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Abstract. In order to discriminate and identify different industrial machine 
sounds corrupted with heavy non-stationary and non-Gaussian perturbations 
(high noise, speech, etc.), a new methodology is proposed in this article. From 
every sound signal a set of features is extracted based on its denoised frequency 
spectrum using Morlet wavelet transformation (CWT), and the distance be-
tween feature vectors is used to identify the signals and their noisy versions. 
This methodology has been tested with real sounds, and it has been validated 
with corrupted sounds with very low signal-noise ratio (SNR) values, demon-
strating the method’s robustness. 
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1   Introduction 

A common problem encountered in industrial environments is that the electric ma-
chine sounds are often corrupted by non-stationary and non-Gaussian interferences 
such as speech signals, environmental noise, background noise, etc. Consequently, 
pure machine sounds may be difficult to identify using conventional frequency do-
main analysis techniques as Fourier transform [1], and statistical techniques such as 
Independent Component Analysis (ICA) [2]. It is generally difficult to extract hidden 
features from the data measured using conventional spectral techniques because of the 
weak amplitude and short duration of structural electric machine signals, and very 
often the feature sound of the machine is immersed in heavy perturbations producing 
hard changes in the original sound. For these reasons, the wavelet transform has at-
tracted increasing attention in recent years for its ability in signal features extraction 
[3][4], and noise elimination [5]. While in many mechanical dynamic signals, such as 
the acoustical signals of an engine, Donoho’s method seems rather ineffective, the 
reason for their inefficiency is that the feature of the mechanical signals is not consid-
ered. Therefore, when the idea of Donoho’s method and the sound feature are  
combined, and a de-noising method based on the Morlet wavelet is added, this meth-
odology becomes very effective when applied to an engine sound detection [6].  

In this work, we propose a new approach in order to identify different industrial 
machine sounds, which can be affected by non-stationary noise sources. This paper is 
organized as follows. In Section 2 the proposed methodology is overviewed. Next the 
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Morlet wavelet transform for denoising the acoustical signals is explained as well as 
the feature extraction procedure. Some interesting experimental results are presented. 

2   Methodology 

In this section the proposed methodology to identify machine sounds highly corrupted 
with non-stationary and non-Gaussian perturbations is presented. The original sounds 
corrupted with noise will be denoted as “noisy” sounds. The procedure consists of the 
following steps: 

 
1) Given a certain number of “original” sounds recorded from different machines, 

they will be heavily corrupted with different non-stationary non-Gaussian noises 
giving different SNR (signal-noise ratio). The problem is that in the temporal 
space it is impossible to distinguish between two corrupted signals. Due to this 
reason, we propose the step 2. 

2) We will need to work in the frequency space. In order to overcome the lack of 
identification among noisy sounds, a denoised version is proposed in this article. 
To carry out the purification (denoising) process, the Morlet wavelet transform 
(Section 3) will be used as a filter step. A reconstructed version of the noisy signal 
is generated after a filtering operation, setting to zero some of the wavelet coeffi-
cients. Therefore, the frequency spectrum of this denoised signal will be used as a 
source of the feature extraction process.  

3) The features extracted from the frequency spectrum are the basis for identifying 
the original sounds. This procedure will be done by calculating the distance be-
tween the feature vectors extracted from the original signal and the denoised one.  

4) To evaluate the robustness of our methodology, we proceed reducing the SNR 
level (increasing the level of noise) until the distance between the original and its 
denoised signal exceeds two values: first, the value of the distance between the 
original signal and its noisy version (d(si, si_denoised)>d(si, si_noisy)), and sec-
ond, the value of the distance between the original signal and a denoised signal 
coming from another original signal (d(si, si_denoised)>d(si, sj_denoised)), being 
si and sj two different original signals. This fact demonstrates the robustness of the 
proposed methodology because high levels of noise can be added without mis-
identifying the signals.  

3   Wavelet Transform and Feature Extraction 

3.1   Review of Wavelet Transform 

The wavelet was originally introduced by Goupilland et al. in 1984 [7]. Let ψ(t) be 
the basic wavelet function or the mother wavelet, then the corresponding family of 
daughter wavelets consists of 
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where a is the scale factor and b the time location, and the factor 
2/1−

a  is used to 

ensure energy preservation. 
The wavelet transform of signal x(t) is defined as the inner product in the Hilbert 

space of the L2 norm, as shown in the following equation 
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Here the asterisk stands for complex conjugate. Time parameter b and scale pa-
rameter a vary continuously, so that transform defined by Eq. (2) is also called a con-
tinuous wavelet transform, or CWT. The wavelet transform coefficients W(a,b) can be 
considered as functions of translation b for each fixed scale a, which give the infor-
mation of x(t) at different levels of resolution. The wavelet coefficients W(a,b) also 
measure the similarity between the signal x(t) and each daughter wavelet ψa,b(t). This 
implies that wavelets can be used for feature discovery if the wavelet used is close 
enough to the feature components hidden in the signal. 

For many mechanical acoustic signals impulse components often correspond to the 
feature sound. Thus, the basic wavelet used for feature extraction should be similar to 
an impulse. The Morlet wavelet is such a wavelet defined as  

)cos()2/exp()( 22 ttt πβψ −=                                           (3) 

3.2   Feature Extraction Using the Morlet Wavelet 

The most popular algorithm of wavelet transform is the Mallat algorithm. Though this 
algorithm can save a lot of computations, it demands that the basic wavelet is or-
thogonal. The Morlet wavelet is not orthogonal. Thus, the wavelet transform of the 
Morlet wavelet has to be computed by the original definition, as shown in Eq. (2). 
Although the CWT brings about redundancy in the representation of the signal (a one-
dimensional signal is mapped to a two-dimensional signal), it provides the possibility 
of reconstructing a signal. A simple inverse way is to use the Morlet’s formula, which 
only requires a single integration. The formula is: 
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It is valid when x(t) is real and either ψ(t) is analytic or )(ˆ ωψ  is real. The condition 

is satisfied by the Morlet wavelet. If the wavelet coefficients W(a,b), corresponding to 
feature components, could be acquired, we could obtain the feature components just by 
reconstructing these coefficients. In calculations, the feature coefficients should be  
reserved and the irrelevant ones set to zero, then the signal can be denoised by using 
formula Eq. (4). Thus, the key to obtaining the denoised signal is how to obtain these 
feature coefficients. A threshold Tw should be set in advance, but it is not evident to 
choose it properly. This threshold indicates the value from which wavelet coefficients 
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must be set to zero. The basic rule for threshold choice is that the higher the correlation 
between the random variables, the larger the threshold; and the higher the signal-noise 
ratio (SNR), the lower the threshold. In practice, the choice of the threshold Tw mainly 
depends on experience and knowledge about the signal. In fact, the quantitative relation 
between the threshold Tw and the SNR still remains an open question. 

Since the sound signal is reconstructed with the modified wavelet coefficients, the 
frequency spectrum is calculated using the Fast Fourier Transform. In the results, it is 
easy to appreciate the good level of denoising that wavelet transform is yielding. 

 

Fig. 1. Definition of features upon the frequency spectrum 

Observing in detail such a spectrum, machine sounds have the characteristic of be-
ing formed by m harmonics with different amplitude and located at different frequen-
cies. Therefore, these signals are divided in regions-of-interest (ROI) consisting of 85 
points (over 256-point FFT). The width of the ROI is chosen so that this area is con-
taining information enough to do the analysis and, consequently, the main fundamen-
tal harmonics in the signals can be found inside the ROI. A normalization step is done 
in the signal spectrums (between [0...1]). Due to the properties of mechanical acoustic 
signals, the most important parameters that we consider to characterize the machine 
sounds are: the frequency of the first harmonic (fs1), the amplitude of the second har-
monic (A2) and the number of significant harmonics (with an amplitude > 0.2), note 
that the first harmonic amplitude will be always 1, that is, the maximal value of nor-
malization. For every sound signal these three features will form the feature vector. In 
Fig. 1 the features can be observed over a generic spectrum. Nevertheless, other fea-
tures have been tried such as the frequency of the second harmonic (fs2) but the results 
do not improve. 

3.3   Distance Between Feature Vectors 

A distance measure is a function that associates a non-negative numeric value with (a 
pair of) sequences, with the idea that a short distance means greater similarity. Dis-
tance measures usually satisfy the mathematical axioms of a metric. In the Euclidean 
space ℜn, the distance between two points is usually given by the Euclidean distance 
(2-norm distance). Other distances, based on other norms, are sometimes used instead. 
In this article we use the Minkowski distance of order 2 (2-norm distance) defined as: 
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for a point (x1, x2, ...,xn) and a point (y1, y2, ...,yn). Other norms have been tested but 
the results do not improve, because the distance measure is not relevant. In our  
opinion, after the tests, the most relevant in the identification process is the feature 
extraction process. The goodness of the identification depends on the denoising meth-
odology for this kind of signals (machine sounds) and the selection of the most repre-
sentative features from the spectrum. 

For identifying the noisy signals and, effectively, to know what original signal machine 
sounds they come from, this distance will serve as a dissimilarity measure, defining: 

Table 1. Different distances between signals 

Acronym Definition Description 

dsii d(si, si_noisy) 
Distance between an original sound and one of its 
noisy versions 

dsij d(si, sj_noisy) 
Distance between an original sound and one of a 
noisy version of another original signal. Cross dis-
tances. 

dsii_denoised d(si, si_denoised) 
Distance between an original sound and one of its 
denoised versions 

dsij_denoised d(si, sj_denoised) 
Distance between an original sound and one of a 
denoised version of another original signal. Cross 
distances. 

4   Experimental Results 

In our experiments, we will demonstrate the identification capacity and the robustness 
of our methodology when the input signals are highly corrupted with low levels of 
SNR (high levels of noise). 

Initially, we use two original sound signals recorded in real industrial environments: 
s1, a car factory assembly line sound; and s2, a ship engine room sound. These two sig-
nals have been corrupted with a non-stationary, non-Gaussian and colored noise, called 
babble noise (n), with different amplitudes, creating a set of 125 noisy signals with 
decreasing SNR, ranging from 12 to 0.5. The babble noise [8] represents more than one 
hundred people speaking in a canteen. All these sounds have been recorded at a fre-
quency sample of 19.98 kHz, 16-bit, mono. Fig. 2 (up) shows original sounds and Fig. 2 
(down) their corresponding corrupted sounds before the denoising process. It is impor-
tant to remark the difficulty to discriminating between both noisy signals. 

In the denoising process, the threshold Tw is set to 30% of the maximum wavelet 
coefficients of the original signals, fulfilling the basic rule stated in that Section 3.2. 
Fig. 3 shows the similitude among the different spectra for the same signal when it is 
completely clean (original), when it is completely noisy and finally when it has been 
denoised after the wavelet reconstruction. It can be observed that denoised spectrum 
is similar to the clean one, and therefore, the features are quite similar compared with 
the features obtained from the noisy signal.  
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Fig. 2. (Up) Machine sounds; (down) with babble noise 

 

Fig. 3. Spectra of original, noisy and denoised sounds of s1 (left) and s2 (right) 

Fig. 4 shows the distance between different signals versus the SNR. It can be ob-
served that for both signals (s1 and s2) the distance from each original signal to its 
denoised versions is always lower that the distance between each original signal to its 
noisy versions, with a wide range of low SNR values. This fact is very important 
because it demonstrates that the denoising process work very well, reducing the added 
noise without losing the implicit frequency information of original signal spectrum.  

Another consequence is the high rate of discrimination between different original 
signals and their denoised versions. In the plots in Fig. 4, this fact is represented by 
the ds21, ds21_denoised, ds12 and ds12_denoised. The distances of these measures 
are always higher then the distances between ds22_denoised and ds11_denoised. 
Even, the distances ds22 and ds11, that is, the distances between one signal and its 
noisy versions are always lower that the cross distances, at least, for values of SNR 
higher than 2. 
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Fig. 4. Distance between signals (see Table 1 for legends)  

5   Conclusions 

Machine sound varies depending on factors such as background noise, failures of their 
mechanisms, environmental aspects (speech, superposition...), etc. Besides, when the 
feature sound is immersed in heavy perturbations as the previously cited is hard to 
identify. CWT can be used to discover the relevant signal components respect the 
selected wavelet bases. Then, using a proper basic wavelet, we can reconstruct the 
sound signal filtering the wavelet coefficients. The machine sound can be denoised 
following this procedure. Together with a specific feature extraction and identification 
(based on a basic distance measure) the noisy signals can be effectively identified, 
even with relatively low signal/noise ratio values. 
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