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Abstract. This paper presents an original method for splitting over-
lapped cells in microscopical images, based on a template matching
strategy. First, a single template cell is estimated using an Expectation
Maximization algorithm applied to a collection of correctly segmented
cells from the original image. Next, a process based on matching the
template against the clumped shape and removing the matched area is
applied iteratively. A chain code representation is used for establishing
best correlation between these two shapes. Maximal correlation point is
used as an landmark point for the registration approach, which finds the
affine transformation that maximises the intersection area between both
shapes. Evaluation was carried out on 18 images in which 52 clumped
shapes were present. The number of found cells was compared with the
number of cells counted by an expert and results show agreement on a
93 % of the cases.

Keywords: Cell quantification, Overlapping objects, Segmentation,
Clump splitting.

1 Introduction

Clumping of objects of interest is a relatively frequent phenomenon in different
computer vision domains. Its identification results crucial in many cytological
applications [1,2,3], in which the expected result is a population count; although
human experts are capable of separating the constituent objects, most real ap-
plications require a count of a large number of these objects, thereby many
conclusions of cytological studies lye on statistical or qualitative approaches [4].
Manual methods have been replaced in hematological cell counting by automated
techniques because of a superior repeatability and the avoidance of the many
error sources present in manual methods [4]. Besides, manual strategies are in
general limited in cases such as random aggregates of cells produced by smearing
failures or dye deterioration [4].

Available clump splitting methods are based on prior knowledge about shape,
size or region gray level intensities [5,6,7]. These methods include mathematical
morphology [3,8,9], watershed techniques [10,11] and concavity analysis [12,13,3].
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Di Ruberto [8] applies a size defined disk as a structural element to separate
clumped red cells while Ross [9] complements it using a gray level granulometry
for separating objects in the image. Concavity analysis methods are based on
the hypothesis that superimposed objects can be separated at some specific cut
points in which either the curvature abruptly changes or the overlapped objects
present differences in the gray level intensities. The drawback of these methods
is that they are only applicable for objects with specific shapes and sizes. On
the other hand, Kumar [3] proposes a method based on a concavity analysis,
adaptable to many shapes and sizes and which depends on a set of parameters
that are obtained from a large set of training samples. However, this method is
not accurate enough (79%), many samples are synthetic and there is not a study
of the degree of overlapping at which the method is capable to deal with.

The clump-splitting method herein proposed addresses the issue that for the
particular case of cytology, the a priori information about the predominant cell
shape and size are already present in the image. For this, a cell model ob-
tained from the image is used for separating cell aggregates. This approach is
simple and permits reliable quantification, independent of any pre-determined
geometric feature (shape and size). It enables the accurate splitting of clumps
composed of cells of different sizes and with a variable degree of overlap. This
paper is organized as follows: the construction of a cell model template, esti-
mated from single cells segmented from actual microscopical images is presented
in Section 2.2. This template is then used for an efficient search of similar ob-
jects in the clumped shapes via a template matching approach, (Section 2.3).
Finally, some preliminary results and conclusions are presented in Sections 3 and
4 respectively.

2 Methodology

In figure 1 the main steps of the whole process are illustrated. Firstly, single and
clumped cells are extracted from an initial image. Then, single cells are used
for estimating a cell model, an estimation which is formulated as a maximum
likelihood problem and solved with an Expectation Maximization algorithm. The
cell model is finally used as a template for splitting cells in clumped shapes. This
approach searches the better matching between a chain code representation of
the contours of the clumped shape and the cell model.

2.1 Single Cell Extraction

Cell features are highlighted using very specific histological procedures, which
mostly consist in coloring the different cell components so that color is essentially
the base of any differential diagnosis and the main strategy for finding objects
in histological samples [14]. Single cell extraction can be achieved through a
variety of segmentation techniques [15]. Cells are herein extracted from a binary
partition of the image, obtained from a process in which objects are segmented
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Fig. 1. Proposed method: single and clumped cells are extracted from a initial segmen-
tation. Single cells are then used for estimating a cell model, which is used for splitting
clumped shapes via a template matching strategy.

using a color strategy. Therefore, searched objects in these histological images
are clustered using their color characteristics.

The problem of color segmentation can be formulated as to find the set of
boundaries in the RGB cube, which optimally separates tissues. This corresponds
to assign to each image pixel a particular class, based on the color structure of
the image. Colour classification at the level of pixel is thus the first step for
identifying fundamental relationships in the digital image. Evaluation images
were segmented using a trained neural network, a multilayer perceptron with
one hidden layer, which classified pixels using the RGB cube as the parameter
space. Training points were selected by a pathologist from one image and applied
to the whole set of histological images. It was needed two training sets, one drawn
from images of malaria and the other from plasmocytoma images.

Once pixels are separated into their constituent classes, they are assembled
together into objects using neighbor information. Formally, this is a connected
operator graph [16], which uses filtering operations for finding relevant morpho-
logical structures. This image representation easily permits separation of the
single and clumped objects in the image. The graph is constructed with the
number of levels needed to represent the hierarchical relationships of the image.
Once the graph representation is complete, a number of connected operators are
then successively applied for removing redundant information and identifying
interest objects. Finally, single cells are extracted and aligned into the same axis
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using a standard principal component analysis (PCA) [15] and the single cells
bounding boxes dimensions are set to the bounding box of the larger feature.

2.2 Template Construction Via the EM Algorithm

For the cell template construction, we assume that each single cell drawn from
the image is one instance of a true model. Each is assumed to be generated
from a process that modifies the true model by adding a random noise, which
models the complex interaction of factors such as the biological variability, the
histological procedure and the illumination capturing conditions.

Let Di = (D1
i , . . . , D

n
i ) be a vector of n elements, which stores the n binary

pixel values of a single cell image, with i = 1 . . .N and N the number of single
cells extracted from the image. Let I be a vector of n elements too, which stands
for the pixel values of the ideal cell (true model) so that

Dj
i = Ti(Ij) (1)

where T is a stochastic function that generates the model instance and is defined
as follows

Ti(1) =

{
1 with probability pi

0 with probability 1 − pi

Ti(0) =

{
1 with probability 1 − qi

0 with probability qi

(2)
Where pi and qi control the probability of error on the generated instance. A

Ti with pi = qi = 1 means that instances generated by Ti corresponds to the
true model. The problem is then to find the pi and qi values which maximise the
likelihood of the instances being generated from the model:

(p, q, I) = arg max
p,q,I

(L(D|p, q, I)) (3)

where the likelihood

L(D|p, q, I) =
N∏

i=1

n∏
j=1

P (Dj
i |pi, qi, I

j) (4)

=
N∏

i=1

n∏
j=1

P (Dj
i |pi, qi, I

j = 1)Ij

P (Dj
i |pi, qi, I

j = 0)1−Ij

(5)

=
N∏

i=1

n∏
j=1

p
IjDj

i

i q
(1−Ij)(1−Dj

i )
i (1 − pi)Ij(1−Dj

i )(1 − qi)(1−Ij)Dj
i (6)

A first naive approximation to this problem could be an intensive search of
the parameters, but this is no feasible because of the size of the parameter space,
which is potentially infinite. An alternative approach is to iteratively improve
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the estimation of the optimal parameters. For this purpose, a Expectation Max-
imization (EM) strategy was adapted from the original work of Warfield [17].

The main idea of the approach is to consider the true model (I) as a hidden
variable, which is estimated from the observed data and a set of values for
the parameters pi and qi. The initial values of pi and qi are further improved by
local optimization. The process of alternatively estimate I (expectation step) and
improve the pi and qi values (maximization step) is iterated until convergence.
This convergence is guaranteed since the likelihood function has an upper bound,
as was stated in [18].

The initial parameter estimates pi and qi are set to 0.9, as the fundamental
hypothesis in this work is that the instances do not differ too much from the
true model. The final estimation of I corresponds to the true model that will be
later used as a template to find cells in the input image.

2.3 Splitting Via Template Matching Strategy

Tradionally, template matching techniques have been considered as expensive
regarding computational resources since the template must slide over whole im-
age. However, the approach herein used is mainly based on a simplified version of
both the template and the clumped shape through a chain code representation,
which searches for an anchorage point that results in a “best match” when the
two shapes are superimposed.

A chain code is typically used to represent the object boundary by a sequence
of straight-line segments with their associated directions. A randomly selected
pixel from the object boundary is chosen as the initial point. Afterwards, the
pixel’s neighbors are numbered from 0 to 7 (8-neighbor mask) and the pixels
belonging to the boundary are selected following a clockwise direction. Finally,
the obtained chain code is normalized for achieving an invariant representations
regarding the initial point and orientation [15]. This normalization is performed
computing the distance difference between two consecutive segments and assum-
ing that the chain code is a circular sequence.

Once a chain code representation is achieved for both the clumped and tem-
plate shapes, a maximal correlation point is determined in the registration phase.
This point is from now on a landmark which limits transformations of the found
template shape. Provided that our true model may differ from cells which result
trapped into aggregates and which generally are deformed because of the contact
with other cells, this landmark is used to bond both the ideal model contour and
the clump boundary and constitutes the initial search point. Registration is ad-
dressed to find the affine transformation which maximises the intersected areas
between the two shapes: the template and the clumped. Overall, the template
size (width and height) was varied from 70% to 120% for allowing to find a “best
match”, even if the cell was deformed into the clump. Likewise, orientationwas var-
ied in steps of 5%, sliding the template code over the clumped shape. After a first
cell is found, its corresponding intersection surface is eliminated of the clumped
shape as well as its equivalency from the chain code. Procedure is iterated until
the remaining area is lower than 0.2 of the original clumpled shape.
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3 Experimentation

3.1 Experimental Setup

In the present investigation we performed evaluations on two different types of
cells. Figure 2 displays two microscopical images obtained from the two cell types:
plasmocytoma (left panel) and thin blood smears infected with malaria parasite
(right panel). Upper row displays the original digital images, while bottom row
shows the obtained images using the segmentation approach described before.
Our objective was thus to find the cells within the clumped shapes, formed after
the segmentation process.

Fig. 2. Fist row corresponds to the original microscopical images. Bottom row displays
segmented images obtained from the original ones. Several clumped shapes appear in
both cases, a result of the overlapped cells.

A group of 18 microscopical images was used for evaluation, 14 from thin blood
stained samples and 4 from a plasmocytoma slide, chosen from two different
unrelated studies. These samples corresponded to a two very different tissues,
each entailed with different color properties.

3.2 Results and Discussion

Figure 3 shows the final and intermediate results. Upper row (First row) displays,
from left to right different microscopical images, among which the first two are
extracted from thin healthy blood samples and the next five are extracted from
thin blood samples infected with Plasmodium falciparum. In the same row the
last five images come from a plasmocytoma slide, characterized by large nuclei
with different shapes, sizes and in which the variable to determine is the number
of nuclei.
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a)

b)

c)

d)

e)

Fig. 3. Figure illustrates the whole process using actual cytological images from dif-
ferent tissues. From the upper to the lower row: row a) displays the original digital
images and the first five images from left to right correspond to red cells infected by
plasmodium falciparum; the rest of the row shows images from a plasmocytoma, a kind
of cancer in the lymphatic system. Row b) depicts the binarized images after the color
classifier has segmented objects, rows c) and d) show first and second iterations of the
proposed method and finally, row e) shows the superimposed results of the splitting
cells and the clumped contour shape.

From upper to lower row, results shown in Figure 3 summarise the entire
process: row a illustrates some examples of sets of cells which are touching or
overlapping each other in the two cases herein evaluated (thin blood stains and
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plasmocytoma). Row b shows results after the binarization strategy for every
original image in the upper row. It should be strengthen out that at this state,
the graph has been already constructed and every single cell has been ruled
out so that the graph is uniquely composed of clumped shapes. Notice that the
color strategy can also produce overlapping shapes because of the segmentation
process, see for example the eighth panel (from left to right) of row a and observe
the resulted segmentation at the corresponding image in row b. Overall, cells are
easily separated using color differences. However, the segmentation process may
result in complex shapes such as the shown in the mentioned panel. For this
reason, yet color characteristics are at the base of differences among objects, they
are difficult to establish since histological objects are complex mixes of different
intensities and chrominances which are seen in the RGB space as boundaries
varying from one image to other. Rows c and d illustrate the splitting process
i.e. a first best matching is shown in row c while a second best matching is
displayed in row d. Observe that there is no a systematic trend about a preferred
initial location among the whole set of assessed shapes. Finally, row e shows the
original clumped contour superimposed with the different locations at which the
template has found a relevant shape.

The proposed technique was applied to the set of evaluation images, the iden-
tified cells were quantified and the results compared against a manual quantifi-
cation. In every case, the algorithm was able to match a shape which definitely
was an actual cell, a finding which was correlated with the results obtained from
observations performed by an expert on the whole set of images. Automatic
quantification (the number of found cells for these shapes) coincided in 49 of
52 clumped shapes, resulting in a 93% agreement. Failures were mostly due to
an overlapping larger than 50% or to very deformed cells which have lost their
geometrical properties and were very different from the estimated template. Re-
garding time performance, the whole process for a 640 × 480 image size was
0.7 ± 0.17 s.

4 Conclusions

Automatic methods for performing a precise cell counting are limited by a large
number of artifacts, among which the formation of clumped shapes is one of
the most frequent. In this research, an entirely automatic method is proposed
for splitting cells within clumped shapes. The process starts by performing a
binarization of the microscopical image, after which every single cell is counted
and stored for the construction of a model cell. This cell model is inferred from
single cells by an Expectation Maximization algorithm applied at the level of
each pixel. The clumped and template contours are then transformed into a chain
code, which is used for the registration phase. Registering is performed through
affine transformations of the template, under the restriction that the maximal
correlation point between the two shapes is fixed. The proposed method has
shown to be robust by splitting cells of diverse sizes and shapes whose overlap
varies, it is also reliable and reproducible on the test group of evaluation images.
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Future work includes the evaluation of the proposed method in different ap-
plications domains and the exploration of different representation alternatives
for the true cell model.
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