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Abstract. In this paper, a multilevel approach of Ant Colony Optimization to 
solve the Job Shop Scheduling Problem (JSSP) is introduced. The basic idea is 
to split the heuristic search performed by ants into two stages; only the Ant 
System algorithm belonging to ACO was regarded for the current research. 
Several JSSP instances were used as input to the new approach in order to 
measure its performance. Experimental results obtained conclude that the Two-
Stage approach significantly reduces the computational time to get a solution 
similar to the Ant System.  
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1   Introduction 

This paper introduces a multilevel approach of Ant Colony Optimization to solve the 
Job Shop Scheduling Problem (JSSP). In the static JSSP, a finite number of jobs need 
to be processed by a finite number of machines. A job is defined as a predetermined 
sequence of tasks, each one of those needs to be processed without interruption for a 
given period of time on a specified machine. The tasks belonging to the same job 
cannot be processed in parallel and, additionally, each job must be carried out in each 
machine exactly once. A feasible schedule is an assignment of operations to time slots 
on a machine without violation of the job shop constraints. A makespan is defined as 
the maximum completion time of the jobs. The main goal is the accomplishment of a 
schedule that is able to minimize the JSSP’s makespan. Such optimum schedule is the 
one that minimizes the total idle time for the set of machines. According to the 
complexity theory [1], the JSSP is characterized as NP-hard combinatorial 
optimization problem. Since the achievement of exact solutions for such sort of 
problems is computationally unfeasible [1], different heuristic methods have been 
applied for solving JSSP. 

Ant Colony Optimization (ACO) is a metaheuristic used to guide other heuristics 
in order to obtain better solutions than those generated by local optimization methods; 
this meta-heuristic has been successfully applied to various hard combinatorial 
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optimization problems. In ACO, a colony of artificial ants cooperates in the search of 
good solutions to discrete problems. Artificial ants are simple agents that 
incrementally build a solution by adding components to a partial solution under 
construction. This computational model was introduced by M. Dorigo. Further 
information about this procedure can be found in [2], [3] and [4]. 

In the Scheduling field, ACO has effectively dealt with the Flow-shop [5], 
Resource Constraint Project Scheduling [6] and the Single Machine Total Tardiness 
problems [7]. ACO has also proven to be profitable in finding out the solutions of 
other permutation scheduling problems such as the Traveling Salesman [8, 9] and 
Vehicle Routing problems [10]. However, the application of the ACO to Shop 
scheduling such as the JSSP and open shop scheduling has demonstrated to be quite 
difficult [11] and very few papers about the ACO implementation for the JSSP can be 
found. The first ant system (AS) coping with the JSSP appeared in 1994 [12]; more 
recently, C. Blum et al. have done significant research on the application of ACO to 
shop scheduling problems including the JSSP [11, 13]; in 2004, M. Ventresca and B. 
Ombuki introduced an application of the Ant Colony Optimization metaheuristic to 
the job shop scheduling problem[14]. 

It is worthwhile to note that ACO algorithms are appropriate for discrete 
optimization problems that can be characterized as a graph G = (C, L). Here, C 
denotes a finite set of interconnected components, i.e. nodes. The set L ⊆ C x C 
describes all of the connections (i.e. edges) at the graph (see [6] for a complete 
description). Every solution of the optimization problem may be expressed in terms of 
feasible paths across the graph. 

In this paper, a new approach of ACO is developed where the underlying idea is to 
have ants perform the heuristic search as a two-stage process; we focus on the Ant 
System algorithm belonging to the ACO family because previous studies have shown 
that it attains the best results [14]. Several JSSP instances were used as input to the 
new approach in order to measure its performance. Experimental results showed the 
two-stage approach significantly lowers the computational time to get an Ant System 
similar solution. 

2   Job Shop Scheduling Problem 

The JSSP is made up by a finite set J of n jobs to be processed on a finite set M of m 
machines. Each job J i must be executed on every machine and consists of m chained 
operations oi1, oi2,…,oim that are to be scheduled in a predetermined given order 
(precedence constraint). 

There is a total of N = n*m operations where oik is the operation corresponding to 
job Ji that is to be run on machine Mk during an uninterrupted processing time pik. The 
workflow of each job throughout the machines is independent of the other jobs’. At a 
time, each machine is able to carry out a single job and, besides, each job is to be 
processed by a single machine simultaneously (capacity constraints). The parameter 
Cmax points out the performance measure that should be minimized (longest time 
required to complete all jobs). 
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The objective is to determine the starting times (tik ≥ 0) for each operation so as to 
entail a minimization of the makespan in such a way that all of the constraints are 
met: 

}M J,J:}{max{min}min{ kimax
*
max MptCC ikik

schedulesfeasible
∈∀∈∀+==  (1) 

Table 1 depicts an example of a JSSP instance whose graphical representation is 
portrayed in figure 2. Notice that each node represents an operation. Thus, node 1 
stands for the first operation of job 1, node 2 symbolizes the second operation and so 
on. In a general way, a node i represents the (i mod (m+1)) operation of the job (i div 
(m+1)) +1. 

Table 1. An example of a simple JSSP instance holding two jobs that must be processed on 
four machines. The data format is (machine, duration); numbers in bold refer to Figure 2. 
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2.1   Types of Schedules 

According to the schedule properties, any feasible schedule can be categorized into 
four major kinds: inadmissible, semi-active, active, and non-delay schedules. The 
number of inadmissible schedules is infinite and most of them contain excessive idle 
times. A semi-active schedule can be obtained by shifting a schedule forward until no 
such excessive idle times appears. 

 

Fig. 1. The hierarchy of feasible schedules 

Further improvements on a semi-active schedule can be reached by skipping some 
operations ahead without bringing about the latter start of other operations regarding 
the original schedule. However, active schedules allow no such displacement. Thus 
the optimal schedule is guaranteed to fall within the active schedules. Non-delay 
schedules build a subset of active schedules. In a non-delay schedule, a machine is 
never kept idle if some operation is able to be executed. It is remarkable fact that the 
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best schedule is not necessarily a non-delay one. However, it is easier to generate a 
non-delay schedule than an active one. The former may be closer to the optimal 
schedule even if it is not an optimal one. Additionally, there is strong empirical 
evidence that non-delay schedules bear solutions whose mean quality is higher than 
those produced by active schedules. Nevertheless, typical scheduling algorithms 
browse the space of all active schedules in order to assure that the optimum is taken 
into consideration. 

3   Ant Colony Optimization (ACO) 

Artificial ants are straightforward agents that incrementally make up a solution by 
adding components to a partial solution under construction. They are the main 
component in Ant Colony Optimization (ACO). In such methodology, the ants 
cooperate in order that good solutions to discrete problems can be found. 

Ant System (AS) is the first ACO algorithm; it was introduced by means of the 
Traveling Salesman Problem (TSP) [7] and [9]. In TSP, we have a group of edges 
fully connecting the set of N cities {c1, …, cn}; each edge is assigned a weight dij 
whose meaning is the distance between cities i and j. The goal is to find the shortest 
possible trip which comprises each city only once before going back to the starting 
city. When ACO is used to solve these problems, pheromone trails (tij) are associated 
to the edges and denote the likeliness of visiting city j coming from city i. Initially, the 
ants are randomly positioned into cities. Throughout the subsequent steps, ant k 
computes a random proportional rule to decide which city will be visited next 
according to expression (2): 
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where α and b are leveling parameters of the relative importance of the pheromone 
trail and the heuristic information, respectively. AS ants have a memory (tabu list) 
that stores visited components of their current path for preventing the chance of 
returning to an already visited city.  

After all ants have made up their tours, the tij values are updated in two stages. 
Evaporation as a fading factor of the pheromone trail is considered in stage 1, yielding 
lower tij which are calculated as shown in expression (3) by using the parameter ξ, (0 
< ξ < 1); this step is needed to avoid the unlimited accumulation of pheromone. 

tij=(1-ξ)*tij (3) 

Secondly, all ants increase the value of tij on the edges they have traversed in their 
tours according to the expression below: 

tij=tij+Incij (4) 

where Incij is the amount of pheromone dropped by all ants walking across the edge 
(i, j). Usually, the amount of pheromone dropped by ant k equals to 1/Ck, where Ck is 
the length of the tour for ant k. 
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4   Ant System for JSSP 

An instance of the JSSP in the ACO algorithm is represented as a graph where the 
nodes are connected by two kinds of edges; the nodes represent operations, that is, for 
N jobs and M machines, the graph will include N*M nodes; the oriented edges 
represent the precedence between operations belonging to the same job and the 
dashed edges stand for a likely path that ants can go through if the problem 
constraints are satisfied (See Figure 2). 

In order to apply the AS algorithm, a graphical representation G of the 
optimization problem must be built up at first. 

The meta-heuristic begins initializing the amount of pheromone in each edge of G 
with some positive real value c. Each ant is then placed into an initial position, which 
is added to its tabu list; such initial positions are randomly chosen from the possible 
ones, which are the first operations to execute in each job. 

Every agent will independently set up a solution following the probabilistic rule 1, 
where the heuristic value associated to an operation j is dij = 1/Ctimej, Ctimej 
symbolizes the completion of operation j. After the tabu list of all ants is full (a valid 
solution has been found), its path length will be determined and the best solution 
found so far will be recorded. 

Next, the pheromone values are recomputed via expressions 2 and 3, where Incij in 
this problem is the better scheduling found in the current cycle. This process is 
repeated during a given number of cycles. 

In the graph displayed in Figure 2, the possible initial positions for the ants are 
nodes 1 and 5. If ant k chooses node 5, then the likely moves that meet the problem's 
constraints are either to nodes 1 or 6 and alike. 

 

Fig. 2. A graphical representation for the 2-job and 4-machine problem instance shown in Table 1 

For this problem we can find the following feasible schedules (solutions): 
 

A: {1-2-3-5-6-7-4-8}, B: {5-6-7-1-2-8-3-4}, C: {1-2-5-6-3-4-7-8} 

Table 2. Starting from solution B, an active schedule having a makespan of 30 is built from 
scratch 

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 3
0 

M1 J2 J1         
M2 J1        J2  
M3          J2   J1 
M4       J2 J1    



452 A. Puris et al. 

5   Two-Stage Ant System (TS-AS) in the JSSP 

The Two-Stage Ant Colony Optimization (TS-ACO) proposed in this investigation is 
based on the following idea: to split the search process performed by the ants into two 
stages so that in the first stage, preliminary results are reached (partial solutions) that 
behave as initial states for the ulterior search realized during the second stage. 

Determining an initial state in which the search process starts has been an 
interesting issue in heuristic search. Due to the well known influence the initial 
state has in the search process, the algorithm aims to approximate the initial state to 
the goal state as much as possible. Of course, it is necessary to regard a fitting 
balance between the computational cost of achieving the initial state and the overall 
cost; in other words, the sum of the costs of approximating the initial to the goal state 
plus the cost of finding the solution beginning at the “enhanced” initial state should 
not be greater than the cost of seeking the solution from a random initial state. 

More formally, the purpose is described as follows: let Ei be an initial state either 
randomly generated or computed by any other method without a meaningful 
computational cost; Ei

* is an initial state generated via approximation to the goal state 
by some method M; CM(Ei

*) indicates the cost of reaching state Ei
* from Ei through 

method M and CCHSA(x) is the computational cost of finding a solution from state x 
utilizing a Heuristic Search Algorithm (HSA). Hence, the objective expression is held 
so that CM(Ei

*) + CCHSA(Ei
*) < CCHSA(Ei). 

In the TS-AS proposed here, the procedure for calculating Ei
* and the HSA are both 

the AS algorithm, so the objective is CAS(Ei
*) + CCAS(Ei

*) < CCAS(Ei). Since AS is 
used in both stages, the difference between them is computed by assigning different 
values to some parameters of the model during each stage. A ratio (r) is introduced in 
order to measure the relative assignment of the values to the parameters of the 
algorithm in both stages; r indicates the portion of the overall search to be realized at 
the first stage. For instance, if r = 0.3, it means that the first stage will comprise 30% 
of the overall search and during the second stage, the remaining 70% shall be carried 
out (an example of the application of this ratio is exhibited in the next section). 

Setting the value of r exercises a high influence in the overall performance of the 
algorithm. The higher value of r, the closer the state Ei

* will be to the goal state. As an 
outcome, CAS(Ei

*) increases and CCAS(Ei
*) decreases. In addition to this balance 

between the costs of CAS(Ei
*) and CCAS(Ei

*), the question of how much the search 
space was explored arises; the greater the rate r is, the lower the search in the second 
stage is due to several reasons: (I) there are less ants working, (II) the amount of 
cycles becomes smaller and (III) although the number of possible initial states for the 
second stage should become greater when r increases, such number is already upper-
bounded by the result of the previous stage. 

Therefore, a key point is to study what value of rate r is the best in order to reach 
the best balance between the searches performed during both stages. This value must 
allow: 
• The minimization of CAS(Ei

*) +CCAS(Ei
*). 

• An exploration of the search space that guarantees to find good solutions. 
 
When applying AS algorithm to the JSSP, the ants begin the search starting from 
random initial states; that is, in each cycle an ant commences its trip in a randomly 
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chosen operation and picks up the next operation through rule (1). At the beginning, 
no pheromone information is available to lead the search; the heuristic information 
alone is present. 

On the contrary, the TS-AS builds up partial trips (they do not include all the 
nodes) in the first stage; this information behaves as an initial state for ants during the 
second stage of the search algorithm. In other words, instead of rebooting the search 
from scratch, the agents use the information available after the execution of the first 
stage as the starting point in the second stage. 

In JSSP, the parameters whose values depend on the ratio r are: the number of ants 
(m), the number of cycles (nc) and the number of operations (co = N * M) that will be 
included in each stage. 

The parameters values are assigned as illustrated right now: Let be 6 jobs and 5 
machines (J = 6, M = 5, N=30 total operations) and the following parameters for the 
traditional AS algorithm: m = 100, nc = 100 and co = 30. Setting r = 0.3 implies that 
the values of these parameters for the two stage ACS are computed accordingly as: m1 

= 100 * 0.3 = 30, nc1 = 100 * 0.3 = 30 and cc1 = 30 * 0.3 = 9 for the first stage; and 
m2 = 100 * 0.7 = 70, nc2 = 100 * 0.7 = 70 and cc2 = 30. It means that 30 ants will 
execute the AS algorithm for the time of 30 cycles, building a sequence of 9 
operations. In the second stage, 70 ants will run the AS algorithm throughout 
70 cycles shaping the sequence of 30 operations. This signifies that in the first stage, 
30% of the ants will be seeking size-lessened solutions (because the sequence 
comprises only 30% of the nodes) in the 30% of the total number of cycles. In the 
second stage, the remaining 70% of the ants are used; they will perform the search for 
the 70% of the total number of cycles so as to discover full problem solutions 
(including all operations). Once the first stage has finished, a subset of partial 
solutions is picked up (denoted by EI) holding cs out of the best solutions (sequences 
with the best values of the objective function) found during the first stage. 
The TS-AS-JSSP algorithm is outlined below: 

Input: Parameters beta, rho, epsilon, cc, factor r, number of solutions in EI (cs) 
Output: The best solution found. 

S1: Set the number of ants either by input data or by using some 
method depending on the number of operations. 
S1: Perform Stage 1. 
S1.1: Compute the parameters for the first stage: 
 m1 = r * m 
 nc1 = r * nc 
 cc1 = r * cc 
S1.2: Run the AS algorithm that performs nc1 cycles in the first stage. 
S1.3: Set of trips ← Trips generated by AS algorithm in the first 
stage. 
S2: Perform Stage 2. 
S2.1: Compute the parameters for the second stage: 
 m2 = m - m1 
  nc2 = nc - nc1 
  cc2 = cc 
  EI ← Pick up the cs best solutions from the  
 set of trips. 
S2.2: Run the AS algorithm (that performs nc2 cycles in the second 
stage by using the elements of EI as initial states for the ants in 
the second stage). 
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6   Experimental Results 

Table 3 shows a comparative study between the algorithms AS-JSSP and TS-AS-
JSSP using some remarkable JSSP instances found at OR-Library [17] regarding the 
quality of the solution and the computational cost in time. The same parameters were 
used in both algorithms for running the tests; that is, the number of ants (m) equals to 
the number of operations, nc = 3000, ξ = 0.1, α = 0.8 and β = 0.17. Three different 
ratios were used for the TS-AS-JSSP algorithm: r = {0.2, 0.25, 0.3}. For every test, 10 
runs on every instance were carried out and the best solution was selected. The 
columns of Table 3 stand for: the dataset name, the best solution reached for that 
dataset, the best solution found by the Ant System algorithm, the time cost (in 
milliseconds) for finding the AS solution, the best solution reported by the two stage 
approach (including the ratio used in the computation) and finally, the time cost (in 
milliseconds) for finding the two-stage algorithm solution. 

Table 3. A comparative study between Ant System and Two-Stage Ant System 

Instance BK AS-JSSP Time1 TS-AS-JSSP Time2 
la01 666 666 157502 666(r=0.3) 53513 
la02 660 673 144697 672(r=0.2) 74518 
la03 597 627 144107 607(r=0.25) 60210 
la04 590 611 144455 594(r=0.3) 53044 
la05 593 593 144531 593(r=0.25) 61224 
la06 926 926 510077 926(r=0.3) 180915 
la07 890 897 509708 890(r=0.25) 224793 
la08 863 868 508714 865(r=0.25) 216916 
la09 951 951 510802 951(r=0.3) 186744 
la10 958 958 508825 958(r=0.25) 178458 
la11 1222 1222 1276036 1222(r=0.3) 460834 
la12 1039 1039 1269386 1039(r=0.3) 450302 
la13 1150 1150 1268055 1150(r=0.3) 462080 
la14 1292 1292 1288142 1292(r=0.3) 456755 
la15 1207 1251 1271330 1247(r=0.25) 553566 
la16 945 978 930177 978(r=0.3) 353844 
la17 784 797 927918 800(r=0.2) 510641 
la18 848 901 938328 868(r=0.2) 480469 
la19 842 892 928723 871(r=0.3) 414511 
la20 902 955 933017 936(r=0.3) 354534 

These experimental results prove that the two-stage approach algorithm achieved 
better solutions than the classic Ant System algorithm, additionally lowering the time 
cost for over 50%. Also, the qualities of the solutions reached by TS-AS- JSSP are 
higher than those exposed in [14], where the algorithms Max-Min Ant System, PFS 
and NFS, introduced in [14], are used. 

The statistical analysis performed in order to compare the solution values for the 
mentioned algorithms using Monte Carlo Significance of Friedman’s test=0.000 is 
displayed in Figure 3 a), whereas b) provides the comparison among the algorithms 
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Fig. 3. Statistical Analysis for solutions values (a) and computational cost (b) 

with respect to the time needed to get the solution. Mean Ranks with a common letter 
denote non-significant difference according to Wilcoxon’s test, proving that there are 
not significative differences between the AS and TS-AS in solutions values, and 
showing an important difference between them in the time cost. 

7   Conclusions 

This paper introduces a new approach to ant colony optimization to the job shop 
scheduling problem. It consists of the splitting of the search process performed by 
ants into two stages. The study was carried out with the use of the Ant System 
algorithm. In this approach, some parameters (number of ants, number of cycles, etc.) 
are assigned a different value in each stage according to a ratio r which signals the 
portion of the overall search that corresponds to each stage. 

The algorithm’s performance was thoroughly studied by using different ratio 
values. The best results came up when this value falls within the interval [0.2, 0.3]. 

This new ACO approach yields a significant reduction of the computational time 
cost yet preserving the quality of the solutions. 
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