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Andes–Táchira, San Cristóbal 5001, Venezuela
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Abstract. In this paper a left ventricle (LV) contour detection method
is described. The method works from an approximate contour defined by
anatomical landmarks extracted using Support Vector Machine (SVM)
classifiers. The LV contour approximation is used as an initialization step
for the deformable model algorithm. An optimization method based on
a gradient descend algorithm is used to obtain the optimal contour that
provides a minimum energy value. Both classifier and edge detection
method performances have been validated. The error is determined as
the difference between the shape estimated by the algorithm and the
shape traced by an expert.

Keywords: anatomical landmarks, left ventricle, support vector
machines, edge detection, deformable models.

1 Introduction

Segmentation and contour extraction are fundamental tasks in high–level image
analysis. The main goal is to divide an image into parts that have a strong
correlation with objects or real shapes contained in the image [1].

In cardiac medical imaging modalities, anatomical boundaries cannot be de-
tected by algorithms that use only edge or region information. Low contrast,
noise, and non–uniformity of regional intensities are some of the problems as-
sociated with cardiac imaging modalities. These problems are always present in
ventriculograms. The left ventricle boundary detection in X–ray ventriculograms
is a rather complicated task because of the presence of fuzzy superposition of
anatomical structures [2].

The aim of this paper is to develop a method combining both SVM and
deformable model approaches for LV contour detection.

L. Rueda, D. Mery, and J. Kittler (Eds.): CIARP 2007, LNCS 4756, pp. 793–802, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



794 A. Bravo, M. Vera, and R. Medina

1.1 Support Vector Machines

Support vector machine is a methodology based on the Vapnik–Chenovenkis
learning theory and the structural risk minimization principle [3]. SVMs are
efficient non–parametric classification and regression tools [4,5]. In classifica-
tion problems SVMs are used for constructing a discriminant function to sep-
arate classes using vectors nearest to the decision boundary. The examples
or training set for a two–class classification problem can be represented as:
S = {(xi, yi)}l

i=1 ⊂ IRN × {+1, −1}.
The classification task (from S) addresses the general problem of finding a

discrimination function defined from an input space IRN into an unordered set
of classes {+1, −1}. This discrimination function in some m–dimensional feature
space is a separating hyper-plane expressed as follows:

f(x) = sign(w · x + b) , (1)

where w is normal to the hyper-plane, b is the bias, ‖w‖ is the Euclidean norm of
w, and |b|/‖w‖ is the perpendicular distance from the origin to the hyper-plane.

The SVM objective is to find the hyper-plane with minimum norm ‖w‖2. The
classification problem using linear machines trained on non–separable examples
[6,7], can be formulated as a quadratic programming problem where the optimal
solution is obtained using Lagrange Multipliers. This solution can be written as:

w =
l∑

i=1

λiyixi , (2)

where {λ1, . . . , λl} are positive Lagrange multipliers. In (2), the examples for
which λi > 0 are known as support vectors and correspond to the critical ele-
ments of the training set. In real classification tasks a linear SVM is not appro-
priate because the classes are generally separated by a non–linear function [7].
In this case, the examples are projected to a feature space of higher (possibly
infinite) dimensions via a nonlinear mapping function Φ(·). This projection pro-
cess is applied to transform the non–linear problem in the N –space to a linear
problem in the M –space. The SVM solution can be written as:

f(x) = sign

(
l∑

i=1

λiyiΦ(xi) · Φ(x) + b

)
. (3)

1.2 Deformable Models

A deformable model is a parametric contour C located in the image plane (u, v) ∈
IR2. This contour could be represented as a controlled continuity spline expressed
as p(s) = (u(s),v(s))�, where u and v are vectors of coordinate functions and
s ∈ [0, 1] is the parametric domain [8]. The left ventricle shape defined by contour
C is modeled by the following functional:

E(p) = I(p) + P(p) + R(p) . (4)
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This functional represents the contour energy that includes the internal en-
ergy I(p), the image energy P(p) and the external energy R(p). The optimal
contour shape corresponds to the minimum of this energy function. The internal
deformation energy (5) incorporates the smoothness and bending properties of
the contour.

I(p) =
∫

s

α(s)
∣∣∣∣
∂p
∂s

∣∣∣∣
2

+ β(s)
∣∣∣∣
∂2p
∂s2

∣∣∣∣
2

ds , (5)

where α(s) and β(s) are weighting coefficients for the smoothness and bending
terms respectively. The functional representing the image energy (6) is generally
based on the edge detection theory. Several approaches use the theory proposed
by Marr and Hildreth [9], where the intensity changes can be detected by finding
the maximum or the minimum of Gσ ∗ I that represents the convolution of an
image I with a bi-dimensional Gaussian kernel Gσ. The image energy pushes
the deformable model toward the contour that constitutes the target features.

P(p) = −|∇Gσ ∗ I(p)| , (6)

where σ is the spread parameter (standard deviation) of the Gaussian kernel.
The energy constraints R imposes additional external forces leading to the

minimum energy corresponding to the contour. Different approaches for defining
the external constraint forces have been reported by Kass [8].

2 Method

2.1 Initialization

The proposed method uses the traditional deformable contour model for detec-
tion of the left ventricle boundary. This deformable model uses a parametric
contour p(s) (see section 1.2) as the input. This parametric contour is deformed
in order to minimize the energy functional (4). The deformable model is very sen-
sitive to initialization. Therefore, selecting the initial contour is a very important
stage.

Our initial contour is estimated from myocardial landmarks extracted using
an approach based on machine learning [10]. This approach uses support vec-
tor machines (SVM) to localize left ventricle landmarks in ventriculographic
sequences. The apex (AP), the basal regions (BA2, BP3, BP4) and the aortic
valve sides (VA, VP) are selected as landmarks of interest to construct the SVM
classifier (see Figure 1).

A SVM classifier is constructed using the Gaussian Radial Basis Function
as parametric kernel. The MatLab Support Vector Machines library is used for
performing the training based on a set of 1500 patterns.

SVM Training. Each LV landmark is a 31×31 pixel pattern manually traced by
a cardiologist. A total of 300 patterns constitutes the landmarks dataset (50 pat-
terns for each landmark). A similar procedure is used for obtaining a dataset of
1200 non–landmark pixel patterns generated from angiographic images without
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Fig. 1. Fifteen anatomical landmarks established by the American Heart Association

including any landmark information. The training process is used to construct
a decision surface. This surface enables classification of input pixel patterns as
left ventricle landmarks or non–landmarks. During the test phase a set of 116
images not included in the training set was used. A landmark recognition rate
of 98.35 % was obtained.

SVM Based Landmark Detection. The left ventricle approximate border is
constructed from landmark points extracted by the SVM classifier. Given the input
ventriculographic image, landmarks are located by exhaustively scanning the im-
age for landmark-like patterns. Landmark localization is performed using a 31×31
sliding window whose content is analyzed by the SVM todetermine whether a land-
mark is present or not. Each landmark is identified by the center point of the 31×31
pattern considered. After all landmark points are identified, they are joined clock-
wise starting from VA landmark point and ending in the VP landmark point. Iden-
tification of the VA landmark is performed using prior knowledge about the upper
part of the aortic valve localization in ventriculographic images.

Initial Contour Estimation. Five more points are estimated using a linear
interpolation method from the previously calculated points (AP, BA2, BP3,
BP4, VA, VP). The five new points are obtained as follows: the midpoint of
the line described by VA and BA2 landmarks is computed. This midpoint is
used to construct a new line perpendicular to the line described by VA and BA2
landmarks. The maximum image gradient is searched over this perpendicular
line, and the first new point of the set is the one located at the maximum
gradient along the line. The remaining points are obtained following the same
process between the corresponding pair of landmarks: BA2–AP, AP–BP4, BP4–
BP3, and BP3–VP. At the end, a new set of eleven points is available to describe
the initial LV contour. This set of points is used to generate the parameterized
contour using the b–spline method [11]. A final discrete set of evenly distributed
points is determined by re-sampling the parameterized contour providing the
initial contour for the deformable model.

2.2 Edge Enhancement

The approaches based on gradient have been widely used for edge enhancement
[9,12] while smoothing filters have been used for minimizing noise content. We
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propose four different techniques to enhance the edges of the left ventricle cavity
in the angiographic images. These techniques are based on four smoothing filters:
1) the averaging filter [13], 2) the Gaussian filter [2], 3) the similarity filter [14],
and 4) the top–hat morphological filter [15]. Once smoothed, the images are
processed using an optimal gradient operator [16]. The filters are applied after
the initial contour detection. The smoothing filters are applied to the input
image, the gradient operator is applied to the smoothed images.

The averaging filter. According to this filter, if a pixel value in the input
image (Iin) is greater than the average of its neighbors plus a certain threshold
ε, then the pixel value in the output image (Iaverage) is set to the average value,
otherwise the output pixel is set to the pixel value in the input image. The
threshold value ε was set to the standard deviation of the input image.

The Gaussian filter. Gaussian filtering is a frequently used technique for image
smoothing. Each pixel value in the output image (IGauss) is the result of the
convolution between the input image (Iin) and a kernel that represents a 2–D
Gaussian distribution.

The Similarity filter. This filter quantifies the difference between the gray–
level values of pixels in the original image Iin and in the smoothed image (Iaverage)
based on a similarity criterion [14]. The similarity filter is constructed using the
procedure proposed in [17]:

– For each p Iin(i, j) ∈ Iin and each p Iaverage(i, j) ∈ Iaverage obtain the feature
vectors pvIin=[I1, a] and pvIaverage=[I2, b]. Where, I1 and I2 denote the in-
tensities associated with pixel (i, j) and, a and b are the intensity average in
a l × l neighborhood around the pixel (i, j).

– The filter output or similarity image (IS) is obtained according to equation
(7).

IS = ω1(I1 − I2)2 + ω2(I1 − b)2 + ω3(I2 − a)2 , (7)

where ω1, ω2 and ω3 were set to one.

The top–hat morphological filter. The top–hat is a gray-level morphological
operator that can be used as a nonlinear filtering technique. These filters preserve
the location of the border transition, and at the same time denoise the image.
We consider the white top–hat (WTH) and its dual, the black top–hat (BTH).
The white top–hat is defined as the difference between the average image and the
opened Gaussian filtered image. The black top–hat is obtained by subtracting
the average image from the closed Gaussian filtered image. A disk structuring
element (D) of size 11 × 11 is used for both the opening and closing operators.
Opening (◦) and closing (•) morphology operators are derived from the basic
operations of erosion (�) and dilation (⊕) [18]. The top–hat images IBTH and
IWTH are calculated according to equation (8).

IBTH = Iaverage − (IGauss • D), IWTH = Iaverage − (IGauss ◦ D) . (8)

The optimal gradient operator. These operators can be constructed using
a consistency criterion as proposed in [16]. The optimum 5×5 operator (∇5×5)
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developed by Ando [16, p. 258] is used to obtain x− and y−directional gradients
associated with the smoothed images.

2.3 Left Ventricle Deformable Model

Shape model. The shape model used in our approach is a bi-dimensional dy-
namic parametric contour C. The smoothness constraint force in the shape model
is represented by the internal energy term I(p). In this paper, we use the in-
ternal energy formulation proposed by Kass [8], which is related to the local
contour curvature. The internal energy is represented by a linear combination
of smoothness and bending contour properties as expressed in (5). This energy
term is discretized using the finite difference scheme.

The image energy term P , in the contour energy functional (9), is defined as
the average of the gradient magnitude for the smoothed images.

P(p) = −γ
1
3

(‖∇ IGauss(p)‖ + ‖∇ IWTH(p)‖ + ‖∇ IBTH(p)‖) , (9)

where ∇ represents the optimum gradient operator ∇5×5 proposed in [16] and
γ is a weighting constant.

Our deformable model incorporates a regularization term R for attracting
the deformable model towards the cardiac cavity edge. The restriction term R
allows to reorient the direction field associated with the image energy term.
The restriction is defined from the similarity image obtained using (7). This
functional is expressed according to (10) where κ is a weighting constant.

R(p) = −κ‖∇ IS(p)‖ . (10)

Shape evolution. The dynamics of this model is established according to de-
formable model theory (see Section 1.2). In this kind of models, the energy
functional (E) gives rise to forces deforming the model. The LV shape model
energy (E) is minimized by using an iterative optimization process based on a
gradient descent algorithm. The aim of this iterative optimization process is to
express the current contour shape based on the knowledge of the corresponding
previous contour energy. The normalized equation is given by (11).

pk+1 = pk + δ
E(pk)

‖E(pk)‖ , (11)

with δ denoting the gradient descent step size and k the iteration number.

3 Results

The proposed method has been tested with mono–plane sequences of ventriculo-
graphic images that have been acquired from patients using a digital flat–panel
X–rays system (InnovaTM 4150, General Electric Medical System). These images
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were acquired using the right anterior oblique (RAO 30◦) view. Each image has
a resolution of 512 × 512 pixels. Each pixel is represented with 8 bits.

The SVM classifier was constructed using the Gaussian radial basis function
as a parametric kernel. Our SVM anatomical landmarks classifier is constructed
using the Least Squares Support Vector Machines library [19]. The support vec-
tors obtained in the training stage are used to construct the decision surface
used to detect the LV landmarks in the original image. The proposed approach
has been tested with ventriculograms acquired at several instants of the car-
diac cycle. In figure 2, results of the LV landmarks extraction approach for the
ventriculogram sequences are shown. Validation of the approach is performed
by quantifying the difference between the LV landmark location obtained with
respect to the LV landmark located by a cardiologist. The average of the errors
obtained (mean ± standard deviation) for five sequences of ventriculograms in
the RAO view, including 163 images is 2.17 mm ± 0.93 mm.

Fig. 2. Bounding white boxes represents the anatomical landmarks obtained

The ventriculographic images are enhanced using the techniques described
in section 2.2. Figure 3 shows the enhancement procedure for an end–diastole
ventriculogram image. The smoothed image using the Gaussian filter is shown
in figure 3.a. Figures 3.b and 3.c show the top–hat images (obtained using equa-
tion (8)). The similarity image is shown in figure 3.d. Figures 3.e–3.h show the
gradient magnitude images obtained from the smoothed images.

The approximate contour is constructed using the procedure described in sec-
tion 2.1. This approximation is used to initialize our deformable model method.
Given the initial contour, the forces associated with the model and its dynam-
ics can be obtained using equations (5), (9), (10) and (11) using the informa-
tion extracted from preprocessed images as these shown in figure 3. Two of
the five sequences analyzed are used to train and initialize the parameter set
as follows. The detection process is applied by varying each parameter value.
For each parameter, a comparison between the resulting contour and the con-
tour traced by the cardiologist is obtained. The optimal parameter values are
{α = 0.005, β = 0.00005, γ = 0.01, κ = 0.01, δ = 0.5}. Figure 4 shows the results
of the edge detection process. The image shows a zoom of the LV region where
the initial and final contours are located. Figure 4.a shows the approximate con-
tour used to initialize the deformable model. The approximate contour evolution
towards the optimum contour is shown in figure 4.b, where the initial contour is
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Edge enhancement results. a) Gaussian filtered image. b) Black top–hat image.
c) White top–hat image. d) Similarity image. e) Gradient magnitude for the Gaussian
image. f) Gradient magnitude for the Black top–hat image. g) Gradient magnitude for
the White top–hat image. g) Gradient magnitude for the Similarity image.

indicated by white dash-dotted line and the final contour by black dash-dotted
line. Figure 4.c shows the contour energy behavior where the minimum energy
state is reached after few iterations. Figure 5 shows the results obtained for the
end diastole images in four ventriculographic sequences. The contours traced by
the expert are shown using white dash-dotted lines and the final segmentations
are shown using black dash-dotted lines. The performance of the segmentation
method is validated using the approach proposed by Suzuki [20, p. 335]. Five
ventriculogram sequences including a total of 163 images are considered during
the validation process. Comparison between the segmented contours and the
contours traced by a cardiologist shows an average contour error EC of 5.97 %
and an average area error EA of 3.71 %.

(a) (b) (c)

Fig. 4. Edge detection process. a) Initial contour (white dash-dotted line). c) Evolution
to final contour (black dash-dotted line). c) Contour energy evolution.
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Fig. 5. Results of the left ventricle segmentation. Ground truth contour indicated by
a white dash-dotted line. Contour extracted by the proposed approach is shown using
a black dash-dotted line.

4 Conclusions

This paper has presented an automatic method for segmentation of the LV shape
using SVM and deformable models. The accurate initialization of the deformable
model is performed based on landmarks extracted using Support Vector Machine
classifiers. The SVM classifier approach does not require preprocessing of the in-
put data. The deformable model incorporates information about the ventricular
edge by means of an energy functional expressed as a linear combination of the
gradient magnitude estimated from several edge enhanced images.

The proposed segmentation method is accurate for automatically detecting
the left ventricle contour in ventriculograms. The accuracy has been accessed
by tests performed for the SVM based initialization approach as well as the
validation for the complete segmentation method. Further research is aimed at
using a multi-class SVM and at performing a more complete validation.

Several efforts to develop an automatic contour detection method for ventric-
ular images have been reported so far [20,1,21]. However, these methods have not
been subjected to an extensive clinical validation. In this paper, we have proposed
an alternative automatic method that can be implemented easily. It enables the
quantitative analysis of the cardiovascular function based on ventriculograms.
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