
A Policy Management Framework for
Content-Based Publish/Subscribe Middleware

Alex Wun and Hans-Arno Jacobsen

University of Toronto
Toronto, Canada

{wun,jacobsen}@eecg.utoronto.ca

Abstract. Content-based Publish/Subscribe (CPS) is a powerful
paradigm providing loosely-coupled, event-driven messaging services.
Although the general CPS model is well-known, many features remain
implementation specific because of different application requirements.
Many of these requirements can be captured in policies that separate ser-
vice semantics from system mechanisms, but no such policy framework
currently exists in the CPS context. In this paper, we propose a novel
policy model and framework for CPS systems that benefits from the
scalability and expressiveness of existing CPS matching algorithms. In
particular, we provide a reference implementation and several evaluation
scenarios that demonstrate how our approach easily and dynamically
enables features such as notification semantics, meta-events, security
zoning, and CPS firewalls.

Keywords: Publish/Subscribe, Policy, Security, Configurability.

1 Introduction

To date, many publish/subscribe (pub/sub) systems have been developed to
provide loosely-coupled, event-driven messaging services [1,2,3,4,5,6]. In par-
ticular, the Content-based Publish/Subscribe (CPS) paradigm is designed to
support flexible and dynamic enterprise applications by routing on message con-
tent rather than destination identities or explicit network routes. Although the
general CPS model is well understood, many CPS feature details still remain
non-standardized for the good reason that different application scenarios have
different requirements. While some CPS features can be addressed with sys-
tem reconfigurability [7,8], others are more suitably expressed in policies that
separate application requirements from infrastructure mechanisms [9,10]. For ex-
ample, advanced features such as notification semantics, meta-events, security
zoning, and CPS firewalls are appropriate for being realized as policies. These
kinds of novel CPS features depend on being able to dynamically change system
behaviour and are achievable through the flexibility of policies. However, no such
policy framework currently exists in the CPS context. To address this problem,
we present a content-based policy framework that is scalable, expressive, and
extensible. Our policy framework supports a novel approach that applies poli-
cies based on the results of content-based matching. We find that this approach

R. Cerqueira and R.H. Campbell (Eds.): Middleware 2007, LNCS 4834, pp. 368–388, 2007.
c© IFIP International Federation for Information Processing 2007

A Policy Management Framework 369

enables many unique CPS capabilities that would otherwise be difficult or costly
to achieve. In particular, we present a novel post-matching policy model capable
of achieving scalable and expressive CPS policies. We also present a reference
implementation of our policy framework using the PADRES 1 CPS middleware
platform and a number of evaluation scenarios to highlight several unique and
novel CPS features that become possible with our approach.

We first overview related work in Sec. 2 before presenting the concepts for
our policy framework in Sec. 3. Our implementation is presented in Sec. 4 and
several scenarios used to evaluate our approach are presented in Sec. 5. Finally,
we conclude and discuss future work in Sec. 6.

2 Related Work

While there has been little research to date on policies in the CPS context, we
are aware of the following related work. Opyrchal et al. [11] address issues of
publication privacy in the context of pervasive environments using a centralized
policy engine. Our work is different from theirs in many respects since they focus
specifically on providing access control on publications. In addition to being dis-
tributed, our policy framework does not specifically target access control policies
but also general feature and service policies such as notification semantics. Be-
lokosztolszki et al. [12] incorporate Role-Based Access Control (RBAC) into the
Hermes pub/sub system [3]. They address issues of policy management, broker
trust, and access control optimization. Our work represents a different approach
to pub/sub policies that targets issues orthogonal to RBAC in unstructured
rather than structured overlays. Sturman et al. [13] propose a pub/sub architec-
ture capable of message transformations. Our focus is not on the transformations
themselves, but a framework that can support specifying policies on when and
how to perform transformations among other features. In general, we are intro-
ducing a policy model that has significant expressiveness benefits complementing
existing work.

Reconfigurable pub/sub systems allow the customization of middleware to suit
the needs of different applications. Cugola and Picco [7] address issues of overlay
and routing configurability by implementing a modular system architecture cus-
tomizable at deployment time. Sivaharan et al. [8] present a component-based
framework that allows pub/sub systems to easily cope with the diversity of mo-
bile and heterogeneous network environments. Both are flexible systems that
can be reconfigured with different pub/sub semantics as necessary. Our work
is complementary because it addresses a different problem of separating system
policies from mechanism, allowing applications to specify how a configured and
running system should provide its services based on message content. Indeed,
a benefit of our approach is that the main framework can be implemented in
well-componentized, interceptor-based, or aspect-oriented system architectures
without too much difficulty.

1 http://padres.msrg.utoronto.ca (extended version of paper also available)

370 A. Wun and H.-A. Jacobsen

In the domain of traditional network environments, there is already a signifi-
cant amount of work on policies addressing various issues from Quality of Service
(QoS) to network management and security [14,15,16]. Stone et al. [17] present
a survey of existing network policy languages and also propose their own Path-
based Policy Language. Their approach explicitly declares the nodes in a network
path to which policies are applicable. This approach is clearly not suitable in the
CPS domain since it fundamentally conflicts with the paradigm of decoupling
clients from message routing details. Agrawal et al. [18] present a policy-based
system for autonomic management of computing resources. However, their work
is again applicable in a different domain. The WS-Policy framework [19] focuses
on providing an extensible syntax to express policies between Web service end-
points. However, not only is our focus on developing an actual policy mechanism
rather than a syntax for expressing policies, the distributed CPS domain also
has many concerns not addressed by end-point interactions such as routing. Ex-
isting policy frameworks for traditional network environments generally do not
migrate easily into the CPS domain.

3 Content-Based Policy Framework

In this section, we introduce the main concepts of our content-based policy
framework and discuss the implications of our approach with respect to policy
composition and application in a distributed CPS system.

3.1 The Post-matching Policy Model

Since content-based matching algorithms are an integral part of CPS systems, the
natural intuition is to protect these systems by enforcing policies before messages
reach the matching algorithm. Although our policy framework supports enforcing
policies before matching, such an approach does not easily achieve content-based
expressiveness without duplicating the functionality of matching algorithms and
incurring additional overhead. CPS systems generally provide highly scalable and
expressive message filtering capabilities already [1,2,20]. By leveraging the high-
performance matching algorithms that already exist, it is possible to build a policy
framework that achieves the same scalability and expressiveness as the host CPS
system itself. The basic concept behind our policy framework is summarized in
Alg. 1 using an event-condition-action policy model [21].

In this model, a content-based match event serves as the trigger for policy
application, which involves evaluating policy conditions and executing policy ac-
tions. Hence, we refer to this semantic as the post-matching policy model. While
the model itself is deceptively simple, it enables a powerful policy framework
since any application context that surfaces as message content is also reflected in
the policy framework. Note that since we only depend on the notion of a content-
based match event, this model is applicable to any CPS system that performs

A Policy Management Framework 371

when content-based match occurs
if additional policy condition(s) satisfied then

perform
Action1;
. . . ;
Actionn;

Algorithm 1. Post-matching policy model

matching at the message granularity2. The remainder of this paper focuses on
the post-matching policy model even though we also support enforcing policies
before matching in our framework.

3.2 Policy Framework Approach

More formally, our approach associates each filter F (advertisement or subscrip-
tion) with an optional policy statement T 3, which contains one or more pol-
icy rules. Policy rules specify the conditions to evaluate and actions to execute
when the policy is applied. When a message M is processed by a CPS broker,
the matching algorithm computes a set Φ = {(F1, T1), (F2, T2) . . . (Fn, Tn)} of
matching filters Fi and their associated policy statements Ti containing policy
rules applicable to M . Applying the policies T1 . . . Tn against M involve evaluat-
ing the conditions and executing the actions specified in the policy rules of each
policy statement. The result of applying the policies could include the rejection of
M for routing, transformations on the format or content of M , or the triggering
of other actions such as broker state maintenance and debugging. Essentially, our
policy framework extends the CPS paradigm by giving applications the ability
to specify policies intercepting content-based match events. In Sec. 5, we present
example scenarios to highlight the benefits of the post-matching model and this
approach.

It is important to note that the computation of Φ does not require any addi-
tional processing beyond what is already performed by the existing matching al-
gorithm. If M is a publication, then Φ contains matching advertisements and sub-
scriptions as computed by the matching algorithm. If M is a subscription, then
Φ contains matching advertisements. For example, suppose a client issues two
advertisements A1 = [(x < 100), (y < 50)] and A2 = [(x > 75), (y < 100)] to its
local broker. Policies Ta1 and Ta2 are associated with advertisements A1 and A2,
respectively. When the broker receives a subscription S1 = [(x > 25), (y < 75)]
that intersects with both A1 and A2, the application of both policies Ta1 and
Ta2 against S1 is triggered. In contrast, a subscription S2 = [(x < 100), (y > 75)]
would only trigger application of policy Ta2 because the subscription only in-
tersects with advertisement A2. Suppose there is a further policy Ts1 associated
with S1. Then a publication P1 = [(x, 90), (y, 30)] would trigger application
2 This excludes matching algorithms that compress message sets into bit vectors, for

instance, but includes topic-based approaches.
3 From here on, we will use the terms “policy statement” and “policy” synonymously.

372 A. Wun and H.-A. Jacobsen

of all three policies Ta1, Ta2, and Ts1 against P1. In contrast, a publication
P2 = [(x, 30), (y, 30)] only triggers application of policies Ta1 and Ts1. In this
way, the content-based expressiveness of the hosting CPS system is reflected in
the policy framework.

Although we have discussed our approach in the context of advertisement-
based semantics, these concepts are equally applicable in the context of subscrip-
tion-based semantics.

3.3 Implications for Policy Composition

Deploying an application in a CPS system involves the decomposition of appli-
cation contexts into messages. In this process, the application developer thinks
in terms of event schemas4 and event spaces5. Consequently, it is natural for
an application developer to compose an overall policy by designing policies
around the event schemas and event spaces that make up the application. By
associating policies with filters, we implicitly achieve policy composition [22]
with content-based expressiveness. For example, consider a supply-chain scenario
where inventory report publications Pi = [(class,report), (d1, xi1) . . . , (dn, xin)]
with many data attributes are issued regularly. A management application sub-
scribing to reports may consider d1 to be a critical attribute. As such, if the
value xi1 of that attribute is above a certain threshold, then the client would
like to know the identity of the previous overlay hop of the message for track-
ing purposes. On the other hand, if xi1 is below a certain value, then the
remaining attributes are uninteresting so the client would like the broker to
remove them before delivering the notification. To achieve this, the manage-
ment application can issue two subscriptions S1 = [(class=report), (d1 > Xhigh)]
and S2 = [(class=report), (d1 < Xlow)] with policies T1 and T2 associated
with each, respectively. Policy T1 = AppendPrevHop() specifies a single ac-
tion that appends the attribute (PrevHop ID) to the notification while policy
T2 = RemoveAttributes(d2, . . . , dn) specifies a single action that removes the
given list of attributes from the notification. With these policies in place, notifi-
cations delivered to the management application may now have an extra PrevHop
attribute, missing d2 . . . dn attributes, or both depending on the value of the d1
attribute. Furthermore, the management application is able to specify this no-
tification policy without affecting other clients subscribing to the same events
since the policies are only associated with subscriptions belonging to the manage-
ment application clients. In this example, policies T1 and T2 have been composed
together to specify a notification semantic for inventory reports by leveraging
the content-based filtering capabilities of subscriptions, which already exist as a
fundamental concept in CPS systems. No additional policy-specific composition
language or content-based processing is needed in our approach. In contrast,
a generic policy framework layered on top of the CPS system would need to
explicitly process the contents of publications to achieve the same result.

4 Advertisements or message type definitions.
5 The set of all possible messages matching a filter.

A Policy Management Framework 373

3.4 Interception Points in CPS Overlays

The CPS policy concepts we have presented so far are equally applicable in both
centralized and distributed CPS systems [1,2,4,20]. In particular, we have ad-
dressed when policy application occurs – either before or immediately after a
content-based match event. For distributed CPS systems however, it is equally
important to address where in the overlay policy application occurs. For in-
stance, are policies only applied at edge brokers? Or are they applied at every
overlay hop? Since there are valid scenarios for either case, our approach lets ap-
plications specify where policy application occurs based on interception points.

Fig. 1. Policy interception points

The three important interception
points are ingress, egress, and rout-
ing, which correspond to the brokers
at which a message enters, leaves, and
routes through an overlay. Fig. 1 il-
lustrates the concept of interception
points. Note that for a single isolated
overlay, ingress and egress points cor-
respond to the brokers at which injec-
tion and notification occurs between
brokers and clients. However, in a fed-
erated CPS system, ingress and egress
points correspond to the brokers at
the edges of sub-overlays.

4 Policy Framework Implementation

In this section, we present the implementation of our policy framework, which
builds upon the model and approach described earlier. In particular, we describe
the mechanisms for creating, distributing, and enforcing content-based policies
in a distributed CPS system. Our framework is built on top of PADRES [5],
an existing rule-based CPS middleware platform implemented by our research
group in Java.

4.1 API and Language

Only minor changes to the API are needed to support our policy framework. The
subscribe(msg), advertise(msg), and publish(msg)methods previously used
by clients have simply been extended to accept an optional policy statement ar-
gument, resulting in subscribe(msg, policy), advertise(msg, policy), and
publish(msg, policy) as the new API. For advertisements and subscriptions,
setPolicy(msgID, policy) also allows for specifying policies after the mes-
sage has already been issued. There is a factory class that can create commonly
used policy statement objects directly, but it is also possible to build a policy
statement from either XML specifications or a more compact language shown

374 A. Wun and H.-A. Jacobsen

in Fig. 2. However, our focus in this paper is on developing the policy frame-
work mechanisms rather than providing a specific syntax for writing policies.
This language represents the construction of a single self-contained policy state-
ment. Each policy statement contains one or more policy rules enclosed by the
On(...) keyword and two mandatory parameters that define policy rule types.

1 PolicyStatement {
2 On (
3 [Forward | Insert],
4 [Advertisement | Subscription
5 | Publication | Unsubscription
6 | Unadvertisement]) {
7
8 @matching: [Before | After]?
9 @broker: [Ingress | Egress | Routing]*

10 @attach: [Never | Always | KeepExisting
11 | IfYield]?
12 @yield_attach: [False | True]?
13
14 If <conditions ...> Then <actions ...>
15 Elseif <conditions ...> Then <actions ...>
16 ...
17
18 OnException {
19 If <conditions ...> Then <actions ...>
20 Elseif ...
21 } } }

Fig. 2. Policy language

The parameter choices on line 3
specify whether the rule is ap-
plicable to messages being for-
warded or to messages being
inserted into broker routing ta-
bles. The parameter choices on
lines 4 to 6 specify which type
of message the policy rule is ap-
plicable to. Lines 8 to 12 show
optional qualifiers that further
define when and where the pol-
icy is applicable. When the rule
is applied, the conditions specified
on line 14 are evaluated and the
actions are executed if the condi-
tions all return true. Subsequent
condition clauses are only eval-
uated if the preceding condition
clause fails. Line 18 encloses con-

ditions to evaluate and actions to attempt if an exception occurs when applying
the rule. In the following sections, we discuss how this is used to specify policies
and control how they are applied.

4.2 Creation and Distribution of Policies

Using the new API, both clients and brokers can create policies either when
CPS messages are first issued or by associating policies with filters (advertise-
ments and subscriptions) at any time afterwards. For instance, advertise(msg,
policy) attaches a policy to the advertisement when it is issued. The at-
tached policy is routed along with the advertisement and stored by brokers,
who associate the policy with the advertisement. Similarly, subscribe(msg,
policy) attaches a policy to the subscription that is routed through the over-
lay and stored by brokers. The policies stored by brokers can also be set using
setPolicy(msgID, policy), which updates the policy associated with either
an advertisement or subscription. In general, a policy that routes with a mes-
sage in the overlay is said to be attached, while a policy that is stored by a
broker and linked to a filter is said to be associated. Policies can be attached to
any CPS message type but can only be associated with either advertisements or
subscriptions.

Table 1 summarizes the available methods for specifying policies applicable
to each message type. For example, publication policies (i.e., policies applied

A Policy Management Framework 375

Table 1. Specification methods for policies

Policy \ Message Adv. Sub. Pub. Unadv. Unsub.
Adv. Attached × × × ×
Sub. On(*) Attached × × ×
Pub. On(*) On(*) Attached × ×
Unadv. On(*) × × Attached ×
Unsub. × On(*) × × Attached

to publications) can either be specified by policies associated with advertise-
ments and subscriptions using the On(Publication) qualifier or attached to the
publication itself, while unsubscription policies can only either be specified by
policies associated with subscriptions using the On(Unsubscription) qualifier
or attached to the unsubscription itself. Similarly, advertisement policies can
only be created and attached to the advertisements they are to be applied to.
However, subscription policies can either be attached directly to the subscrip-
tion or associated with advertisements as On(Subscription) policy rules. In
the latter case, the @attach and @yield attach qualifiers can additionally be
used to allow subscriptions to inherit the policy from the advertisement. That
is, the subscription policy associated with the advertisement can be attached to
the subscription rather than applied normally. These additional qualifiers allow
greater control over the specification of default policy attachments.

4.3 Enforcing Applicable Policies

Brokers are solely responsible for interpreting and enforcing the policies applica-
ble to messages they receive. When a policy is enforced by evaluating conditions
or executing actions, we say that the policy is being applied to a message. In
general, if a broker receives a message M with a policy TM attached to it and M
matches a set of filters {F1, · · · Fn} associated with a set of policies {T1, · · · , Tn},
then the set {TM , T1, · · · , Tn} contains all policies potentially applicable to M .
However, the applicability of a policy rule to any given message depends on a
combination of the policy rule type and the policy rule qualifiers6. For instance,
a publication matching an advertisement-associated policy that contains only
subscription rules will not have any of those rules applied to it. Two qualifiers
are currently supported to further specify when and where a policy rule is ap-
plicable.

The @match qualifier specifies whether the rule is applied before or after the
message goes through content-based matching. Rule application before matching
is supported since some policies may require checking conditions or executing
actions before accepting the message for matching. Policies for fast message for-
warding that bypass matching altogether or content-independent authorizations
are more appropriate for application before matching, for example. However,

6 From here on, we will use the terms “policy rule” and “rule” synonymously.

376 A. Wun and H.-A. Jacobsen

such policies do not benefit from the advantages of scalability and expressive-
ness that are possible with rules applied after matching. More specifically, a
powerful implication of evaluating rules after matching is that the rules are se-
lectively applied based on message content. We focus on exploring the benefits
of post-matching policy rules with our evaluation scenarios in Sec. 5.

The @broker qualifier specifies the broker overlay contexts where the rule is
applicable and can be any combination of ingress, egress, and routing as shown
in Fig. 1 and discussed in Sec. 3. Ingress rules are evaluated for messages entering
the CPS system, egress rules are evaluated for messages leaving the CPS system,
and routing rules are evaluated for messages at internal brokers.

Together, the @match and @broker qualifiers give applications significant flex-
ibility in specifying when and where policy rules are applicable.

4.4 Framework Extensibility with Modular Rule Elements

Fig. 3. Policy rule structure

The level of functionality achievable
in our framework depends on the
conditions and actions supported in-
side policy rules. In our framework,
all conditions and actions are im-
plemented as rule elements chained
together inside policy rules. Every
policy rule contains one or more rule
element chains. Applying a policy rule
essentially involves traversing its rule
element chains, evaluating and exe-
cuting the corresponding conditions and actions as appropriate. Fig. 3 shows an
example of how conditions and actions are represented as a policy rule. In this ex-
ample, the rule elements A, B, C are accessed in order first. Should the conditions
corresponding to either rule elements A or B fail for instance, then the next chain
consisting of rule elements D, E, F is accessed. Recall that a single policy state-
ment may also contain multiple policy rules, one for each type of message at each
interception point. If an exception occurs while traversing the rule elements, com-
pensation policy conditions and actions as specified in the OnException clause
shown in Fig. 2 are accessed. Further exceptions during compensation actions
are no longer handled by the policy framework itself and instead, a meta-event
(as presented in Sec. 5) that describes the exception is generated.

Although we have already implemented a number of rule elements presented in
Sec. 5 that cover a wide range of CPS functionality, our framework is designed to
be easily extensible with new rule elements in response to emerging application
requirements.

5 Evaluation Scenarios

In this section, we evaluate our policy framework by applying it to a number
of different scenarios, demonstrating the expressiveness and flexibility achieved

A Policy Management Framework 377

using the language presented in Sec. 4. Several of these scenarios represent novel
CPS features that become easy to specify and implement using our policy frame-
work. Where appropriate, we also present experimental data resulting from the
implementation of these scenarios. We do not include any experimental data for
scenarios that are purely functional and instead present only the associated poli-
cies. Since we focus on the post-matching model, all policy statements shown
are implicitly qualified with @matching: After to avoid repetition in presen-
tation. All experiments presented in this section were run using separate Intel
Dual Xeon 3.xGHz processor, 2GB memory systems for each broker or client.
We divide our evaluation into two broad scenario categories: CPS semantics and
security.

5.1 Specifying CPS Semantic Policies

Since there has been no standardization of CPS implementations, there are still
many subtle operational semantics that are open to interpretation by imple-
menters. As such, it is useful to have a flexible CPS system that allows cus-
tomization of operational semantics according to the needs of applications. The
following examples highlight how we can dynamically tune system semantics
using policies.

Notification Semantics. Although the semantic of delivering notifications
only to interested subscribers is well-established [1,2,3,4,6], the actual con-
tent delivered in notifications typically remains an implementation decision.
However, different applications may want notifications delivered to them
in different forms. Suppose there is a stream of publications of the form
Pi = [(class,event), (a1, vi1), . . . , (an, vin)]. A subscriber issuing a subscription
S =[(class=event), (a1 > x1), . . . ,(ak > xk)] can optionally associate
the policy in Fig. 4 with S. This policy specifies that just before notifications

PolicyStatement {
On(Forward,Publication) {

@broker: Egress
If {} Then {TrimAttributes()}

} }

Fig. 4. Notification policy

are delivered to the subscriber (at Egress bro-
kers), they are “trimmed“ to match attributes
in the subscription. In this example, attributes
ak+1 . . . an would be removed from all Pi since
they do not appear in the subscription. The
TrimAttributes() action automatically selects
attributes for removal based on the subscription,
but other possible notification semantic actions
include RemoveAttributes(attributeList)

and KeepOnlyAttributes(attributeList), which allow a subscriber to
remove or keep a specified list of attributes, respectively. Although we expect
some performance improvement from removing unnecessary attributes, it is not
immediately obvious exactly how much improvement can be achieved because
of other factors such as message header overhead.

Fig. 5 shows that the effects of trimming attributes on network traffic are
still very significant in our system despite message header overheads. We used

378 A. Wun and H.-A. Jacobsen

three different streams of publications consisting of 10, 20, and 30 attribute pub-
lications. A subscription was associated with policies for removing from 0 to all
attributes. The solid lines for each stream show the network usage of receiving
full publications and the dashed lines show the network usage of delivering the
same publications if notification policies are applied. The values shown are aver-
ages over 100 publications. Clearly, even removing a small number of unwanted
attributes could mean substantial overall network performance improvements
when delivering to large numbers of subscribers. Since the infrastructure cannot
always predict application workloads, our framework allows applications to help
optimize performance by specifying exactly which attributes are relevant and
should be delivered.

0 5 10 15 20 25 30
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

No. of trimmed attributes

N
et

w
or

k
us

ag
e

(K
B

 p
er

 m
es

sa
ge

)
Received
Transmitted

Fig. 5. Trimming notifications

In addition to improving net-
work performance, notification poli-
cies have functional benefits as well.
Transformation from one syntax to
another is also easily expressed using
the same policy by using the appropri-
ate action such as ToXML(). The ac-
tions can of course be stacked as well
to compose more complicated notifi-
cation policies such as

Then {TrimAttributes(), ToXML()}

that both trims the notification and
then converts it to XML syntax. For example, such transformation policies can
be used to create proxy brokers between different CPS infrastructures that re-
quire different message formats by using the @broker: Routing qualifier and
specifying appropriate conditions and actions such as

If {AuthenticateReceiver(Domain1)} Then {ToFormat1()}
Elseif {AuthenticateReceiver(Domain2)} Then {ToFormat2()}

The important point is that different subscribers may specify different notifica-
tion policies, thereby receiving different versions of the same event. Note also
that no condition has been specified in the policy we show here, but it is easy
to imagine how notification semantics can be combined with conditions such as
authentication to achieve access control.

Distributed Tracing. Although keeping the infrastructure transparent to
clients is an important CPS feature, applications sometimes need information
about the infrastructure for monitoring or debugging purposes. Policies are well-
suited for specifying this type of message content augmentation on an as-needed
basis for applications. For example, consider the policy in Fig. 6.

This policy specifies that at every broker hop, publications are augmented with
information about the broker, the load state of the broker, and the total time
spent processing the publication. When attached to publications, this policy is

A Policy Management Framework 379

applied on a per-publication basis and does not affect other publications that do
not have the policy attached. Consequently, this is most useful if tracing is only
needed occasionally. Alternatively, the policy can be automatically attached to
publications by adding the @attach: Always qualifier and associating the policy
with an appropriate advertisement, which would give tracing information to all
subscribers by default. Associating the policy with subscriptions would instead
allow the augmentation to occur on a per-subscriber basis. The @broker qualifier
and If{} conditions can of course also be changed to restrict augmentation to
certain brokers. The unique combination of content-based expressiveness, policy
language, and policy framework gives applications great flexibility in choosing a
suitable tracing semantic.

The actions shown here place augmented
PolicyStatement {

On(Forward,Publication) {
@broker: Ingress,Egress,Routing

If {}
Then {AugmentBrokerHostInfo(),

AugmentBrokerLoadIndex(),
AugmentProcessingTime()}

} }

Fig. 6. Tracing policy

data into a binary payload that is part of
the publication, but similar alternative ac-
tions can instead extend the publication by
placing augmented data into reserved CPS
attributes. The second method would allow sub-
scribers to further specify notification semantics
on tracing attributes even when advertisement-
associated or publication-attached tracing poli-
cies are used.

Meta-Events and Triggers. Sometimes events in the CPS system itself can
be of interest to clients and brokers. As such, our policy framework enables
generating publications based on system events such as matches occurring un-
der certain conditions. For example, consider the policy in Fig. 7. This policy

PolicyStatement {
On(Insert,Subscription) {
@broker: Ingress

If {MessageSizeIndex() > 0.8
&& BrokerLoadIndex() > 0.75}

Then {UninsertMessage(),
Publish("[class,DropMessage]

,[cause,’Broker load’]
,[message,$Message]")}

}

On(Forward,Subscription) {
@broker: Ingress

If {MessageSizeIndex() > 0.8
&& BrokerLoadIndex() > 0.75}

Then {BlockMessage()}
} }

Fig. 7. Meta-event policy

specifies that if a large subscription is injected at a time when the broker is suf-
ficiently loaded, then the subscription is not stored in routing tables (uninserted
using the UninsertMessage() action) and also prevented from propagating any
further (blocked using the BlockMessage() action). Furthermore, a publication
is internally generated by the policy framework regarding this event using the
Publish() action. The variable $Message inserts the offending subscription as a
string into the generated publication content. Internally generated publications
are processed by the same broker that generated it and treated as a normal

380 A. Wun and H.-A. Jacobsen

publication for matching and routing purposes. Effectively, this policy speci-
fies a simple load resilience scheme where interested subscribers are notified of
dropped subscriptions. The dropped subscription event may be relevant to ap-
plications for recovery purposes or to system management services for resource
provisioning.

Note that this policy does not necessarily affect all subscriptions since the ap-
plication can choose which subscriptions are potentially dropped by associating
this policy with the appropriate advertisements. For instance, associating this
policy with the advertisement A = [(class = CustomerOrder), (priority < 5)]
specifies that only subscriptions to low priority customer orders will be dropped
and all other subscriptions will be unaffected by the policy. This kind of policy is
not possible in normal pre-matching policies or generic policy framework layers
without duplicating content-based functionality.

Flooding Semantics. In terms of routing efficiency, there are some situations
in which flooding subscriptions may be preferable to flooding advertisements.
This can be the case if a particular application consists of many publishers and
only a few subscribers interested in content from all publishers or if publishers are
highly mobile while subscribers are mostly stationary. Our CPS system is based
on advertisement flooding by default, but preference for subscription flooding
can be specified using the policy in Fig. 8.

When attached to advertisements, this pol-

PolicyStatement {
On(Forward,Advertisement) {

@broker: Ingress,Routing

If {} Then {BlockMessage()}
}

On(Forward,Subscription) {
@broker: Ingress,Routing

If {} Then {FloodMessage()}
} }

Fig. 8. Flooding policy

icy prevents the advertisement from prop-
agating beyond a single broker hop using
BlockMessage(). Furthermore, any subscrip-
tion that matches an advertisement associated
with this policy will be tagged for flooding to all
neighbours. A broker can control which event
schemas are flooded by internally generating
an appropriate advertisement and associating
this policy with it. For example, a group of
brokers can agree to flood infrastructure man-
agement subscriptions by internally storing the
advertisement A = [(class = BrokerManage-

ment), · · ·] in each of their own routing tables associated with the above policy.
Notice that the enforcement of subscription flooding is left up to the discretion
of brokers and does not occur at brokers that do not similarly store this policy.

We set up the scenario shown in Fig. 9 where subscribers are situated at
different brokers and remain stationary while publishers move from broker to
broker frequently in between issuing publications. This scenario reflects charac-
teristics found in applications where mobile clients need to continuously send lo-
cation and status updates to home servers, for instance. Fig. 11 shows that under
the normal advertisement flooding scheme, advertisement, unadvertisement, and
subscription messages are continuously routed throughout the network as the
application runs. Subscriptions are routed as a result of the unadvertisements/re-
advertisement process, which triggers removal and re-propagation of subscrip-

A Policy Management Framework 381

Fig. 9. Highly mobile publishers

0 50 100 150 200 250
0

500

1000

1500

2000

2500

Notification no.

R
es

po
ns

e
tim

e
(m

s)

Advertisement Flooding
Subscription Flooding

Fig. 10. Negligible policy overhead

tions. However, if a subscription flooding policy is used, then no additional ad-
vertisement or subscription messages need to be routed while the application
runs since subscribers remain stationary. Fig. 12 shows that significant network
traffic is saved by using subscription flooding. Furthermore, the subscription
flooding policy only incurs overhead when the advertisements are initially is-
sued and subscriptions are flooded. Subsequent notification response times are
unaffected as Fig. 10 shows.

Of course, there are reverse scenarios (such as subscriber mobility) that favour
advertisement flooding instead. However, our purpose is only to show that differ-
ent application scenarios can benefit significantly from different flooding seman-
tics. With our policy framework, both semantics can be active simultaneously
and specified on a per event schema basis.

5.2 Specifying Security Policies

Although security mechanisms are typically orthogonal to the policy framework,
security behaviours can still be specified at the CPS level. We implemented a
simple security mechanism for use with our policy framework in which authen-
tication and encryption is based on Trust Group membership. Trust groups are

1 2 3 4 5
0

50

100

150

200

250

300

Broker

M
es

sa
ge

 C
ou

nt

Fig. 11. Normal advertisement flooding

1 2 3 4 5
0

20

40

60

80

100

120

140

160

180

200

Broker

M
es

sa
ge

 C
ou

nt

Publications
Subscriptions
Advertisements
Unadvertisements

Fig. 12. Subscription flooding policy

382 A. Wun and H.-A. Jacobsen

conceptually similar to secure multicast groups [23]. Each trust group is associ-
ated with a shared group secret Kg so that members of the same group are able
to perform authentication and encryption within the group. To establish Kg,
there must be an out-of-band bootstrapping process to either set up Kg directly
or set up public/private keys on the appropriate clients and brokers so that Kg

can be exchanged securely. We support both bootstrapping methods since the
first has the advantage of simplicity and low overhead while the second method
is more flexible.

Authenticated Event Scope. Although advertisements are normally flooded
in our CPS system, trust group authentication can be used to limit the visibility
of events in the overlay on a per schema basis by issuing advertisements attached
with the policy in Fig. 13. This policy specifies that the advertisement must only
be sent to brokers belonging to either the TrustGroup1 or TrustGroup2 trust
groups. If the receiver of the advertisement is successfully authenticated, the
advertisement is sent normally and no additional special actions are performed.
However, if authentication fails for both groups, the delivery of the advertisement
is blocked by the BlockMessage() action. Alternatively, the condition

If {AuthenticateReceiver(TrustGroup1)
&& AuthenticateReceiver(TrustGroup2)}

can be used to specify that only brokers belonging to both trust groups will
receive the advertisement. Although authentication is currently based on trust
group membership, the same policies can be used to express authentication based
on other mechanisms such as public key identities or Role-Based Access Con-
trol [12] since the actual authentication process uses out-of-band mechanisms.

PolicyStatement {
On(Forward,Advertisement) {
@broker: Ingress,Routing

If {AuthenticateReceiver(
TrustGroup1)} Then {}

Elseif {AuthenticateReceiver(
TrustGroup2)} Then {}

Elseif {} Then {BlockMessage()}
} }

Fig. 13. Authentication

Fig. 14 shows publication processing time
when a sender-authentication policy is in place
between two brokers (the policy is associated
with a subscription). Each step in the plot rep-
resents 0, 1, 3, and 5 different trust group au-
thentications required by the policy. For the
“Authorization” line, the receiving broker is
able to authenticate the sending broker for
all five trust groups. Since authentication re-
sults are not cached, the authentication proto-
col must run for every publication, resulting in
worst case performance that is proportional to

the number of trust groups specified in the policy. For the “Denial” line, the
sending broker belongs to no trust groups so that authentication fails on the
first attempt regardless of how many trust groups are specified in the policy.
However, by caching authentication results, we can avoid running the authenti-
cation protocol for every message at the expense of lower responsiveness to trust
group membership changes. The “Cached” line shows that since cached entries
do not expire simultaneously, performance remains acceptable even when sev-
eral groups are specified in the policy. Therefore, incurred overhead is due to

A Policy Management Framework 383

0 10 20 30 40 50 60 70 80 90
0.00

0.05

0.10

0.15

0.20

0.25

2 Second Time Intervals

P
ro

ce
ss

in
g

T
im

e
(s

)

Authorization
Denial
Cached

Fig. 14. Authentication processing time Fig. 15. Monitoring subscription attempts

the authentication process itself rather than processing and management per-
formed by the policy framework. Note that we set the expiry time to a low value
here in order to observe the effects of authentication cache expiry. Since our
focus is on the policy framework and not the authentication mechanism itself,
we implemented a protocol similar to CHAP [24] for the purposes of this eval-
uation. Without the post-matching model, the policy framework would have to
duplicate content-based functionality to achieve expressive, fine-grained authen-
tication policies based on content.

Security Zones. Suppose a broker network is divided into restricted, controlled,
and uncontrolled security zones as shown in Fig. 15. This setup is not uncommon
in organizations separating their intranet (restricted) systems from the Internet
(uncontrolled) using a demilitarized zone (DMZ, controlled). To enforce privacy,
all attributes may be visible within the restricted zone but some attributes must
not appear in the controlled zone. No events from the application should be
visible at all in the uncontrolled zone. Furthermore, only authorized clients may
subscribe from either zone. These application requirements can be expressed
by attaching the policy in Fig. 16 to an advertisement issued from within the
restricted zone.

This policy combines the use of authentication, message transformations, and
meta-events to enforce privacy across different security zones. Fig. 15 illustrates
the resulting meta-event message flow for an event schema using this policy.

Content-Based Firewall. In CPS systems, subscriptions are analogous to fire-
wall “allow” rules on publications while advertisements are analogous to “allow”
rules on subscriptions. In this respect, the existing filtering capabilities of CPS
systems already provide some firewall functionality. However, consider a stable
application in which advertisements have been established and no longer need to
change. Subscriptions originating from an “internal” overlay are sent to a neigh-
bouring “external” overlay and attract publications. In order to temporarily
block certain publications from entering the internal overlay, the subscriptions
used by the application must change. For instance, this may be necessary as a

384 A. Wun and H.-A. Jacobsen

PolicyStatement {
On(Forward,Advertisement) {

@broker: Ingress,Routing

If {AuthenticateReceiver(Restricted)}
Then {}

Elseif {AuthenticateReceiver(Controlled)}
Then {RemoveAttributes(a, ... ,n)}

Elseif {} Then {BlockMessage()}
}
On(Forward,Subscription) {

@broker: Ingress

If {AuthenticateSender(AuthorizedSubscribers)}
Then {}

Elseif {}
Then {Publish("[class,UnauthorizedSubscribe],

[message,$Message]")}
}

On(Forward,Publication) {
@broker: Routing (Ingress)
@attach: Always // Routing only

If {AuthenticateReceiver(Restricted)} Then {}
Elseif {AuthenticateReceiver(Controlled)}
Then {RemoveAttributes(a, ... ,n)}
Elseif {} Then {BlockMessage()} } }

Fig. 16. Security Zones policy

reaction to detecting fraudulent publications that suddenly need filtering. Not
only would such a change affect subscriptions throughout both overlays, the re-
sulting subscriptions could potentially become a cumbersome mix of filters for
attracting wanted publications and filters for fine-grained blocking of unwanted
publications. Depending on the subscription language, this could be very diffi-
cult or even impossible to express in a single subscription. Similarly, preventing
certain subscriptions from exiting the internal overlay would require changing
the advertisements that originated from the external overlay. The same issue of
expressing “allow” and “deny” filters in a single advertisement exists.

Fig. 17. Content-based firewall setup

To block publications from enter-
ing the internal overlay, we can issue
subscriptions from an internal firewall
broker Bif to an external firewall bro-
ker Bef as shown in Fig. 17 with the
policy in Fig. 22 attached. This policy
blocks forwarding of all publications
strictly matching the subscription as
determined by the StrictMatch()
condition. A publication strictly mat-
ches a subscription if the publication
contains exactly the same attributes
as the subscription, while a subscrip-
tion strictly matches an advertisement if their filters are the same. For example,
a subscription S = [(class = C), (a < 10)] is strictly matched by the publication
P1 = [(class, C), (a, 9)] but not P2 = [(class, C), (a, 9), (b, 5)] even though
P2 normally matches S. Strict matching conditions can be used to achieve
content-based firewall rules with more precision if needed but are not required

A Policy Management Framework 385

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

2 Second Time Intervals

S
ee

 le
ge

nd

P.Rate (Tens of msg/s)
S.Rate (msg/s)
P.Time (s)
S.Time (s)

Fig. 18. Individual firewall subscriptions

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

2 Second Time Intervals

S
ee

 le
ge

nd

P.Rate (Tens of msg/s)
S.Rate (msg/s)
P.Time (s)
S.Time (s)

Fig. 19. Merged firewall subscription

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

2 Second Time Intervals

S
ee

 le
ge

nd

P.Rate (Tens of msg/s)
S.Rate (msg/s)
P.Time (s)
S.Time (s)

Fig. 20. Individual firewall subscriptions

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

2 Second Time Intervals

S
ee

 le
ge

nd

P.Rate (Tens of msg/s)
S.Rate (msg/s)
P.Time (s)
S.Time (s)

Fig. 21. Merged firewall subscription

in situations where the normal matching semantic is sufficient. The subscription
and its associated policy is analogous to a single content-based firewall rule on
publications. Note that authenticated event scoping is used to restrict firewall
subscriptions and advertisements to the firewall brokers. Similarly, subscriptions
are blocked by issuing an advertisement from Bef to Bif and attaching the same
policy using On(Subscription) instead of On(Publication). In Figs. 18 and
20, we issue 100 separate firewall subscriptions to the internal firewall broker
that block roughly 80% of the incoming publications overall. The publication
rate P.Rate remains steady at the external broker (Fig. 18) but is much lower
at the internal broker (Fig. 20) when the firewall policies are in effect. The time to
process both publications and subscriptions (P.Time and S.Time, respectively)
increases when the 100 firewall subscriptions are received.

When firewall subscriptions are first issued and processed with their policies,
broker processing times spike briefly before returning to normal sub-millisecond
values. Subsequent removal of the same 100 firewall subscriptions via unsub-
scription is significantly faster, incurring no noticeable overhead. In Figs. 19

386 A. Wun and H.-A. Jacobsen

PolicyStatement {
On(Forward,Publication) {
@broker: Routing

If {StrictMatch()}
Then {BlockMessage()}

} }

Fig. 22. Firewall policy

and 21, we issue a single subscription merged
from the 100 separate firewall subscriptions that
block the same amount of traffic. As there is
only a single subscription and policy rule to pro-
cess, Fig. 21 shows that there is no noticeable
disruption to broker processing when the policy
takes effect and is later removed. The original
subscription issued by the application did not
need to change in either case. This technique

allows us to dynamically specify content-based firewall rules that are totally in-
dependent of the filters specified by existing applications. In these experiments,
the firewall subscriptions were issued to the internal broker by a normal CPS
client, but the authentication policies described earlier can be used to place ac-
cess control policies on who is able to issue firewall filters. Note that a reverse
scenario where publications are blocked from leaving the internal overlay and
subscriptions are blocked from entering is also possible.

6 Conclusion and Future Work

In this paper, we have presented a content-based policy framework for distributed
CPS systems that supports a novel post-matching policy model. Evaluations of
our reference implementation show that this model is capable of achieving scal-
able and expressive policies in distributed CPS systems with little overhead. In
particular, we showed that our policy framework enables new features related
to both CPS semantics and security such as notification semantics, meta-events,
security zoning, and CPS firewalls. By leveraging the capabilities of existing
CPS matching algorithms, our policy model allows these features to be speci-
fied easily and dynamically. Since our model is based on generic CPS matching
concepts, our approach is appropriate across different CPS systems using either
advertisement or subscription based semantics.

Although we have addressed many concepts in our policy framework
implementation, some future work still remains. In particular, we have not dis-
cussed self-management features such as conflict resolution in any detail. Al-
though many conflict resolution strategies are possible [25,21], none are univer-
sally applicable across all conflict situations. At the moment, we use our own
meta-notification feature to inform the application about policy conflicts and
exceptions when they are detected. However, certain conflicts may be resolvable
automatically by the system. We have started work in this area by identifying
conflict situations amongst authorization and message transformation policies
in the CPS context. Also, the policies we presented in this paper are based
mostly on authorization and message transformation. There are still other types
of policies that need to be explored, such as generic obligation actions [10] in-
volving logging, persisting messages to a database, and other similar actions.
The meta-notification feature implemented using our policy framework is work
in this direction.

A Policy Management Framework 387

Acknowledgements

This research was funded in part by OCE, NSERC, CA and Sun. We would
also like to thank the anonymous reviewers and the members of the Middleware
Systems Research Group for their valuable feedback regarding this work.

References

1. Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R.E., Sturman,
D.C.: An Efficient Multicast Protocol for Content-based Publish-Subscribe Sys-
tems. In: ICDCS (1999)

2. Carzaniga, A., Rosenblum, D., Wolf, A.: Design and Evaluation of a Wide-Area
Event Notification Service. ACM Transactions on Computer Systems 19(3), 332–
383 (2001)

3. Pietzuch, P.R., Bacon, J.M.: Hermes: A Distributed Event-Based Middleware Ar-
chitecture. In: DEBS (2002)

4. Fiege, L., Mezini, M., Mühl, G., Buchmann, A.P.: Engineering Event-Based Sys-
tems with Scopes. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374,
Springer, Heidelberg (2002)

5. Fidler, E., Jacobsen, H.A., Li, G., Mankovski, S.: The PADRES Distributed Pub-
lish/Subscribe System. In: Feature Interactions in Telecommunications and Soft-
ware Systems (2005)

6. Aekaterinidis, I., Triantafillou, P.: PastryStrings: A Comprehensive Content-Based
Publish/Subscribe DHT Network. In: ICDCS (2006)

7. Cugola, G., Picco, G.P.: REDS: A Reconfigurable Dispatching System. In: Inter-
national Workshop on Software Engineering and Middleware (2006)

8. Sivaharan, T., Blair, G.S., Coulson, G.: GREEN: A Configurable and Re-
configurable Publish-Subscribe Middleware for Pervasive Computing. OTM Con-
ferences 1, 732–749 (2005)

9. Calo, S., Lobo, J.: A Basis for Comparing Characteristics of Policy Systems. In:
POLICY, pp. 183–194. IEEE Computer Society, Washington, DC, USA (2006)

10. Sloman, M.: Policy driven management for distributed systems. Journal of Network
and Systems Management 2, 333–360 (1994)

11. Opyrchal, L., Prakash, A., Agrawal, A.: Supporting Privacy Policies in a Publish-
Subscribe Substrate for Pervasive Environments. Journal Of Networks 2, 17–26
(2007)

12. Belokosztolszki, A., Eyers, D.M., Pietzuch, P., Bacon, J., Moody, K.: Role-Based
Access Control for Publish/Subscribe Middleware Architectures. In: Distributed
Event Based Systems (2003)

13. Sturman, D., Banavar, G., Strom, R.: Reflection in the Gryphon Message Brokering
System. In: Reflection Workshop at OOPSLA (1998)

14. Strassner, J., Schleimer, S.: Policy Framework Definition Language (1998),
http://www3.ietf.org/proceedings/98dec/I-D/
draft-ietf-policy-framework-pfdl-00.txt

15. Brownlee, N.: SRL: A Language for Describing Traffic Flows and Specifying Actions
for Flow Groups (1999), http://www.rfc-archive.org/getrfc.php?rfc=2723

16. Blunk, L., Damas, J., Parent, F., Robachevsky, A.: Routing Policy Specifi-
cation Language next generation (RPSLng) (2005), http://www.ietf.org/rfc/
rfc4012.txt

http://www3.ietf.org/proceedings/98dec/I-D/draft-ietf-policy-framework-pfdl-00.txt
http://www3.ietf.org/proceedings/98dec/I-D/draft-ietf-policy-framework-pfdl-00.txt
http://www.rfc-archive.org/getrfc.php?rfc=2723
http://www.ietf.org/rfc/rfc4012.txt
http://www.ietf.org/rfc/rfc4012.txt

388 A. Wun and H.-A. Jacobsen

17. Stone, G.N., Lundy, B., Xie, G.G.: Network Policy Languages: A Survey and a
New Approach. IEEE Networks, 10–21 (January/February 2001)

18. Agrawal, R., Srikant, R., Thomas, D.: Privacy Preserving OLAP. In: SIGMOD
(2005)

19. WS-Policy: http://www.w3.org/Submission/WS-Policy/
20. Li, G., Jacobsen, H.A.: Composite subscriptions in content-based publish/subscribe

systems. In: Middleware (2005)
21. Aib, I., Agoulmine, N., Fonseca, M.S., Pujolle, G.: Analysis of policy management

models and specification languages. Network control and engineering for Qos, se-
curity and mobility II 2, 26–50 (2003)

22. Dulay, N., Lupu, E., Sloman, M., Damianou, N.: A policy deployment model for the
Ponder language. In: IEEE/IFIP International Symposium on Integrated Network
Management (2001)

23. Rafaeli, S., Hutchison, D.: A Survey of Key Management for Secure Group Com-
munication. ACM Computing Surveys 35(3), 309–329 (2003)

24. CHAP: http://www.networksorcery.com/enp/rfc/rfc1994.txt
25. Dunlop, N., Indulska, J., Raymond, K.: Methods for Conflict Resolution in Policy-

Based Management Systems. EDOC 00, 98 (2003)

http://www.w3.org/Submission/WS-Policy/
http://www.networksorcery.com/enp/rfc/rfc1994.txt

	A Policy Management Framework for Content-Based Publish/Subscribe Middleware
	Introduction
	Related Work
	Content-Based Policy Framework
	The Post-matching Policy Model
	Policy Framework Approach
	Implications for Policy Composition
	Interception Points in CPS Overlays

	Policy Framework Implementation
	API and Language
	Creation and Distribution of Policies
	Enforcing Applicable Policies
	Framework Extensibility with Modular Rule Elements

	Evaluation Scenarios
	Specifying CPS Semantic Policies
	Specifying Security Policies

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

