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Abstract. Component frameworks simplify development of enterprise
systems and enable code reuse, but most frameworks are unpredictable
and hence unsuitable for embedded or real-time systems. Similarly, Java
is increasingly being used to build embedded system software because
of its portability and ease of use. The Real-Time Specification for Java
(RTSJ) reduces the unpredictability in Java execution times by eliminat-
ing the need for a garbage collector. However, it introduces programming
complexity that makes it difficult to build non-trivial applications. To
bring the advantages of Java component development to DRE systems,
while simultaneously simplifying the use of RTSJ, therefore, we have
developed a new lightweight component model for RTSJ called Com-
padres. Compadres offers the following advantages: 1) Simple component
definition in Java that abstracts away RTSJ memory management com-
plexity; 2) System assembly from components by connecting ports that
communicate through strongly-typed objects; 3) The Compadres com-
piler that automatically generates the scoped memory architecture for
components, while the component framework handles communication
between the components. To validate this work, we construct a non-
trivial example application using the component framework, a simple
real-time CORBA implementation. We then analyze the performance
and efficiency of our component example versus a non-component ex-
ample, RTZen. Our measurements show that our Compadres example
built with components incurs only minor time overhead as compared to
a comparable hand-coded example.
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1 Introduction

Distributed, real-time, embedded (DRE) systems pose significant challenges for
software developers. As embedded systems, they typically have limited process-
ing power and memory; as real-time systems, they have timing and predictability
constraints; and as distributed systems, they must be able to communicate across
heterogeneous platforms. Developing software that meets all of these constraints
is costly and time-consuming: each application is typically custom-coded from
scratch using C/C++ programming language. The limited space and processing
power of DRE systems requires lean, specialized custom code, while the thread-
ing and memory control needed for real-time requirements requires highly-skilled
programming.

By contrast, two existing technologies currently ease and speed development
of non-DRE enterprise systems. First, component technology provides effective
reusability for software applications for enterprise systems, allowing assembly of
pre-coded, pre-tested subsystems into systems, saving both time and money for
system development. Second, Java facilitates software development because not
only is it relatively easy to use, eliminating complex memory management, but
it also offers a large programmer base, library support, platform independence,
and a better memory model that minimizes problems with buffer overruns and
illegal references.

Unfortunately, the advantages of both component frameworks and the Java
programming language have been unavailable to DRE systems developers. Cur-
rent component frameworks incur too much memory overhead, decrease effi-
ciency, and fail to support the real-time predictability requirements needed for
DRE systems. Furthermore, Java cannot be used for real-time systems because
its under-specified thread semantics and automatic memory management cause
unpredictability.

In general, two complementary approaches have been proposed to reduce the
unpredictability of Java– 1) the Real-Time Specification for Java (RTSJ) [1] and
2) real-time garbage collection [2,3]. Real-time garbage collectors (RTGCs) can
be unsuitable for use in hard real-time systems because they cause an inherent
minimum latency and large execution overhead [4]. It is also necessary to accu-
rately predict parameters such as average and maximum allocation rates when
using a RTGC. On the other hand, The RTSJ adds memory and thread models
that enable predictability for real-time systems, but loses much of the ease of pro-
gramming of Java. We have therefore developed a lightweight component model
for RTSJ, called Compadres, that brings the advantages of Java component de-
velopment to DRE systems, while simultaneously simplifying the use of RTSJ
and providing real-time predictability. Compadres components are fine-grained
object-oriented software artifacts that communicate via ports ; applications can
be developed by connecting these ports.

Compadres achieves ease of use, ease of testing, and a high level of reusability
in the following ways:
– Simple component definition in Java: Compadres is a simple com-

ponent model that hides the programming difficulty of the RTSJ scoped
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memory and threading model and yet is powerful enough to define most real-
time systems.1 The component implementations are separated from their
threading model, allowing developers to implement the business code for
the components using Java with some restrictions but without having to
deal with the RTSJ memory management rules. Furthermore, any compo-
nent may be used as an application process. This feature can also be used
to convert a component into a stand-alone application. At a higher level,
applications may be distributed in a network.

– Automatic generation of scoped memory architecture: The Com-
padres compiler (henceforth compiler) processes a user-defined component
composition language file to generate the scoped memory architecture re-
quired for the application to run based on the RTSJ scope access rules. The
compiler thus abstracts away the RTSJ memory management code from the
user.

– Simplified system assembly through composition of components:
Compadres provides hierarchical composition and extension; i.e., compo-
nents may be incrementally composed into larger components. This feature
facilitates incremental testing of components as well as final system testing.

– Simple communication model: Components are composed by connect-
ing ports that communicate through strongly-typed objects, providing se-
mantic checking at compile time.

The remainder of this paper is organized as follows: Section 2 presents the
Compadres component model and describes how it abstracts RTSJ program-
ming challenges. Section 3, presents a simple Real-time CORBA ORB built us-
ing Compadres and compare its performance to RTZen, our Real-time CORBA
ORB for RTSJ [5]. Section 4 presents the related work and section 5 presents
conclusions and future work.

2 The Compadres Component Framework for RTSJ

The process of developing an RTSJ application using Compadres is divided into
two phases (see Fig. 1):

1. Component Definition: In this phase, the application programmer defines
the components and their ports in an XML file following the Component Def-
inition Language (CDL). The CDL file is compiled to generate the skeletons
of the implementation classes of the components and the message handlers
associated with the components’ In ports. The programmer adds the imple-
mentation of the component and message handler classes using plain Java.

2. Component Composition: In this phase, composite components and con-
nections among components are specified in an XML file according to the
Component Composition Language (CCL) to form the application. The pro-
grammer uses the Compadres compiler to validate the CCL file and generate
the RTSJ glue code needed to run the main application.

1 The components may also use an RTSJ-safe library such as Javalution
(http://javolution.org/).
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Finally, the Java compiler is used for compiling the implementation classes of
components and message handlers along with the generated RTSJ glue code to
build the RTSJ application. The rest of the section describes in detail the phases
for developing a Compadres-based RTSJ application.

Component 
Implementation

(Java)

Compadres 
Compiler

Component 
Skeletons and 

Message Handler 
Classes (Java)

RTSJ Glue Code

RTSJ ApplicationJava Compiler

Component 
Definition File

 (XML)

Component 
Composition File

(XML)

Generated Code

Programmer Code

Fig. 1. Generation of a real-time Java application using the Compadres framework

2.1 Component Definition

The application programmer writes the CDL file in XML to define the compo-
nents used in the application as well as the ports of each component. An example
of a CDL file is presented in Listing 1.1. The definition of a component comprises
the name of the component and the set of its ports. The definition of a port in-
cludes its name, its type, and the Java type of the message that is communicated
through the port. Ports may be input ports, which receive messages or output
ports, which send messages. Thus, the type of a port may be set to In or Out
in the CDL file; the direction is specified in relation to the component itself. In
particular, the port types and message types specified in the CDL file will be
used to by the Compadres compiler to validate the CCL file.

The Compadres compiler parses the CCL file and generates the following Java
skeleton classes for each component: 1) a component class and 2) one message
handler class per In port. The component skeleton class extends the Component
class, which contains the addInPort(), addOutPort(), and start() methods.
The addInPort() method associates a message handler class with the corre-
sponding In port, and the start() method is an empty method that may
be implemented by the programmer to initialize the component. Each message
handler skeleton class extends the MessageHandler class, which contains the
process() method. The process() method accept one message object (of any
Java datatype) as a parameter. When a message is sent to an In port, the cor-
responding process() method is called to handle the incoming message. The
process() method of each message handler skeleton class is initially empty, so
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that the application programmer needs to implement it. The user may allocate
objects using new in the implementation of component and message handler
classes but does not need to determine which RTSJ memory region to use.

<Component>
<ComponentName>Server</ComponentName>

<Port>
<PortName>DataOut</PortName>
<PortType>Out</PortType>
<MessageType>String</MessageType>

</Port>
<Port>

<PortName>DataIn</PortName>
<PortType>In</PortType>
<MessageType>CustomType</MessageType>

</Port>
</Component>

<Component>
<ComponentName>Calculator</ComponentName>
....

</Component>

Listing 1.1. Component Definition Language file

2.2 Component Composition

A vital characteristic of Compadres components is that they are hierarchically
composable. The Component Composition Language (CCL) file, written in XML
format, allows programmers to construct an application from components. The
CCL file is written once per application and defines the connections between
components, thread priorities, and thread assignment to the components. The
CCL decouples the definition of the individual components from their configu-
ration and interaction, thereby enabling component reuse. The component im-
plementations themselves are unaware of the runtime properties; the compiler
handles the assignment of the components to memory regions and threads.

Connecting Components via Ports: Components are composed by con-
necting their appropriate ports, and the port connections are defined in the
CCL file; Out ports must be connected to In ports, and the message types (ob-
tained from the CDL file) must match exactly. However, adapter components
may be introduced to connect two non-matching types.

Connection of ports must follow RTSJ scoping rules to ensure that the com-
piler can map these components into RTSJ scoped memory areas. In order to
enforce the scoping rules, we designate ports as Internal or External in the
CCL file. Hierarchically, components created inside another component are the
children of that component; two or more components inside the same component
are siblings of each other. Internal ports communicate a parent component with
its child components; external ports communicate a child component with its
parent or sibling components. Only sibling components can see the external ports
of each other. Components can only exchange messages between their siblings
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and parent via external ports and between their own children via internal ports.
Therefore, only the following port connections are allowed in the Compadres
model: 1) internal port of the parent component to external port of the child
component, 2) external ports of sibling components. When a component sends
data from one of its Out ports, it relays the data to the In port(s) connected to
it. When data arrives at an In port, the component that owns the port processes
the data immediately in a new execution context and may generate outputs at
its other ports.

A simple example of a hierarchical composition of five components is illus-
trated in Fig. 2. The components are constructed in three levels of scoped mem-
ory. Component A is the level-1 parent component. It has two child components,
B and C, and is connected to them via internal ports. The component C in turn
has two nested components, D and E.

Component A

Component C

Component D

Component E
Component B

Intenal Port
External Port

Fig. 2. Hierarchical composition of components via internal and external ports

The CCL file (example in Listing 1.2) contains application information under
the following XML tags:

– ApplicationName: is the name of the application class to be generated.
– Component: specifies each component used in the application. This tag con-

tains tags that indicate the name of the component class, name of the in-
stance, its type (immortal or scoped), and its nesting level if the component
is of type scoped. Component tags are nested to represent the parent-child
relationship among components.

– Connection: contained in a Component tag, includes the list of ports of the
component and their links with ports of other components.

– Port: represents a port of a component; it includes the name of the port and
its attributes.

– PortAttributes: specifies the threading strategy (shared or dedicated), size
of threadpool, and buffer size of each In port.

– Link: represents the end-point and type (internal or external) of a link be-
tween two component ports.

– RTSJAttributes: includes RTSJ memory pool attributes such as memory
size in bytes and scope pool sizes.
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<Application>
<ApplicationName>MyApp</ApplicationName>
<Component>

<InstanceName>MyServer</InstanceName>
<ClassName>Server</ClassName>
<ComponentType>Immortal</ComponentType>
<Connection>

<!-- Define Ports -->
<Port>

<PortName>DataIn</PortName>
<PortAttributes>

<BufferSize>5</BufferSize>
<Threadpool>Shared</Threadpool>
<MinThreadpoolSize>2</MinThreadpoolSize>
<MaxThreadpoolSize>10</MaxThreadpoolSize>

</PortAttributes>
<!-- Define connection to Out port of child-->
<Link>

<PortType>Internal</PortType>
<ToComponent>Calculator</ToComponent>
<ToPort>DataOut</ToPort>

</Link>
</Port>

</Connection>
<Component>

<InstanceName>MyCalculator</InstanceName>
<ClassName>Calculator</ClassName>
<ComponentType>Scoped</ComponentType>
<ScopeLevel>1</ScopeLevel>
<Connection>

. . . .
</Connection>

</Component>
. . . .

</Component>

<RTSJAttributes>
<ImmortalSize>400000</ImmortalSize>
<ScopedPool>

<ScopeLevel>1</ScopeLevel>
<ScopeSize>200000</ScopeSize>
<PoolSize>3</PoolSize>
. . . .

</ScopedPool>
</RTSJAttributes>

</Application>

Listing 1.2. Component Connection Language file

Any component, whether simple or composite, can be made into an applica-
tion using the CCL file. In this phase the compiler serves two purposes: validation
and glue code generation. First, it uses the CDL file to validate the CCL file for
connections (to ensure that Out(In) ports are connected to In(Out) ports and
there are no loops), RTSJ access rules, and message type matching. The connec-
tions are checked to ensure that each component’s internal port is connected
to the external ports of its children, and that the external ports of siblings
are connected. This process ensures that message passing will not violate RTSJ
memory access rules. The code generation tasks of the compiler in the component
composition phase are: 1) allocating memory to components by analyzing the
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specified memory needs, 2) defining the RTSJ memory structure for the compo-
nents, 3) generating glue code to create component instances and for component
communication, and 4) generating the main application class that includes an
empty start() method that the programmer will need to implement.

In order to implement component ports, the compiler generates the code for
managing the message buffer and threadpool associated with each In port, and
the RTSJ glue code for connecting them to the MessageHandler of that port.
The incoming messages at an In port are enqueued in its message buffer. The size
of the message buffer is specified in the CCL file. Messages are assigned a priority
in the send() method of the Out port. When a message arrives at an In port,
a thread from the threadpool is assigned the priority of the incoming message
and then calls the process() method of the corresponding MessageHandler.
The number of threads in the pool is initialized to MinThreadpoolSize value
and can go up to the MaxThreadpoolSize value, with both values specified in
the CCL file. If these values are 0, the calling thread executes the process()
method of the In port synchronously.

Structure of Compadres Component Applications: Compadres is a
loosely coupled component model because a component can be 1) individually
implemented and tested independent of the rest of the system, 2) incrementally
deployed in a system, and 3) easily extracted from a system for reuse. Several
components can be encapsulated to compose a new component. Composition
and communication between components must follow the RTSJ memory access
rules. Next, we briefly discuss the RTSJ memory structure and the restrictions
it imposes on programming, and describe how the Compadres framework serves
as an abstraction over the RTSJ memory model.

RTSJ Memory Structure [1]: An application’s memory structure is con-
strained by the rules that govern memory access among the three types of mem-
ory regions defined in the RTSJ—heap, scoped, and immortal. Of these, the heap
memory is garbage collected; therefore, Compadres components support only two
types of RTSJ memory, scoped and immortal. Scoped memory is a region with
a limited lifetime, which ends when there are no more threads executing in the
region. Scoped memory can be of two types, linear-time, or variable-time: our
memory model only uses linear-time or LTScopedMemory, which is allocated in
a time proportional to its size and therefore predictable. ImmortalMemory is a
fixed-sized area whose lifetime is the same as that of the JVM. Objects allocated
in immortal memory, however, will never be garbage collected during the lifetime
of the application. Scoped memory areas may be nested, producing a scoping
structure called a scope stack. Since multiple memory areas can be entered from
an existing memory area, this scope stack can form a tree-like structure. One
key relationship is as follows: if scope B is entered from scope A, then A is con-
sidered the parent of B and B, the child of A (see Fig. 2). Two rules govern
memory access among scopes. Code within a given scoped memory area X can
reference memory in another region Y only if it can be guaranteed that the life-
time of the memory region Y is at least as long as that of the first region X. This
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lifetime can be guaranteed only if the requested object resides in an ancestor
region (e.g., a parent or grandparent), immortal, or heap memory. Another im-
portant constraint is that a memory region can have only one parent, thereby
preventing cycles in the scope stack (the single parent rule). The implication is
that a single scope cannot have two or more threads from different parent scopes
enter it. An important consequence of this restriction on scoping structure is that
a real-time thread executing in a given region cannot access memory residing
in a sibling region and vice versa. In the event that real-time threads in these
two regions need to coordinate to perform some task, they will need to do so
through memory stored in a common ancestor region. For example, in Fig. 3, a
real-time thread in scope C cannot access scope B. They can only coordinate via
objects stored in A or immortal memory. Table 1 depicts the complete access
rules among scopes in Fig. 3.

B

Immortal

A

C

Heap

Fig. 3. Nested scopes

Table 1. Access rules for Fig. 3 assuming real-time threads are used. Note that if
no-heap real-time threads are used, no references to the heap are permitted.

to Heap to Immortal to A to B to C
from Heap – yes no no no

from Immortal yes – no no no
from A yes yes – no no
from B yes yes yes – no
from C yes yes yes no –

Mapping Components to RTSJ Scopes: Each Compadres component is
created in a separate (scoped or immortal) memory area. The RTSJ memory
scopes in Compadres are hierarchical; thus, so are components– they may be
nested inside other components. The outer memory area is the parent of the
nested memory areas. The nested architecture follows the single parent rule,
which ensures that each component has only one parent. The scope in which
a component should be placed is based on 1) the lifetime of the component,
and 2) its interaction with other components. The following rule determines the
lifetime of each scope memory of component: child components have a shorter
lifetime than their parent since they are created in a scoped memory area with
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a depth greater than that of the parent component. Therefore, scoped memory
components that are triggered by other components and have shorter lifetime
should be instantiated as their children.

One method to detect scoped memory regions for allocating objects from Java
programs is to generate a directed acyclic graph based on object lifetimes and ref-
erences and assign RTSJ memory scopes based on the depth of the object in the
graph [6]. We use a similar approach, but at the level of components, rather than
objects. As the lifetimes of scoped components are different, the scoped mem-
ory areas are not bound to components at compile-time, but at runtime. This
memory can be reused after the scoped component is reclaimed. The Compadres
component framework allows component instantiation at application runtime.
Components are created in LTScopedMemory. Further optimization of compo-
nent instantiation can be achieved by creating pools of scoped memory areas in
immortal memory and reusing these areas at runtime. The size and number of
scopes in the pools can be assigned in the CCL file under the RTSJAttributes
tag (Listing 1.2).

Component A

Scoped Memory 
Manager (SMM)

Component B
Component B Component C

Manager

Component C

SMM

Component D Component E

Fig. 4. Parent components communicate with their child components via scoped mem-
ory managers (SMMs)

Component Communication via Scoped Memory Managers: References
to objects in different components are constrained by the RTSJ memory access
rules described previously, but directly exchanging messages across ports may
violate these restrictions. We solve this problem by using a Scoped Memory Man-
ager (SMM), illustrated in Fig. 4. The SMM is used to connect an internal port
of a component to the external port of its child component. In our framework,
each parent component needs only one SMM to communicate with all its chil-
dren. Each SMM of a parent component maintains a virtual proxy for every
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child component. Upon receiving a message intended for a child component, the
SMM checks the proxies for the existing component or, if none are found, cre-
ates a new scoped memory component which should receive the message. After
the messages are processed by the component, the scoped memory objects are
reclaimed. To keep a child alive, the parent component requests a new child
scoped memory component; and a handle is returned to the parent. The parent
can kill the temporary component by calling disconnect() with the handle.
This mechanism is implemented using the wedge thread pattern [7].

One of the most difficult aspects of application development using RTSJ is
to implement the mechanisms to pass messages between objects in different
scoped memory areas. We have identified three mechanisms to handle cross-
scope method invocation and message passing:

– Serialization: The object is serialized and copied to a memory area that
is accessible by the other scoped memory component.

– Shared Object [7]: The object shared by the components is created in a
common ancestor memory area. Users need to identify the common ancestor
memory area of the two child components and create the shared object in
that memory area.

– Handoff Pattern [7]: A thread created in the source memory can access
the destination memory through the memory area of their common ancestor.

The overhead of serialization causes it to be much less efficient than the hand-
off pattern. However, using the handoff pattern requires that developers know
the scoped memory structure of applications. It also results in the component
code becoming tightly coupled and difficult to reuse. The shared object approach
is an efficient method but may lead to memory leaks if not implemented cor-
rectly. Moreover, users need to determine the common ancestor memory area
for two threads, which involves tracing the threads at design time. Based on
experience, we have found the shared object approach to be the most efficient
and easiest to generate as part of the Compadres framework. Thereby, the Com-
padres framework reduces the programming effort by handling inter-component
message passing transparently. This feature enables programmers to implement
their logic inside each component using regular Java and hides the complexity of
RTSJ scope access rules from them. The SMM of the parent component contains
the message buffer of each external port of its child components. This message
buffer serves as the shared object; therefore, the parents and its children can
reference the messages from the buffer.

The Compadres framework creates a message pool per message type in the
parent component’s SMM (allocated in the parent component’s memory area).
To send a message, programmers get a message object from the pool by calling
getMessage(), set the message data, and then send the message through the
port via send(). The message is returned to the pool after it is processed by the
receiver. This mechanism reuses objects, thus preventing the memory areas of
parent components from being exhausted. The only restriction is that message
objects should be RTSJ-safe – all the data contained in a message object must
be allocated in the same memory area. Hence, Compadres is less restrictive than
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programming profiles such as the Ravenscar [8], which strictly disallow many
features such as dynamic task allocation and dynamic priority assignment.

The shared object mechanism is inefficient in the case of message passing
between components that do not have the same parent component but have a
common ancestor, due to additional and expensive message copying. To optimize
this type of communication, we relay the messages from the ancestral memory
area using shadow ports. The Compadres framework provides a shadow port for
a scoped component to communicate directly with its non-immediate ancestors
without having to generate a message for its parent. For example, consider a
three-level component structure in which component C needs to communicate
with its grandparent A, but not with its parent B, illustrated in Fig. 5. In
this case, programmers specifies the direct connection between components C
and A. The compiler detects the need for a shadow port and generates the
port connection that allows direct communication between C and A. The data
structure for a regular port at B will not be generated and the message pool and
buffer are created only in the memory area of component A.

Component A

Component B

Component C

Component A

Component B

Component C
Shadow Port

Design-time Runtime

SMM

Fig. 5. The shadow port allows a child component to communicate with its ancestor
directly rather than via its parent

3 Performance Results

We built and tested two examples using Compadres. The first example was
designed to test Compadres’ pure overhead for a simple round-trip co-located
client-server request-reply. The second example was designed to test Compadres’
usefulness in a more complete, real-world example of an ORB.

3.1 Overhead of the Framework

We first implemented a simple co-located client-server example and measured
the round-trip time to send a client request message and receive a server reply
message. The Compadres implementation of the example is illustrated in Fig. 6,
and the programmer code is shown in Listings 7 and 8.
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At application startup, an instance of an ImmortalComponent (IMC) and SMM
are created in immortal memory, and the start() method is called. The IMC
creates an instance of a scoped memory component (Client) in a level-1 scoped
memory region, Client ports are added, and the message handler P2 Handler is
associated with the In port, P2. IMM sends a trigger message via P1 instructing
the Client to send a request message to the Server. When port P2 receives this
message, the process() method of P2 Handler is called and sends out a request
message to the server via Out port P3. Since Client and Server are defined as
siblings in the CCL file, the SMM creates the server component using connect()
in sibling scoped memory region and sends the request message to the Server.
This invokes the message handler for In port P4, which processes the request
and sends a reply via P5. The reply message is received by the message buffer
in SMM and routed to Client via P6.

IMC

SMMClient Server

Request

Reply

P1

P2 P3 P4

P5P6

send()
Intenal Port

External Port

Fig. 6. The client-server scoped memory example

Testing Environment. This first example was tested on three platforms:

1. a non-real-time Pentium system: a 865 MHz Pentium III processor (Copper-
mine, 256KB Cache) with 512MB PC133 ECC SDRAM, running TimeSys
Linux GPL 4.1 based on the Linux kernel 2.4.21, with the non-real-time Java
Virtual Machine (JVM) Sun JDK 1.4 default garbage collector;

2. a real-time Pentium system: the same Pentium and OS above, with the RTSJ
RI from TimeSys; and

3. a real-time Sun system: a Sun-Fire-V210 with a 1064 MHz UltraSPARC
processor, running SunOS 5.0, with Sun’s Mackinac[9].

Measurements. For all tests, measurements were based on steady state obser-
vations, where the system is run until the transitory effects of cold starts are
eliminated before collecting the measured observations. We used the maximum
of 10,000 observations as an estimate of a system’s “worst case,” a critical mea-
surement for real-time systems that must be designed with the assumption that
the system will always deliver the worst possible performance. A sample size at
least this large was necessary to observe a reasonable estimate for the maximum
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public class MyInteger {
public int value = 0;

}

public class ImmortalComponent extends
Component {

// Compadres framework creates
// ImmortalComponent in immortal memory
public SMM smm = new SMM(...);
//Define out-port
// addOutPort(out-port name, SMM object,
// msg type, destination in-port name)
public OutPort p1 = addOutPort("P1", smm

, MyInteger.class, "MyClient_P2");
public void _start(){

// Get a message from the pool and
// send it to the client component
MyInteger m = (MyInteger) p1.

getMessage();
// Send trigger msg with priority 2
p1.send(m, 2);

}
}

public class Client extends Component {
// addInPort(in-port name, SMM object,
// msg type, buffer size, threadpool
// strategy, min pool size, max pool
// size, message handler class)
public InPort p2 = addInPort("P2", imc.

smm, MyInteger.class, 10, 0, 1, 5,
P2_MessageHandler.class);

public OutPort p3 = addOutPort("P3",imc.
smm,MyInteger.class,"MyServer_P3");

public InPort p6 = addInPort("P6", imc.
smm, MyInteger.class, 20, 0, 1, 5,
P6_MessageHandler.class);

public void _start() {
}

}

Fig. 7. Implementation classes of immor-
tal and client components

public class Server extends Component {
public InPort p4 = addInPort("P4", imc.

smm, MyInteger.class, 20, 0, 1, 5,
P4_MessageHandler.class);

public OutPort p5 = addOutPort("P5",imc.
smm,MyInteger.class,"MyClient_P6");

public void _start(){}
}

public class P2_MessageHandler extends
MessageHandler{

public void process(Object data, SMM smm){
//Get reference to out-port
// connected to server
OutPort p3 = smm.getOutPort("P3");
MyInteger i=(MyInteger)p3.getMessage();
i.value = 3;
// take timestamp ts_0
. . .
p3.send(i, 3);

}
}
public class P4_MessageHandler extends

MessageHandler {
public void process(Object data, SMM smm){

// Get reference to out-port
// connected to client
OutPort p5 = smm.getOutPort("P5");
MyInteger i=(MyInteger)p5.getMessage();
i.value = 4;
p5.send(i, 3);

}
}
public class P6_MessageHandler extends

MessageHandler {
public void process(Object data, SMM smm){

// take timestamp ts_1
. . .

}
}

Fig. 8. Implementation classes of server
component and message handlers

latency because the maximum values tended to be extremely low-probability
events. The range of the observations, i.e., jitter, was used as another measure
of a system’s predictability.

Results. Our framework is reasonably predictable on both Mackinac and Timesys
RI, with jitter of 92μs and 55μs respectively, well within the 10ms described as
typically acceptable for distributed real-time systems [10] The distribution of the
round-trip latency values indicating maximum and minimum bounds is shown
in Fig. 9, while Table 2 lists the jitter for each platform. The jitter on JDK1.4
is large, most likely caused by the garbage collector preempting the application
threads. The jitter on Mackinac is larger than the jitter on Timesys RI; Timesys
RI was installed on a real-time OS and Mackinac on SunOS 5.10. Although
SunOS 5.10 provides some RT scheduling strategies, it is a non-real-time OS,
allowing some system threads to preempt the application threads.
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Table 2. Median and jitter of round-trip times on different platforms

Platform Median (μs) Jitter (μs)
Mackinac 99.58 92.17

RI 114.0 55.0
JDK1.4 56.43 317.27
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Fig. 9. Comparison of round-trip times of simple message passing

3.2 Constructing a Real-World Example: RT-CORBA

We use previous experience in building RTZen [5], an RTSJ implementation of
RT-CORBA, to construct a simple RT-CORBA ORB using Compadres. CORBA
exposes the ability to create and destroy CORBA components, such as POA and
Transport, to the application. RTZen enables this by assigning scoped mem-
ory areas to these components. When the user creates (destroys) one of these
components, the associated memory scope is created (freed). The design of the
Compadres ORB is based on RTZen and is illustrated in Fig. 10. The Com-
padres CORBA client is a 3-level scoped structure. The level-1 memory contains
an ORB component, which is allocated from immortal memory. Inside the ORB
component is the Transport component, created in the level-2 scoped memory
when a request message is received from the ORB component. When the client
application makes a remote method call to the server, the ORB sends a message to
the previously created Transport component. Upon receiving the message, the
Transport creates a MessageProcessing component to generate the request in
the level-3 scoped memory. After the MessageProcessing component obtains
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ORB

POA/ Acceptor

Transport

ORB

Transport

Message 
Processing

Client

Request 
Processing

Server

Fig. 10. Component structure of the Compadres ORB

the reply message from the server, it sends the result back to client application
and destroys itself.

The Compadres CORBA server is a 4-level scoped structure. Similar to the
client, the server-side application creates an ORB component in the level-1 im-
mortal memory. A POA/Acceptor component is created by the ORB component
in level-2 scoped memory. The POA/Acceptor component listens to and waits for
client request messages. Once a client request message comes in, the POA com-
ponent creates a Transport component in level-3 scoped memory to wait for
client request messages. Once a message is received, a RequestProcessing com-
ponent is created to process the client request in level-4 scoped memory. After
processing the request and sending the reply back to the client, this component
is destroyed.

With the hierarchical model of Compadres, it is easy for us to define and reuse
components for the modules of CORBA. Although the Transport components
of Client and Server are located in different memory levels and connected to
different data processing components, we can reuse the Transport component at
both the Client and Server. In addition, binding memory area with components
at design time makes the memory hierarchical structure clearer and easier to
maintain. Finally, the lifetime of each component matches the lifetime of each
CORBA module.

3.3 Comparison of RT-CORBA with Compadres and RTZen

We compared our RT-CORBA ORB implementation using the Compadres frame-
work’s round-trip latency and jitter on a real-time platform with that of RTZen.2

Both RTZen and the Compadres ORB demos were run on the same real-time
platform, Timesys Linux and RI. Moreover, both server-side and client-side were
run on single machine connected via loopback network. Since performance varied
2 For the purposes of this experiment, the Compadres ORB can be considered to be

functionally similar to RTZen; it includes marshalling and demarshalling, the most
computationally-intensive modules of CORBA. The policy check mechanism has not
been implemented, but it is not a computing intensive module and would not incur
much overhead.
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Fig. 11. Comparison of round-trip times of RTZen with the Compadres ORB for dif-
ferent message sizes

across different message sizes, we compared the two ORBs for the message size
from 32 to 1024 bytes.

Both RTZen and the Compadres ORB are highly predictable, with the jitter
value of 230μs and 300μs respectively. The Compadres ORB has a slightly larger
jitter, likely caused by the scoped memory managers (SMMs). The distribution
of the round-trip latency values is illustrated in Fig. 11, with the maximum
and minimum bound indicated and with the ‘x’ representing the median la-
tency. Again, the typical performance and predictability of both RTZen and
the Compadres ORB are within 10ms, typically acceptable for distributed real-
time systems [10]. In general, these jitter values are close to the expected values
and highlight the predictability of RTSJ. Hence, our model demonstrates both
predictability and low overhead.

4 Related Work

During the last decade several component-based real-time (CBRT) frameworks
have been proposed [11,12,13,14]. However, none of these CBRT frameworks
are based on RTSJ and, therefore, they do not deal with the complexities of
the RTSJ’s memory model. In the RTSJ domain, our previous work [15] was
the first to bring together the ease-of-use of programming in Java with the
real-time predictability of RTSJ using a component-based approach. Compadres
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compliments our previous work by providing a component model that supports
the notion of ports and enables asynchronous communication. A similar RTSJ-
based component framework is presented in [16]. It allows active and passive
components to be created in individual scopes, uses a Connector component to
specify the mode of connection between components, and allows creating and
binding sub-components hierarchically.

Scoped Types and Aspects for real-time Java [17] presents an approach to re-
duce the programming complexity of RTSJ by allocating objects in scopes based
on their types. This rule enables static checking and ensures that an assign-
ment does not breach the program structure. However, it requires making minor
changes to the virtual machine and uses aspects to separate real-time concerns
from the Java code. Reflexes [18] is a an alterative to the RTSJ model; the au-
thors use Java annotation to specify the object type as stable or dynamic, which
allows the detection of illegal memory reference at compile time and eliminating
runtime memory checks. However, it is very restrictive– it requires assigning one
thread per reflex, prevents object reference across reflexes, and does not allow
for memory hierarchy.

5 Conclusion

The RTSJ brings real-time performance to Java applications, but presents pro-
gramming difficulties due to its memory model. We have presented Compadres,
a component model that abstracts away the programming difficulty of RTSJ,
while leveraging the advantages of component-based programming. In its cur-
rent state, it provides predictability, RTSJ specification compliance, and reduces
programming complexity. It provides a solid foundation for further research into
implementations of real-time applications based on Java. Future work includes
performance optimization of the component framework, developing a graphical
user interface for connecting components, and code generation for transparently
handling remote communication over a network.
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