified signature as possible. In partic-
ular, using cryptographic hash-functions or using group elements from one part of the
certified signature as exponents in other parts of the certified signature does not work.
We will combine the signature scheme of Boneh and Boyen [BB04] with the signature
scheme of Zhou and Lin [ZL06] to get a certified signature scheme that is both efficient
and relies only on generic group operations.

2 Setup

Let G be a probabilistic polynomial time algorithm that generates (p, G, GT , e, g) ←
G(1k) such that:

– p is a k-bit prime.
– G, GT are groups of order p.
– g is a randomly chosen generator of G.
– e is a non-degenerate bilinear map, i.e., e(g, g) is a generator of GT and for all

a, b ∈ Zp we have e(ga, gb) = e(g, g)ab.
– Group operations, evaluation of the bilinear map, and membership of G, GT are all

efficiently computable.

We will now present some of the security assumptions that will be used in the paper.

DLIN ASSUMPTION. The decisional linear assumption was introduced by Boneh,
Boyen and Shacham [BBS04]. The DLIN assumption holds for G, when it is hard
to distinguish for randomly chosen group elements and exponents (f, g, h, fr, gs, ht)
whether t = r + s or t is random.

q-SDH ASSUMPTION. The strong Diffie-Hellman assumption was introduced by
Boneh and Boyen [BB04]. The q-SDH assumption holds for G, when it is hard to find
a pair (m, g

1
1+x) ∈ Zp × G when given g, gx, gx2

, . . . , gxq(k)
as input. In the paper, it

suffices to have q being a polynomial.

q-U ASSUMPTION. We will now define the unfakeability assumption. The q-U assump-
tion holds for G if for any non-uniform polynomial time adversary A we have:

Pr
[
(p, G, GT , e, g) ← G(1k) ; x1, r1, . . . , xq(k), rq(k) ← Zp ;

f, h, z ← G ; T := e(f, z) ; ai := f ri ; bi := hrigxiriz ;
(V, A, B, m, S) ← A(p, G, GT , e, g, f, h, T, x1, a1, b1, . . . , xq(k), aq(k), bq(k)) :

V /∈ {gx1, . . . , gxq(k)} ∧ e(A, hV)e(f, B) = T ∧ e(S, V gm) = e(g, g)
]

≈ 0.

Fully Anonymous Group Signatures Without Random Oracles 167

The q-U assumption is implied by a stronger assumption from Zhou and Lin [ZL06]
that is similar in nature. A heuristic argument for the assumption is that it holds in the
generic group model; see the full paper for a proof.

3 Certified Signatures

Typically, using a signature in a public key infrastructure works like this: A user that
wants to set up a signature scheme, generates a public verification key vk and a secret
signing key sk. She takes the public key to a certification authority that signs vk and
possibly some auxiliary information such as name, e-mail address, etc. We call this the
certificate. Whenever the user wants to sign a message, she sends both the certificate
and the signature to the verifier. The verifier checks that the certification authority has
certified that the user has the public key vk and also checks the user’s signature on the
message.

In the standard way of certifying verification keys described above, the process of is-
suing certificates and verifying certificates is separate from the process of signing mes-
sages and verifying signatures. Boldyreva, Fischlin, Palacio and Warinschi [BFPW07]
show that combining the two processes into one can improve efficiency. As they ob-
serve, we do not need to worry about forgeries of the certificate itself, we only need to
prevent the joint forgery of both the certificate and the signature.

A certified signature scheme [BFPW07], is a combined scheme for signing messages
and producing certificates for the verification keys. We will give a formal definition that
is tailored to our purposes and slightly simpler than the more general definition given
by Boldyreva, Fischlin, Palacio and Warinschi. Formally, a certified signature scheme
consists of the following probabilistic polynomial time algorithms.

Setup: G takes a security parameter as input and outputs a description gk of our setup.
Certification key: CertKey on input gk outputs a pair (ak, ck), respectively a public

authority key and a secret certification key.
Key registration: This is an interactive protocol 〈User, Issuer〉 that generates keys

for the user together with a certificate. User takes gk, ak as input, whereas
Issuer takes gk, ck as input. If successful User outputs a triple (vk, sk, cert),
whereas Issuer outputs (vk, cert). We write ((vk, sk, cert), (vk, cert)) ←
〈User(gk, ak), Issuer(gk, ck)〉 for this process. We call vk the verification key, sk
the signing key and cert the certificate. Either party outputs ⊥ if the other party
deviates from the key registration protocol.

Signature: Sign gets a signing key and a message m as input. It outputs a signature σ.
Verification: Ver takes as input gk, ak, vk, cert, m, σ and outputs 1 if accepting the

certificate and the signature on m. Otherwise it outputs 0.

The certified signature scheme must be correct, unfakeable and unforgeable as defined
below.

Perfect correctness: For all messages m we have

Pr
[
gk ← G(1k) ; (ak, ck) ← CertKey(gk) ;

168 J. Groth

((vk, sk, cert), (vk, cert)) ← 〈User(gk, ak), Issuer(gk, ck)〉 ;

σ ← Signsk(m) : Ver(gk, ak, vk, cert, m, σ) = 1
]

= 1.

Unfakeability: We want it to be hard to create a signature with a faked certificate. Only
if the verification key has been generated correctly and been certified by the certi-
fication authority should it be possible to make a certified signature on a message.
For all non-uniform polynomial time adversaries A we require:

Pr
[
gk←G(1k); (ak, ck)←CertKey(gk); (vk, cert, m, σ)←AKeyReg(gk, ak) :

vk /∈ Q and Ver(gk, ak, vk, cert, m, σ) = 1
]

≈ 0,

where KeyReg is an oracle that allows A to sequentially start up new key
registration sessions and lets A act as the user. That is in session i we run
(∗, (vki, certi)) ← 〈A, Issuer(gk, ck)〉 ; Q := Q ∪ {vki} forwarding all mes-
sages to and from A through the oracle.

Existential M -unforgeability: Let M be a stateful non-uniform polynomial time al-
gorithm. We say the certified signature scheme is existentially M -unforgeable if
for all non-uniform polynomial time adversaries A we have:

Pr
[
gk ← G(1k) ; (St1, ak) ← A(gk) ;

((vk, sk, cert), St2) ← 〈User(gk, ak), A(St1)〉 ;
(cert′, m, σ) ← AMessageSign(·)(St2) :

m /∈ Q and Ver(gk, ak, vk, cert′, m, σ) = 1
]

≈ 0,

where MessageSign(·) is an oracle that on input ai runs (mi, hi) ←
M(gk, ai) ; σi ← Signsk(mi) ; Q := Q ∪ {mi} and returns (mi, hi, σi).

Adaptive chosen message attack corresponds to letting M be an algorithm that
on input mi outputs (mi, ε). On the other hand, letting M be an algorithm that
ignores A’s inputs corresponds to a weak chosen message attack, where messages
to be signed by the oracle are chosen without knowledge of vk. In a weak chosen
message attack, the hi’s may contain a history of how the messages were selected.
In this paper, we only need security against weak chosen message attack.

4 A Certified Signature Scheme

We will construct a certified signature scheme from bilinear groups that is existentially
unforgeable under weak chosen message attack. There are two parts of the scheme:
certification and signing. For signing, we will use the Boneh-Boyen signature scheme
that is secure under weak chosen message attack. In their scheme the public key is
v := gx and the secret signing key is x. A signature on message m ∈ Zp \ {x} is

σ = g
1

x+m . It can be verified by checking e(σ, vgm) = e(g, g). Boneh and Boyen
[BB04] proved that this signature scheme is secure against weak chosen message attack

Fully Anonymous Group Signatures Without Random Oracles 169

under the q-SDH assumption. The existential unforgeability of our certified signature
scheme under weak chosen message attack will follow directly from the security of the
Boneh-Boyen signature scheme under weak chosen message attack.

What remains is to specify how to generate the verification key v and how to certify
it. This is a 2-step process, where we first generate a random v = gx such that the issuer
learns v but only the user learns x. In Section 4.1 we describe in detail the properties
we need this key generation protocol to have. In the second step, we use a variation of
the signature scheme of Zhou and Lin [ZL06] to certify v.1

To set up the certified signature scheme, the certification authority picks random
group elements f, h, z ∈ G. The authority key is (f, h, T) and the secret certification
key is z so T = e(g, z). To certify a Boneh-Boyen key v the authority picks r ← Zp and
sets (a, b) := (f−r, (hv)rz). The certificate is verified by checking e(a, hv)e(f, b) =
T . We remark that this is not a good signature scheme, since given v, a, b it is easy
to create a certificate for v′ := v2h as (a′, b′) := (a

1
2 , b). For certified signatures it

works fine though since we cannot use the faked verification keys to actually sign any
messages. The nice part about the certified signature scheme we have suggested here
is that a certificate consists of only two group elements and is created through the use
of generic group operations. These two properties of the certified signature scheme are
what enable us to construct a practical group signature scheme on top of it.

Setup(1k)
Return gk := (p,G, GT , e, g) ← G(1k)

CertKey(gk)
f, h, z ← G
T := e(f, z)
Return (ak, ck) := ((gk, f, h, T), (ak, z))

Signsk(m)
If x = −m return ⊥
Else return σ := g

1
x+m

〈User(gk, ak), Issuer(gk, ck)〉
(x, v) ← 〈User(gk), Issuer(gk)〉
r ← Zp

a := f−r

b := (vh)rz
vk := v ; sk := x ; cert := (a, b)
User output: (vk, sk, cert)
Issuer output: (vk, cert)

Ver(gk, ak, vk, cert, m,σ)
Return 1 if

e(a, vh)e(f, b) = T
e(σ, vgm) = e(g, g)

Else return 0

Fig. 1. The certified signature scheme

Theorem 1. The scheme in Figure 1 is a certified signature scheme with perfect
correctness for messages in Zp \ {x}. It is unfakeable under the q-U assumption
and is existentially unforgeable under weak chosen message attack under the q-SDH
assumption.

1 The signature scheme of Zhou and Lin [ZL06] can be used to sign exponents. As they observe,
however, it is sufficient to know v = gx to sign x. In our notation, their scheme computes a
signature on x by setting v = gx and computing the signature (a, b) as a := fr, b := (hv)rz,
where z = hlogf g so T = e(g, h).

170 J. Groth

Sketch of proof. Perfect correctness follows from the perfect correctness of the key
generation protocol.

We will now argue that the certified signature scheme is unfakeable. Part of the key
registration protocol is the interactive key generation protocol. We can black-box sim-
ulate the view of the adversarial user in each of these key generation protocols. We
can therefore pick x1, . . . , xq(k) in advance and simulate the key generation such that
the adversarial user i get the signing key xi (or gets no key at all in case it deviates
from the protocol). With this modified key registration, A only sees certificates on
v1 := gx1 , . . . , vq(k) := gxq(k) . These certificates are of the form ai := f−ri and
bi := hrigxiriz. It therefore follows directly from the q-U assumption that it is hard to
come up with a certified signature using a new public verification key.

We will now ague that the certified signature scheme is existentially unforgeable
under weak chosen message attack. By definition th key generation protocol has the
property that it is possible to choose v := gx in advance and black-box simulate the
malicious issuer’s view in a protocol that gives it v as output. Now we are in a situation,
where v is an honestly chosen Boneh-Boyen verification key and A only has access
to a weak chosen message attack. Existential unforgeability of the certified signature
scheme therefore follows from the existential unforgeability of Boneh-Boyen signatures
under weak chosen message attack. �

4.1 Key Generation

In the certified signature scheme, we require that the user generates her signing key
honestly. We will use an interactive protocol between the user and the issuer that gives
the user a uniformly random secret key x ∈ Zp, while the issuer learns v := gx. In
case either party does not follow the protocol or halts prematurely, the other party will
output ⊥. We will now give a more precise definition of the properties the protocol
should have. For notational convenience, define g⊥ = ⊥.

Write (x, v) ← 〈User(gk), Issuer(gk)〉 for running the key generation protocol
between two probabilistic polynomial time interactive Turing machines User, Issuer
on common input gk giving User output x and Issuer output v. We require that the
protocol is correct in the following sense:

Pr
[
gk ← G(1k) ; (x, v) ← 〈User(gk), Issuer(gk)〉 : v = gx

]
= 1.

We require that the view of the issuer, even if malicious, can be simulated. More
precisely, for any δ > 0 and polynomial time Issuer∗ there exists a polynomial time
(in k and the size of the input to Issuer∗) black-box simulator SI , such that for all
non-uniform polynomial time adversaries A we have:

Pr
[
gk ← G(1k) ; y ← A(gk) ; x ← Zp ; v := gx ; (gu, i) ← S

Issuer∗(y)
I (gk, v) :

A(u, i) = 1
]

− Pr
[
gk ← G(1k) ; y ← A(gk) ; (x, i) ← 〈User(gk), Issuer∗(y)〉 :

A(u, i) = 1
]

< k−δ,

where SI outputs gu so u ∈ {⊥, x}.

Fully Anonymous Group Signatures Without Random Oracles 171

We also require that the view of the user, even if malicious, can be simulated. For
any δ > 0 and any polynomial time User∗ there exists a polynomial time (in k and
the size of the input to User∗) black-box simulator SU , such that for all non-uniform
polynomial time adversaries A we have:

Pr
[
gk ← G(1k) ; y ← A(gk) ; x ← Zp ; v := gx ; (u, i) ← S

User∗(y)
U (gk, x) :

A(u, i) = 1
]

− Pr
[
gk ← G(1k) ; y ← A(gk) ; (u, i) ← 〈User∗(y), Issuer(gk)〉 :

A(u, i) = 1
]

< k−δ,

where SU outputs i ∈ {⊥, v}.
There are many ways in which one can construct a key generation protocol with

these properties. One example of a simple 5-move key generation protocol is given in
the full paper.

5 Defining Group Signatures

In a group signature scheme there is a group manager that decides who can join the
group. Once in the group, members can sign messages on behalf of the group. Members’
signatures are anonymous, except to the group manager who can open a signature and
see who signed the message. In some scenarios it is of interest to separate the group
manager into two entities, an issuer who enrolls members and an opener who traces
signers.

We imagine that enrolled member’s when joining have some identifying informa-
tion added to a registry reg. This registry may or may not be publicly accessible. The
specifics of how the registry works are not important, we just require that reg[i] only
contains content both the issuer and user i agrees on. One option could be that the issuer
maintains the registry, but the user has to sign the content of reg[i] for it to be consid-
ered a valid entry. User i stores her corresponding secret key in gsk[i]. The number i
we associate with the user is simply a way to distinguish the users. Without loss of gen-
erality, we will assume users are numbered 1, . . . , n according to the time they joined
or attempted to join.

Key generation: GKg generates (gpk, ik, ok). Here gpk is a group public key, while
ik and ok are respectively the issuer’s and the opener’s secret key.

Join/Issue: This is an interactive protocol between a user and the issuer. If successful,
the user and issuer register a public key vki in reg[i] and the user stores some
corresponding secret signing key information in gsk[i].
[BSZ05] specify that communication between the user and the issuer in this proto-
col should be secret. The Join/Issue protocol in our scheme works when all mes-
sages are sent in clear though. In our scheme, we will assume the issuer joins users
in a sequential manner, but depending on the setup assumptions one is willing to
make, it is easy to substitute the Join/Issue protocol for a concurrent protocol.

172 J. Groth

Sign: Group member i can sign a message m as Σ ← Gsig(gpk, gsk[i], m).
Verify: To verify a signature Σ on message m we run GVf(gpk, m, Σ). The signature

is valid if and only if the verification algorithm outputs 1.
Open: The opener has read-access to the registration table reg. We have (i, τ) ←

Open(gpk, ok, reg, m, Σ) gives an opening of a valid signature Σ on message m
pointing to user i. In case the signature points to no member, the opener will assume
the issuer forged the signature and set i := 0. The role of τ is to accompany i �= 0
with a proof that user i did indeed sign the message.

Judge: This algorithm is used to verify that openings are correct. We say the opening
is correct if Judge(gpk, i, reg[i], m, Σ, τ) = 1.

[BSZ05] define four properties that the group signature must satisfy: correctness,
anonymity, traceability and non-frameability. We will here give a quick informal de-
scription of the properties. We refer to [BSZ05] for details and a discussion of how
these security definitions cover and strengthen other security definitions that have ap-
peared in the literature.

Non-frameability: Non-frameability protects the user against being falsely accused of
making a group signature, even if both the issuer and the opener are corrupt.

Traceability: When the issuer is honest and the opening algorithm is applied correctly,
albeit the opener’s key may be exposed, traceability guarantees that a group signa-
ture always can be traced back to a member who made it.

Anonymity: An opener knows who made a particular group signature, but provided
the opener is honest and the opener’s key is kept secret, nobody else should be able
to identify the member. Anonymity gives this guarantee even in an environment
where all users’ keys are exposed and the issuer is corrupt. In the definition, the
adversary is also permitted to ask the opener to open group signatures, except the
group signature where it is trying to guess who signed it.

A weaker variant of anonymity called CPA-anonymity does not permit the adversary
to see openings of other group signatures. The difference between full anonymity and
CPA-anonymity is analogous to the difference between security under chosen ciphertext
attack and chosen plaintext attack for public-key encryption.

6 Tools

To construct our group signature scheme, we will use the certified signature scheme
from Section 4. We will also use several other tools in our construction, namely
collision-free hash functions, non-interactive proofs for bilinear groups, strong one-time
signatures secure against weak chosen message attack and selective-tag weak CCA-
secure cryptosystems.

6.1 Collision-Free Hash-Functions

H is a generator of collision free hash-functions Hash : {0, 1}∗ → {0, 1}�(k) if for all
non-uniform polynomial time adversaries A we have:

Pr
[
Hash ← H(1k) ; x, y ← A(Hash) : Hash(x) = Hash(y)

]
≈ 0.

Fully Anonymous Group Signatures Without Random Oracles 173

We will use a collision-free hash-function to compress messages before signing them.
For this purpose we will require that we can hash down to Zp, so we want to have
2�(k) < p. We remark that collision-free hash-functions can be constructed assuming
the discrete logarithm problem is hard, so the existence of collision-free hash-functions
follows from our assumptions on the bilinear group.

6.2 Strong One-Time Signatures

We will use a one-time signature scheme that is secure against an adversary that has
access to a single weak chosen message attack. We say the one-time signature scheme is
strong, if the adversary can neither forge a signature on a different message nor create a
different signature on the chosen message she already got signed. An obvious candidate
for such a scheme is the Boneh-Boyen signature scheme [BB04], since this signature
scheme is deterministic and hence automatically has the strongness property.

6.3 Non-interactive Proofs for Bilinear Groups

Groth and Sahai [GS07] suggest non-interactive proofs that capture relations for bi-
linear groups. They look at sets of equations in our bilinear group (p, G, GT , e, g) over
variables in G and Zp such as pairing product equations, e.g. e(x1, x2)e(x3, x4) = 1, or
multi-exponentiation equations, e.g. xδ1

1 xδ2
2 = 1. They suggest non-interactive proofs

for demonstrating that a set of equations of the form described above has a solution
x1, . . . , xI ∈ G, δ1, . . . , δJ ∈ Zp so all equations are simultaneously satisfied. Their
proofs are in the common reference string model. There are two types of common ref-
erence strings that yield respectively perfect soundness and perfect witness indistin-
guishability/perfect zero-knowledge. The two types of common reference strings are
computationally indistinguishable and they both give perfect completeness. We now
give some further details.

[GS07] show that there exists four probabilistic polynomial time algorithms
(K, P, V, X), which we call respectively the key generator, the prover, the verifier and
the extractor. The key generator takes (p, G, GT , e, g) as input and outputs a common
reference string crs = (F, H, U, V, W, U ′, V ′, W ′) ∈ G8 as well as an extraction key
xk. Given a set of equations, the prover takes crs and a witness x1, . . . , xI , δ1, . . . , δJ

as input and outputs a proof π. The verifier given crs, a set of equations and π outputs
1 if the proof is valid and else it outputs 0. Finally, the extractor on a valid proof π will
extract x1, . . . , xI ∈ G, in other words it will extract part of the witness.

The proofs of [GS07] have perfect completeness: on a correctly generated CRS and
a correct witness, the prover always outputs a valid proof. They have perfect soundness:
on a correctly generated CRS it is impossible to create a valid proof unless the equations
are simultaneously satisfiable. Further, they have perfect partial knowledge: given xk
the algorithm X can extract x1, . . . , xI from the proof, such that there exists a solution
for the equations that use these x1, . . . , xI .

There exists a simulator S1 that outputs a simulated common reference string crs and
a simulation trapdoor key tk. These simulated common reference strings are computa-
tionally indistinguishable from the common reference strings produced by K assuming
the DLIN problem is hard. On a simulated common reference string, the proofs created

174 J. Groth

by the prover are perfectly witness-indistinguishable: if there are many possible wit-
nesses for the equations being satisfiable, the proof π does not reveal anything about
which witness was used by the prover when creating the proof. Further, let us call a set
of equations tractable, if it is possible to find a solution, where x1, . . . , xI are the same
in all equations, but δ1, . . . , δJ are allowed to vary from equation to equation. Tractable
equations have perfect zero-knowledge proofs on simulated reference strings: there ex-
ists a simulator S2 that on a simulated reference string crs and a simulation trapdoor
key tk produces a simulated proof π for the tractable equations being satisfiable. If the
equations are satisfiable, then simulated proofs are perfectly indistinguishable from the
proofs a real prover with a witness would form on a simulated reference string.

It will be useful later in the paper to know some technical details of the con-
struction. The values F, H, U, V, W will be used to commit to the variables x as
(c1, c2, c3) := (F rU t, HsV t, gr+sW tx) for randomly chosen r, s, t ∈ Zp. On a real
common reference string, they are set up so U = FR, V = HS , W = gR+S so
the commitment can be rewritten as (F r+Rt, Hs+St, gr+s+(R+S)tx). The extraction
key is xk := (φ, η) so F = gφ, H = gη. This permits decryption of the commit-
ment as x = c3c

−φ
1 c−η

2 . On the other hand, on a simulation reference string, we use
U = FR, V = HS , W = gT with T �= R +S, which makes the commitment perfectly
hiding.

To commit to a variable δ ∈ Zp using randomness r, s we use the commitment
(d1, d2, d3) := (F r(U ′)δ, Hs(V ′)δ, gr+s(W ′)δ). On a normal common reference
string, we pick U ′ = FR, V ′ = HS , W ′ = gT for T �= R + S. This makes the
commitment perfectly binding. On a simulated common reference string, on the other
hand, we pick U ′ = FR, V ′ = HS , W ′ = gR+S . The simulation trapdoor key is
tk := (R, S), which permits us to trapdoor open a commitment to 0 to any value δ
since (F r, Hs, gr+s) = (F r−Rδ(U ′)δ, Hs−Sδ(V ′)δ, gr+s−(R+S)δ(W ′)δ).

6.4 Selective-Tag Weakly CCA-Secure Encryption

We will use a tag-based cryptosystem [MRY04] due to Kiltz [Kil06]. The public key
consists of random non-trivial elements pk = (F, H, K, L) ∈ G4 and the secret key is
sk = (φ, η) so F = gφ, H = gη. We encrypt m ∈ G using tag t ∈ Zp and randomness
r, s ∈ Zp as (y1, . . . , y5) := (F r, Hs, gr+sm, (gtK)r, (gtL)s). The validity of the
ciphertext is publicly verifiable, since valid ciphertexts have e(F, y4) = e(y1, g

tK) and
e(H, y5) = e(y2, g

tL). Decryption can be done by computing m = y3y
−φ
1 y−η

2 . In the
group signature scheme, we will set up the cryptosystem with the same F, H as in the
common reference string of the non-interactive proofs.

[Kil06] shows that under the DLIN assumption this cryptosystem is selective-tag
weakly CCA-secure. By this we mean that it is indistinguishable which message we
encrypted under a tag t, even when we have access to a decryption oracle that decrypts
ciphertexts under any other tag. Formally, for all non-uniform polynomial time adver-
saries A we have:

Pr
[
gk ← G(1k) ; t ← A(gk) ; (pk, sk) ← K(gk) ; (m0, m1) ← ADsk(·,·)(pk) ;

y ← Epk(t, m0) : ADsk(·,·)(y) = 1
]

Fully Anonymous Group Signatures Without Random Oracles 175

≈ Pr
[
gk ← G(1k) ; t ← A(gk) ; (pk, sk) ← K(gk) ; (m0, m1) ← ADsk(·,·)(pk) ;

y ← Epk(t, m1) : ADsk(·,·)(y) = 1
]
,

where the oracle returns Dsk(ti, yi) if ti �= t.

7 The Group Signature Scheme

The core of our group signature scheme is the certified signature scheme from Section 4.
The issuer acts as a certification authority and whenever a new member i wants to enroll,
she needs to create a verification key vi for the Boneh-Boyen signature scheme and get
a certificate from the issuer. In the group signature scheme, the verification key and the
corresponding secret key is generated with an interactive key generation protocol as
defined in Section 4.1. This way both user and issuer know that vi is selected with the
correct distribution and that the user holds the corresponding secret key xi.

When making a group signature, the member will generate a key pair (vksots, sksots)
for a strong one-time signature that is secure under weak chosen message attack. She
will sign the message using sksots and use xi to sign vksots. The combination of cer-
tified signatures and strong one-time signatures is what makes it hard to forge group
signatures.

Group signatures have to be anonymous and therefore we cannot reveal the
certified signature. Instead, a group signature will include a non-interactive witness-
indistinguishable (NIWI) proof of knowledge of a certified signature on vksots.
Witness-indistinguishability implies that a group signature does not reveal which group
member has signed the message. The opener will hold the extraction key for the NIWI
proof of knowledge and will be able to extract the certified signature. Whenever an
opening is called for, she extracts the signature on vksots, which points to the mem-
ber who signed the message. In case no member has certified signed vksots, the opener
points to the issuer since the certified signature has a valid certificate.

The ideas above suffice to construct a CPA-anonymous group signature scheme. To
get anonymity even when the adversary has access to the Open oracle, we will encrypt
the signature on vksots with Kiltz’ cryptosystem using vksots as a tag. We will also give
an NIZK proof that the encrypted signature is the same as the one used in the NIWI
proof of knowledge.

We present the full group signature scheme in Figure 2. Let us explain the non-
interactive proofs further. The NIWI proof of knowledge, will demonstrate that there
exists a certified signature (a, b, v, σ) on vksots so

e(a, hv)e(f, b) = T ∧ e(σ, vgHash(vksots)) = e(g, g).

In the terminology of [GS07], these are two pairing product equations over three vari-
ables b, v, σ. The last element a will be public, since we can rerandomize the certificate
such that a does not identify the member. [GS07] gives us an NIWI proof of knowledge
for these two equations being simultaneously satisfiable that consists of 27 group ele-
ments. This proof consists of three commitments to respectively b, v, σ, which consist

176 J. Groth

of 3 group elements each, and two proofs for the committed values satisfying the two
equations consisting of 9 group elements each.

In the NIZK proof we have a ciphertext y under tag Hash(vksots) and a commitment
c to σ from the NIWI proof of knowledge. We wish to prove that the plaintext of y and
the committed value in c are the same. The ciphertext is of the form (y1, . . . , y5) =
(F ry , Hsy , gry+sy σ, (gHash(vksots)K)ry , (gHash(vksots)L)sy) and the commitment is of
the form (c1, c2, c3) = (F rcU t, HscV t, grc+scW tσ). Setting r := rc−ry, s := sc−sy

we have (c1y
−1
1 , c2y

−1
2 , c3y

−1
3) = (F rU t, HsV t, gr+sW t). On the other hand, if the

plaintext and the committed value are different, then no such r, s, t exist. Proving that
the plaintext and the committed value are the same, therefore corresponds to proving
the simultaneous satisfiability of the following equations over φ, r, s, t ∈ Zp:

φ = 1 ∧ (c−1
1 y1)φF rU t = 1 ∧ (c−1

2 y2)φHsV t = 1 ∧ (c−1
3 y3)φgr+sW t.

This set is tractable, i.e., if we allow φ to take different values in the equations, then
there is a trivial solution φ = 1 in the first equation and φ = r = s = t = 0 in the
other three equations. Since the set of equations is tractable, there is an NIZK proof for
the 4 equations being simultaneously satisfiable. The proof consists of commitments to
φ, r, s, t, but since the first equation is straightforward we can simply use (U ′, V ′, W ′)
as the commitment to φ, which makes it easy to verify that the first equation holds. The
three commitments to r, s, t each consist of 3 group elements. The three last equations
are multi-exponentiations of constants and using the proof of [GS07] each equation
costs 2 group elements to prove. The NIZK proof therefore costs a total of 15 group
elements.

Theorem 2. The scheme in Figure 2 is a group signature scheme with perfect
correctness. Under the DLIN, q-SDH and q-U assumption and assuming the strong
one-time signature scheme is secure against weak chosen message attack and the hash-
function is collision resistant, the group signature has anonymity, traceability and non-
frameability.

Sketch of proof. Perfect correctness follows by inspection and the fact that the con-
stituent protocols have perfect correctness and perfect completeness. We will sketch a
proof that the group signature is secure, we refer to the full paper for more details.

To argue anonymity we consider a situation where the issuer may be corrupt and
the members’ keys are exposed. Since the adversary controls the issuer, she can let
both corrupt users and honest users join the group. She can also ask the opener to open
arbitrary valid group signatures. At some point she will choose two honest members
and a message and get a group signature from one of the members. We want to show
that she cannot tell which of the honest members made the group signature, as long as
she does not ask the opener to open the challenge group signature.

The NIZK proof implies that the ciphertext y contains the same Boneh-Boyen sig-
nature σ as the NIWI proof of knowledge. The opener can therefore use the decryption
key for the tag-based cryptosystem to track down the user instead of extracting it from
the NIWI proof of knowledge. This means we do not need the extraction key for the
NIWI proof, so we can switch to using a common reference string that gives perfect
witness-indistinguishability. The only information about the member now resides in the

Fully Anonymous Group Signatures Without Random Oracles 177

GKg(1k)
gk ← G(1k) ; Hash ← H(1k)
((f, h, T), z) ← CertKey(gk)
(crs, xk) ← KNI(gk) ; K, L ← G
(F, H, the rest) ← Parse(crs) ; pk := (F, H,K, L)
(gpk, ik, ok) := ((gk, Hash, f, h, T, crs, pk), z, xk)

Join/Issue(User i : gpk , Issuer : gpk, ik)
((vi, xi, ai, bi), (vi, ai, bi)) ← 〈User, Issuer〉
User: If e(ai, hvi)e(f, bi) = T set

reg[i] := vi ; gsk[i] := (xi, ai, bi)

GSig(gpk, gsk[i], m)
(vksots, sksots) ← KeyGensots(1

k)
(Repeat until Hash(vksots) �= −xi)

ρ ← Zn ; a := aif
−ρ ; b := bi(hvi)ρ

σ := g
1

xi+Hash(vksots)

π ← PNIWI(crs, (gpk, a, Hash(vksots)), (b, vi, σ))
y ← Epk(Hash(vksots), vi)
ψ ← PNIZK(crs, (gpk, y, π), (r, s, t))
σsots ← Signsksots

(vksots, m, a, π, y, ψ)
Return Σ := (vksots, a, π, y, ψ, σsots)

GVf(gpk,m, Σ)
Return 1 if these verifications pass:
Vervksots((vksots, m, a, π, y, ψ), σsots)
VNIWI(crs, (gpk, a, Hash(vksots)), π)
VNIZK(crs, (gpk, π, y), ψ)
ValidCiphertext(pk, Hash(vksots), y)
Else return 0

Open(gpk, ok, m,Σ)
(b, v, σ) ← Xxk(crs,

(gpk, a, Hash(vksots)), π)
Return (i, σ) if there is i so v = vi

Else return (0, σ)

Judge(gpk, i, reg[i],m, Σ, σ)
Return 1 if
i �= 0 ∧ e(σ, vig

Hash(vksots)) = e(g, g)
Else return 0

Fig. 2. The group signature scheme

ciphertext. The existential unforgeability of the one-time signature under weak chosen
message attack and the collision-freeness of the hash-function make it infeasible for the
adversary to query the opener with a valid group signature that recycles vksots from
the challenge or that collides with Hash(vksots). Since Hash(vksots) is the tag for the
cryptosystem and is never recycled in a query to the opener, the ciphertext does not
reveal which member made the group signature.

We have to argue that a user cannot be framed. We consider an unfriendly environ-
ment where both the issuer and the opener are corrupt. They are trying to come up with
a proof that the user signed a message, a proof that consists of a Boneh-Boyen signature.
When joining the group, the user and the issuer engage in a key registration protocol.
This protocol gives the user a uniformly random x and a Boneh-Boyen verification key
v = gx, without the issuer learning x. Even if the user makes group signatures on arbi-
trary messages, this just corresponds to signing randomly chosen verification keys for
the strong one-time signature scheme. The weak chosen message attack security of the
Boneh-Boyen signature scheme is therefore sufficient to guarantee that the adversary
cannot falsely accuse the user of having signed a message that she did not sign.

Finally, we consider an honest issuer that keeps her issuer key secret and an honest
opener with an exposed opener key. We have to argue that a valid group signature can
always be traced back to a member of the group. By the perfect extractability of the

178 J. Groth

NIWI proof of knowledge, we can extract a valid certified signature on Hash(vksots)
from the NIWI proof π. The key registration protocol guarantees that all members have
correctly generated signing keys. The unfakeability of the certified signature scheme
therefore implies that a member has made the group signature. The Boneh-Boyen
signature σ is sufficient to trace this member, since it matches a unique verification
key vi. �

EFFICIENCY. If we instantiate the strong one-time signature with the Boneh-Boyen
signature scheme a verification key is one group element and a one-time signature is
also one group element. We make the element a public. The NIWI proof of knowledge
consists of 27 group elements. The ciphertext consists of 5 group elements. The NIZK
proof consists of 15 group elements. The total size of a group signature is therefore 50
group elements in G. This is of course much better than the many thousand elements
required for a group signature in [Gro06].

In case CPA-anonymity is sufficient, we can consider a lighter version of our group
signature, where we omit the ciphertext y and the NIZK proof ψ. This CPA-anonymous
group signature scheme would consist of 30 group elements. We observe that regular
anonymity implies that the group signature is strong, i.e., even when seeing a message
m and a group signature Σ on it, it is not possible to create a different group signature
Σ′ on m such that it still points to the same member. In CPA-anonymity, however, we
do not give the adversary access to an opening oracle and thus mauling signatures is
no longer a problem. If we do not care about the group signature being strong, we do
not need the strong one-time signature key and we can simply sign Hash(m) instead
of Hash(vksots). This reduces the size of the group signatures further to 28 group ele-
ments. In comparison, the CPA-anonymous group signature scheme of [BW07] consists
of 6 group elements in a composite order group. Since composite order groups rely on
the hardness of factoring, these groups are very large and our CPA-anonymous group
signatures are therefore comparable in size for practical parameters, perhaps even a bit
smaller. However, our CPA-anonymous group signature scheme still supports dynamic
enrollment of members and has a group public key gpk consisting of a constant number
of group elements.

KEY GENERATION. Since the [BSZ05]-model assumes a trusted key generator it is
worth considering how the key generation should be carried out in practice. The trust in
our scheme relies on the bilinear group (p, G, GT , e, g) being generated so the crypto-
graphic assumptions hold and it relies on the hash-function being collision-free. We re-
mark that an advantage of our scheme is that we work over prime order bilinear groups,
so it may be possible to use a uniform random string to set up (p, G, GT , e, g). Also,
since the trust is based on a very elementary setup, a bilinear group and a hash-function,
it is possible that suitable public standards can be found. One could for instance use
SHA-256 as the hash-function.

The non-frameability of the user relies only on the collision-freeness of the hash-
function and the cryptographic assumptions in (p, G, GT , e, g). The rest of the group
public key gpk can be generated jointly by the issuer and the opener. The issuer gen-
erates the authority key for the certified signature scheme. The opener generates crs
and pk, anonymity follows from the opener generating these keys correctly. Since the

Fully Anonymous Group Signatures Without Random Oracles 179

opener can break anonymity anyway, it is quite reasonable to trust the opener with pro-
tecting anonymity. The opener will have to make a zero-knowledge proof of knowledge
of the corresponding extraction key to the issuer, since the security proof for traceability
relies on the opener being able to actually extract a signature from the NIWI proof of
knowledge.

References

[ACHdM05] Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group
signatures without random oracles. Cryptology ePrint Archive, Report 2005/385
(2005), http://eprint.iacr.org/2005/385.

[ACJT00] Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure
group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880,
pp. 255–270. Springer, Heidelberg (2000)

[BB04] Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin,
C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73.
Springer, Heidelberg (2004)

[BBP04] Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model
scheme for a hybrid encryption problem. In: Cachin, C., Camenisch, J.L.
(eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg
(2004), Full paper available at http://eprint.iacr.org/2003/077

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

[BFPW07] Boldyreva, A., Fischlin, M., Palacio, A., Warinschi, B.: A closer look at pki: Secu-
rity and efficiency. In: Proceedings of PKC 2007. LNCS, vol. 4450, pp. 458–475.
Springer, Heidelberg (2007)

[BGLS03] Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably
encrypted signatures from bilinear maps. In: Biham, E. (ed.) Advances in Cryptol-
ogy – EUROCRPYT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg
(2003)

[BMW03] Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: For-
mal definitions, simplified requirements, and a construction based on general as-
sumptions. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003.
LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)

[BSZ05] Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of
dynamic groups. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp.
136–153. Springer, Heidelberg (2005)

[BW06] Boyen, X., Waters, B.: Compact group signatures without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006)

[BW07] Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group sig-
natures. In: Proceedings of PKC 2007. LNCS, vol. 4450, pp. 1–15. Springer, Hei-
delberg (2007), http://www.cs.stanford.edu/∼xb/pkc07/

[CG04] Camenisch, J., Groth, J.: Group signatures: Better efficiency and new the-
oretical aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS,
vol. 3352, pp. 120–133. Springer, Heidelberg (2005), Full paper available at
http://www.brics.dk/∼jg/GroupSignFull.pdf

http://eprint.iacr.org/2005/385
http://eprint.iacr.org/2003/077
http://www.cs.stanford.edu/~xb/pkc07/
http://www.brics.dk/~jg/GroupSignFull.pdf

180 J. Groth

[CGH98] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: Proceedings of STOC 1998, pp. 209–218 (1998)

[CGH04] Canetti, R., Goldreich, O., Halevi, S.: On the random-oracle methodology as ap-
plied to length-restricted signature schemes. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 40–57. Springer, Heidelberg (2004)

[CL04] Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

[CvH91] Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EURO-
CRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

[FI05] Furukawa, J., Imai, H.: An efficient group signature scheme from bilinear maps.
In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp.
455–467. Springer, Heidelberg (2005)

[GK03] Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm.
In: Proceedings of FOCS 2003, pp. 102–113 (2003), Full paper available at
http://eprint.iacr.org/2003/034

[Gro06] Groth, J.: Simulation-sound nizk proofs for a practical language and con-
stant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, Springer, Heidelberg (2006), Full paper available at
http://www.brics.dk/∼jg/NIZKGroupSignFull.pdf

[GS07] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. Cryptology ePrint Archive, Report 2007/155 (2007), available at
http://eprint.iacr.org/2007/155

[Kil06] Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

[KY05] Kiayias, A., Yung, M.: Group signatures with efficient concurrent join. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214.
Springer, Heidelberg (2005), Full paper available at http://eprint.
iacr.org/345

[MRY04] MacKenzie, P.D., Reiter, M.K., Yang, K.: Alternatives to non-malleability: Def-
initions, constructions, and applications. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 171–190. Springer, Heidelberg (2004)

[Nie02] Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

[ZL06] Zhou, S., Lin, D.: Shorter verifier-local revocation group signatures from bilinear
maps. In: Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301,
pp. 126–143. Springer, Heidelberg (2006)

http://eprint.iacr.org/2003/034
http://www.brics.dk/~jg/NIZKGroupSignFull.pdf
http://eprint.iacr.org/2007/155
http://eprint.iacr.org/345
http://eprint.iacr.org/345

	Fully Anonymous Group Signatures Without Random Oracles
	Introduction
	Setup
	Certified Signatures
	A Certified Signature Scheme
	Key Generation

	Defining Group Signatures
	Tools
	Collision-Free Hash-Functions
	Strong One-Time Signatures
	Non-interactive Proofs for Bilinear Groups
	Selective-Tag Weakly CCA-Secure Encryption

	The Group Signature Scheme

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

