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Abstract. The quality of biometric samples used by multimodal bio-
metric experts to produce matching scores has a significant impact on
their fusion. We address the problem of quality controlled fusion of mul-
tiple biometric experts and focus on the fusion problem in a scenario
where biometric trait quality expressed in terms of quality measures
can be coarsely quantised. We develop a fusion methodology based on
fixed rules that exploit the respective advantages of the sum and product
rules and can be easily trained. We show in experimental studies on the
XM2VTS database that the proposed method is very promising.
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1 Introduction

Biometric authentication is the verification of a user’s identity by means of
his/her physical and behavioural characteristics. Studies, e.g. [1] have shown
that the fusion of experts improves the system performance when compared with
individual experts. However poor quality biometric data may have the opposite
effect [2,3]. This finding motivated the investigation of quality based fusion.
It has been shown in [4,5,6,7,8,9,10] that quality based fusion improves signif-
icantly the performance, as compared to conventional fusion methods ( fusion
without the use of quality information).

The recent research into quality based score fusion shows that it is beneficial
to include quality information as input to the fusion process. In confidence based
decision fusion, quality information is also used as a control parameter to select
which modality’s decision to follow. Most of the quality based multimodal fusion
techniques deploy training for the fusion stage design [4,5,6,10]. The exception
is [7], where the product rule is used, after adapting the scores by computing
the likelihood ratio of estimated densities.

In this paper we address the problem of quality controlled fusion of multiple
biometric experts. We focus on the fusion problem in a scenario where biometric
trait quality expressed in terms of quality measures can be coarsely quantised.
We develop a fusion methodology based on fixed rules that can be easily trained.
The methodology involves a two stage process whereby in the first stage expert
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scores are grouped according to the quality of the underlying biometric sample.
In each quality group the scores are combined by averaging. The resulting group
scores are finally combined by product. We argue that the proposed scheme ex-
ploits the properties of fixed fusion rules in the best possible way and provide
experimental evidence to support this argument. The proposed scheme is exper-
imentally evaluated on the XM2VTS database. The results show that significant
performance gains can be achieved. The performance is comparable to the state
of the art method reported in [10] but the proposed fusion system is much easier
to design and requires less data for training.

The rest of the paper is organised as follows. In Section 2 we introduce the
proposed methodology. The database used in the study is described in Section 3.
An overview of the biometric experts used for experiments is presented in Section
4. Section 5 discusses the quality measures used to characterise biometric sample
quality. We also report in this section the coefficients of correlation between
expert scores in different quality categories. The fusion experiments carried out
are described in Section 6 where the results of experiments are also discussed.
Section 7 draws the paper to conclusion.

2 Proposed Methodology

The study of fixed fusion rules in [1] demonstrates that the sum rule outperforms
all other fixed rules. Alkoot et al. showed in [11] that the product rule may
outperform even the sum rule, provided the veto effect of conflicting low valued
scores is suppressed. The product rule and the sum rule have been compared by
Kittler et al. in [1] and Tax et al. in [12]. These studies demonstrate that the
sum rule is robust to noise. The sensitivity of the product rule to noise is due to
the veto effect. Tax et al. also show that the product rule outperforms the sum
rule when the correlation between data is low and noise is low. However if the
noise is high, the product rule becomes unreliable even when correlation is low.
These studies lead to the following conclusion:

– if a high level of noise is present, the sum rule is preferable.
– for low noise and low correlation, the product rule should be favoured as it

outperforms the sum rule in these conditions.
– when experts are highly correlated, even when the noise level is low the

sum rule should be chosen, as it outperforms the product rule under these
conditions.

[1] shows theoretically that the product rule is more sensitive to noise than the
sum rule, hence why it deteriorates on noisy data.

In this paper we consider the problem of fusing multiple experts providing
scores on biometric data of varying quality. The scores are assumed to be nor-
malised, so that any fixed rule, including the product rule can be used for fusion.
Thus the score values are confined to the interval [0, 1]. Without loss of gener-
ality, we assume that a score is high (close to 1) for a good match, i.e. when
comparing a probe of a genuine claimant against a template of the true client
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identity. Impostor score values, of course, would be lower. Clearly for biometric
samples of low quality, both the client scores and impostor scores would shift to-
wards the lower end of the score range. It is evident, that when the quality of the
biometrics trait varies, a single threshold would not be adequate, as the scores
generated by high quality traits of imposters are likely to exceed the scores of
true clients derived from low quality biometric data. This problem can be solved
by considering the threshold to be a function of the set of quality measures char-
acterising the biometric data. However learning the regression function requires
a large amount of data which is not always available.

A similar problem, but greatly amplified, arises in multiple expert fusion.
The additional complexity derives from the fact the threshold for the fused
score becomes a function of the quality measures of all biometric modality traits
jointly. The reason for this is that the fusion potentially involves expert scores
associated with different qualities and this will impact on the optimal threshold
to be applied to the fused score. The regression function defining the optimal
threshold is much more difficult to learn, as the number of variables involved
in regression increases without the commensurate increase in the number of
training samples. This problem was investigated in detail in [10] where it was
demonstrated that significant gains in performance can be obtained by quality
dependent fusion where the fusion was realised as a Support Vector machine
using both component expert scores and biometric trait qualities as features.

It would appear, therefore, that the key advantage of fixed fusion rules, namely
their simplicity and ease of training, is seriously compromised when the experts
to be fused use data of different quality. However, in many situations the bio-
metric data quality will not necessarily be uniformly distributed with respect to
the various quality measures. Instead, it is likely to be clustered. For instance, if
the biometric data is collected in a small set of distinct environments, or using
a small set of devices supplied by different manufacturers or involving sensor
technology for a particular biometric trait designed on different principles, the
data acquired will tend to cluster into a number of quality states corresponding
to the distinct conditions of data acquisition. In such situation it would be fea-
sible to group the experts according to the quality state of the biometric data
used for computing their score. In each group, it should then be possible to use
a fixed fusion rule and subsequently, combine the group scores to produce the
final fused result.

We shall develop the above ideas into a practical fusion methodology applica-
ble under the assumption that the biometric data can sensibly be divided into
two quality states. We shall see in Section 5 that this assumption is valid for the
biometric database, XM2VTS, used for our experiments. In order to be more
specific, we shall introduce the necessary mathematical notation.

Let i = 1 : n samples, j = 1 : R experts, and m = 1 : M modalities. The
decision whether to assign the quality of a biometric sample xj,i to high or low
quality, is dependent on the quality measure, qi,m, of the sample, its mean qm

and the standard deviation σqm and biometric modality in the evaluation data
set. A sample xj,i is marked as high quality if qi,m ≥ qm − σqm , else it is of
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low quality. Let rz,i be the number of experts working with samples of quality
zε{high, low}. Based on this decision rule we can identify three situations: i)
all-high rlow,i = 0, ii) all-low rhigh,i = 0, and iii) mixed where both rhigh,i and
rlow,i are nonzero.

We shall see in Section 5 that experts tend to be correlated. Thus for every
sample, within each group, the preferable fixed fusion rule is the sum rule. The
fused score for the ith sample in group with quality z is thus given as

Sz(i) =
{ 1

rz,i

∑rz,i

p=1 xp,i if rz,i ≥ 1
1 if rz,i = 0

}
(1)

Setting the sum to 1 when a group contains no expert is for a later convenience.
Now, in each group we will end up with two averaged scores Shigh(i) and

Slow(i). Especially in the mixed group these two scores can further be combined
by a fixed rule. We shall see later that the score averaging process in each
group results in fused scores Sz(i), zε{high, low} which are much less noisy, and
surprisingly, also less correlated. This suggests that the optimal fixed fusion rule
for this second fusion stage should be the product rule. Accordingly, the final
fused score S(i) for sample i will be given as

S(i) = Shigh(i) × Slow(i) (2)

The resulting score S(i) is then compared against the threshold Dθ where
θε{high, low, mixed}. These thresholds are estimated from the training data but
it is a relatively simple task.

3 Database

In the current study, we used the original XM2VTS database[13] and its degraded
version [14] in both the training and the test phase of the fusion methods. The
original database contains mugshot images with well controlled illumination.
The low quality section contains images taken under strong side illumination,
which has been shown to degrade significantly face verification performance [14].
This database contains 295 individuals, divided into 200 clients, 25 impostors for
the algorithm development (training), and 70 impostors for algorithm evaluation
(testing). For each subject, face and speech biometric modalities are acquired
in four sessions; the first three are used for training the classifiers and the last
one for testing. For the face modality we consider the dark data set with left
illumination as the ”fifth session” and the one with right illumination as the
”sixth” session. There is unfortunately no equivalent of degraded speech data
that can be paired with the degraded face images. We created degraded biometric
data by first introducing additive white noise with a uniform random distribution
between 0 and 20dB signal-to-noise ratio on the clean speech database, hence
resulting in a degraded speech database with exactly the same size as the clean
database. We then paired the degraded face images with the degraded speech
data according to Table 1. For instance, the first row shows that the first shot
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Table 1. Matching of degraded face and speech data

Degraded face Degraded speech
session shot session shot

5 1 1 2
5 2 2 2
6 1 3 2
6 2 4 2

of degraded face image in the fifth session is matched with the second shot of
the degraded speech recorded in session one, and so on.

Experimentation with good and degraded data set is important as it reflects
a more realistic scenario than the use of only good data. During the data cap-
ture of the development data set the environment can be controlled, however in
operation the quality is likely to be more varied. Having a good biometric data
for the development set and mixed quality biometric data for the operational
phase can lead to bad system performance as degraded data is not taken into
account in the development stage. It is therefore essential to have representative
examples of degradation also for the development.

Unfortunately, the way the experimental data set has been constructed does
not allow us to test systematically the merit of fusion when one modality is of
good quality and the other one is degraded. Although this is more realistic, there
is no obvious solution to introducing this scenario.

The original experimental protocols known as the Lausanne Protocols, did not
envisage that for the XM2VTS database the degraded data sets would be used for
algorithm development. However, in order to make degraded data avaliable for
training, we used the 25-impostor data set in which good and degraded quality
data is available. For clients, we divided these 200 subjects into 20- and 180-client
data sets such that the 20-client data set is set aside uniquely for algorithm devel-
opment and the 180-client for both algorithm development and evaluation. The
resulting protocol for mixed quality scenario is summarised in Table 2.

Table 2. The XM2VTS clean and degraded protocol

Sessions Shots 180 Clients 20 Clients 25 Imposter 70 Imposter

S1 1 Training Training
2 Evaluation Evaluation

S2 1 Training Training
2 Evaluation Evaluation Evaluation Test

S3 1 Training Training
2 Evaluation Evalaution

S4 1 Test Test
2

Degraded L1,R1 Test Evalaution Evaluation Test
L2,R2 degraded degarded degraded degraded
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4 Experts

The classifiers used for the face experts in this paper can be found in [15]. There
are two classifiers with three types of pre-processing, hence resulting in a matrix
of six classifiers. The two classifiers used are Linear Discriminant Analysis (LDA)
with correlation as a measure of similarity [16] and Gaussian Mixture Model
(GMM) with maximum a posteriori adaptation, described in [17]. The use of
the GMM in face authentication was proposed in [18]. The face pre-processing
algorithms used include the photometric normalisation as proposed by Gross and
Brajovic [19], histogram equalisation and local binary pattern (LBP) as reported
in [15]. The feature extraction and classification algorithms are implemented in
the open-source Torch Vision Library1.

The speech system used is implemented with the ALIZE toolkit [20].

5 Quality Measures

In this paper, we used a set of proprietary quality measures developed by Om-
niperception Ltd for the face image quality assessment. These measures are:
“frontal quality”, measuring the deviation from the frontal face; and “illumina-
tion quality”, quantifying the uniformity of illumination of the face.

Two quality measures are used for the speech system: signal-to-noise ratio
(SNR) and “entropy quality”. Both measures are used for voice activity detec-
tion, i.e., to separate speech from non-speech.

These measures can be found in [21]. Thus each modality has two quality mea-
sures; “frontal quality” and “illumination quality” for face, signal-to-noise ratio
(SNR) and “entropy quality” for speech. These are averaged for each modality.

Table 3. Coefficient of correlation between the six face and one speech experts com-
puted on the development set for the client (in bold) and imposter (in italic). f1 to
f6 are the six face experts and v1 is the speech expert. (a), (b) and (c) shows the
correlation coefficient for claims where the quality measure for the biometric data is
mixed, low, or high for all experts repectively.

f1 f2 f3 f4 f5 f6 v1
(a) Mixed quality dataset

f1 1.00/1.00 0.82/0.51 0.76/0.39 0.74/0.20 0.71/0.06 0.70/0.08 0.32/0.00
f2 0.82/0.51 1.00/1.00 0.85/0.47 0.84/0.17 0.84/0.07 0.79/0.03 0.42/-0.02
f3 0.76/0.39 0.85/0.47 1.00/1.00 0.78/0.16 0.73/0.08 0.80/0.11 0.20/-0.01
f4 0.74/0.20 0.84/0.17 0.78/0.16 1.00/1.00 0.93/0.39 0.02/0.31 0.38/0.05
f5 0.71/0.06 0.84/0.07 0.73/0.08 0.93/0.39 1.00/1.00 0.91/0.37 0.49/0.09
f6 0.70/0.08 0.79/0.03 0.80/0.11 0.92/0.31 0.91/0.37 1.00/1.00 0.29/0.07
v1 0.32/0.00 0.42/-0.02 0.20/-0.01 0.38/0.05 0.49/0.09 0.29/0.07 1.00/1.00

1 Available at “http://torch3vision.idiap.ch”. See also a tutorial at “http://www.
idiap.ch/marcel/labs/faceverif.php”.
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It is interesting to note the correlation between the experts using low and high
quality data. Table 3 shows the correlation coefficient between all the experts
for clients (in bold) and imposters (in italic) in the development data set. It can
be noted that all the face experts are correlated, but the speech expert is not
correlated to any of the face experts.

Most importantly, for the mixed quality scenario the resulting two fused scores
have low correlation. In fact the correlation coefficient of the combined scores
obtained by averaging in each group is 0.3684/-0.2888 client/imposter for the
development set and 0.2946/-0.3235 client/imposter for the evaluation set. This
confirms that these group scores are better suited for fusion by the product rule,
as proposed in Section 2.

6 Experiments and Results

We have designed experiments to compare the following:

– fixed rule fusion with trained fusion.
– fixed rule fusion with quality and conventional fixed rule fusion
– using quality as a feature in the fusion process and using quality controlled

fusion.

The performance of the six face and one speech experts is shown in Table 4.
The overall performance is not high due to the influence of low quality biometric
data. We consider the set of all 26 − 1 possible combinations of the face experts
to be fused with the speech expert for multimodal authentication.

Table 4. Baseline systems, a priori half total error rate (HTER) (%) of good +
degraded test data, with the a priori HTER (%) of the good and degraded data sets
recorded separately. The separate good and degraded data results were obtain by using
the threshold (Δ) set on the good + degraded training data.

good + degraded good degraded
modality no. HTER (%) HTER (%) HTER (%)

face 1 11.06 6.66 13.50
face 2 7.67 3.48 9.78
face 3 8.29 5.86 9.57
face 4 10.39 2.13 17.17
face 5 24.56 2.97 39.28
face 6 16.96 5.51 23.42

speech 1 11.40 1.15 17.48

Figure 1(a) shows the result of the sum rule vs the proposed quality controlled
fusion. It can be seen that the quality controlled fusion outperforms the sum rule
in all fusion tasks. Another interesting point to note is that the best performance
was not obtained when all the face experts were used jointly, but when two, three,
or at most four experts are fused together.
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Fig. 1. (a) A priori HTER (%) of good + degraded test data, with Mean Fusion vs
Proposed Quality Controlled Fusion. Each point in the figure represents one of the pos-
sible 63 multimodal fusion tasks. The numeric labels in the legend indicate the number
of face experts fused with the only speech expert. (b) Relative a priori HTER(%) of
the sum fusion, logistic regression without quality measure, logistic regression with
quality (Kittler et al. [10]), SVM with quality measure (Fierrez-Aguilar et al. [4]), and
the proposed quality controlled fusion.

Figure 1(b) shows the relative a priori HTER (%) of conventional sum fusion,
a logistic regression with just the expert score as the input to the fusion process,
logistic regression with quality measure added as an input feature, proposed
in [10], SVM with quality measure used to normalised the score proposed by
Fierrez-Aguilar et al. in [4], and the proposed quality controlled fusion method.
It is interesting to note the following:

1. For logistic regression the average observed relative improvement is 14%
with the best improvement realising 39%. This is expected as a trained rule
is likely to outperform a fixed rule when the performance of expert varies, as
shown in Table 4. However for certain sets of experts, the logistic regression
can degrade the performance by as much as 9%.

2. For the method proposed in [10], there is an improvement in all fusion tasks
with an average of 33% but as much as 49% can be achieved.

3. For the method proposed by Fierrez-Aguilar et al. in [4] an average improve-
ment of 15% with a peak gain of 42% and the worst loss of 8%.

4. For our proposed quality controlled fusion method, there is an improvement
in all the fusion tasks with an average improvement of 27%, but up to 39%
can be achieved.

These observations highlight the following:

1. Fusion using quality information outperforms conventional fusion.
2. In score level fusion, quality measures can be used in two ways; as input to

the fusion process, or as a control parameter.
3. When using quality measures as part of the input to the score level fusion,

the method proposed in [10] provides the best average performance and clear
improvement in all the fusion experiments. This is evident from Figure 1(b).
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4. The score level fusion with the proposed quality control offers very good
average performance, and it also provides improvement in performance in all
fusion tasks in the experimental comparison with the sum rule. In fact the
proposed quality control with a fixed rule performs better than the logistic
regression, as shown in Figure 1(b).

7 Discussion and Conclusion

We addressed the problem of quality controlled fusion of multiple biometric ex-
perts. We focused on the fusion problem in a scenario where biometric trait qual-
ity expressed in terms of quality measures can be coarsely quantised. We devel-
oped a fusion methodology based on fixed rules that can be easily trained. The
methodology involves a two stage process whereby in the first stage expert scores
are grouped according to the quality of the underlying biometric sample. In each
quality group the scores are combined by averaging. The resulting group scores
are finally combined by product. We argued that the proposed scheme exploits the
properties of fixed fusion rules in the best possible way and provided experimental
evidence in support of this argument. The proposed scheme was experimentally
evaluated on the XM2VTS database. The results showed significant performance
gains over conventional fusion. The performance is comparable to the state of the
art method reported in [10] but the proposed fusion system is much easier to de-
sign and requires less data for training. The proposed method can be used not
only for multimodal fusion, but also for intramodal fusion, provided the quality
measures of the biometric sample is different for each expert [9].
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